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Introduction

Aminotransferases (also called transaminases) are 
ubiquitous enzymes that catalyze reversible transfer of 
amino group from amino acids to α-keto acids playing a 
key role in the metabolism of amino acids in all species. 
The transamination reaction was discovered in muscle 
tissue in 1937 by Braunstein and Kritzmann (1) who 
initially named the enzymes as aminopherases. In 1951 
Cammarata and Cohen (2) introduced a practical method 
for aminotransferase activity measurement. In 1955 Karmen 

et al. (3) developed an accurate and simple method that 
enabled the widespread use of this enzyme test in an ever-
widening list of diseases (4). The majority of amino acids 
(except for lysine, threonine, proline and hydroxyproline) 
undergo transamination. However, 2 aminotransferases—
aspartate aminotransferase [AST; EC 2.6.1.1; also known as 
serum glutamic oxaloacetic transaminase (SGOT or GOT)] 
and alanine aminotransferase [ALT; EC 2.6.1.2; also known 
as serum glutamic pyruvic transaminase (SGPT or GPT)]—
are mostly metabolically active and abundant in cells. Both 
enzymes are routinely measured mostly to diagnose liver 
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disease/injury, monitor therapy or assess disease course and 
prognosis of patients with liver disease. Evidence is growing 
that abnormal aminotransferase activity in circulation is 
associated with cardiovascular disease (CVD). The focus of 
this review is to summarize the evidence on the association 
between circulating ALT activity (thereafter as ALT) and 
CVD. The association between AST and CVD was not 
addressed.

ALT structure and functions 

Human recombinant ALT produced in E. Coli is a non-
glycosylated polypeptide chain with 495 amino acid residues 
and a molecular mass of 54,479 Dalton (5). The active 
enzyme is a dimer composed of two identical subunits with 
a molecular mass of 114,000 Dalton (5). Aminotransferases 
(including ALT) are pyridoxal-5‘-phosphate (PLP)-
dependent enzymes. PLP is a vitamin B6 derivative that 
directly participates in the transamination reaction. So far 
2 catalytically active isoforms of human ALT have been 
identified and called ALT1 and ALT2. There is also a third 
isoform (called ALT2_2) without enzymatic activity (6). 
The human ALT genes, GPT1 and GPT2, are located on 
chromosomes 8 (band 8q24.3.) and 16 (band 16q12.1.), 
respectively. The human GPT1 gene spans 2.7-kb and 
consists of 11 exons ranging in size from 79 to 243 base 
pairs and encodes a 495-amino acid residues polypeptide (7). 
The human GPT2 gene encodes a 3.9 kb mRNA, and has 
12 exons spanning approximately 50 kb of the genome (8). 
The GPT2 gene encodes a polypeptide with 523 amino acid 
residues or a shorter polypeptide of 423 amino acid residues 
(ALT2_2) which is an alternative splice variant due to an 
alternative translational start codon usage (6).

Tissue express ion of  GPT1 and GPT2 di f fers 
considerably. In humans, GPT1 is expressed in liver, kidney, 
intestine, myocardium, skeletal muscle, colon, pancreas, 
spleen and lung (9). GPT2 gene is expressed in skeletal 
muscle, brain, heart and white adipose tissue (9). In other 
studies, a high GPT1 gene expression was detected in 
human liver, skeletal muscle and kidney, a low expression 
level was detected in myocardium and no expression 
was detected in pancreas. On the other hand, high 
GPT2 gene expression was detected in heart and skeletal 
muscle and no GPT2 expression was found in liver or  
kidney (10). Moreover, immunohistochemistry techniques 
have detected a strong ALT1 reactivity in hepatocytes, 
renal tubular and salivary gland epithelium whereas 
ALT2 reactivity was detected in adrenal gland cortex, 

neuronal cell body, cardiomyocytes, skeletal muscle and 
endocrine pancreas (10). Studies in isolated organelles have 
shown that ALT1 is located in cytosol and endoplasmatic 
reticulum of hepatocytes but not in mitochondria whereas 
ALT2 was located in mitochondria and endoplasmatic 
reticulum in skeletal muscle cells (6). Finally, both ALT1 
and ALT2 contribute to ALT in plasma and immune-
precipitation with ALT antibodies showed that ALT1 is 
mainly responsible for basal ALT in human plasma (10). 
Quantitatively, overall ALT in human liver, kidney, heart 
and muscle is 2,850, 1,200, 450 and 300 times higher than 
in serum (11). Although ALT in muscle is nearly 10-fold 
lower than in liver, considering the extent of muscular tissue 
(approximately 33 kg in healthy adults), skeletal muscle is 
the main reservoir of ALT in terms of quantity. Although, 
regulation of ALT expression remains poorly investigated, 
high protein intake, fasting, cortisol, glucagon, epinephrine 
and norepinephrine are reported to induce ALT expression 
in rat liver (12,13). There is also evidence that ALT2 
expression is regulated by androgens via activation of 
promoter androgen response element(s) (14). 

Aminotransferases have multiple metabolic functions. 
First, by catalyzing a freely reversible transfer of amino 
groups from amino acids to α-keto acids, aminotransferases 
create balanced proportions of amino acids according to the 
metabolic needs of the cells. Second, aminotransferases play 
a crucial role in the catabolism of amino acids by removing 
the amino group and amino acid synthesis from Krebs 
cycle intermediates. Aminotransferase reactions funnel 
amino groups from amino acids toward α-keto glutarate 
producing glutamate via ALT reaction. Glutamate is the 
only amino acid that undergoes large-scale deamination 
via enzyme glutamate dehydrogenase which effectively 
removes nitrogen from amino acids releasing ammonium 
and carbon skeleton of amino acids. The latter is further 
degraded for energy or used for other metabolic needs 
of the cells (i.e., gluconeogenesis). This increases the 
amount of Krebs cycle intermediates (called anaplerosis) 
and contributes to maintenance of oxidative capacity 
of the cells. Third, aminotransferases particularly ALT 
participate in the production and transport of ammonia 
(via glutamate dehydrogenase enzyme and amino acid 
glutamine). Fourth, depending on the metabolic needs and 
tissue, ALT reaction may provide alanine which serves as a 
vehicle for transporting pyruvate (after transformation to 
alanine by ALT in muscle) from contracting muscle to liver 
(transformed thereafter into pyruvate by ALT and glucose 
via glyconeogenesis in liver). Alanine is a major amino acid 
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in blood in fasting conditions. Fifth, ALT reaction provides 
also glutamate which serves as a precursor for the synthesis 
of glutathione, a major antioxidant in cells. Moreover, 
glutamate is a neurotransmitter and a precursor of γ-amino 
butyric acid (GABA) in the brain (Figure 1).

ALT in circulation originates from multiple sources. 
Although the mechanism of ALT release from the 
cells remains unknown it is believed that it involves 
cellular leakage or cytoplasmic budding or blebbing into 
extracellular space and circulation. ALT1 accounts for most 
ALT in circulation and in clinically standard liver tests (10). 
However, ALT2 contributes to circulating ALT levels, 
typically in conditions like acute myocardial infarction or 
obesity (10). The current ALT assay measures combined 
ALT1 and ALT2 catalytic activity. The enzyme has a plasma 
half-life of 47±10 hours which is longer than that of AST 
(17±5 hours). ALT is cleared from circulation mostly via 
hepatic uptake (15). ALT shows a diurnal variation being 
up to 45% higher in the afternoon hours than in morning 
hours and a 10% to 30% day-to-day variability (16,17). 
ALT levels decrease with age for both men and women, 
independent of metabolic traits, alcohol use, and other 
markers of hepatic function, and consequently ALT may be 
considered a biomarker of aging (18).

Isolated congenital ALT deficiency is a very rare and 
in general a benign condition (19). The ALT silent gene 
called ALT0 gene was first reported by Olaisen in 1973 (20)  
and its frequency in the Caucasian population is estimated 

to be about 2.5 in 1,000 (21). In a case report of an 
ALT deficiency in a Japanese women with hepatitis C, 
low ALT was also observed in her 2 sons (22). Recent 
studies have shown that loss-of-function mutations in 
the ALT2 gene are associated with severe neurological 
alterations, developmental encephalopathy (23) or postnatal 
microcephaly, and spastic paraplegia with progressive 
features and intellectual and developmental disability (24). 
Acquired ALT deficiency is observed in the setting of 
vitamin B6 deficiency in patients with cirrhosis or chronic 
kidney failure on dialysis (25). 

ALT and CVD

Prospective cohort studies have produced strikingly 
conflicting results with respect to the association between 
ALT and CVD or total (or CVD-related) mortality. Some 
studies have reported a positive association between ALT 
and CVD or mortality. Other studies have reported a 
negative, neutral or U-shaped relationship (Table 1).

Elevated ALT and CVD and mortality

A number of studies have reported increased risk of CVD 
or mortality associated with higher ALT levels. Arndt  
et al. (26) investigated the association of liver enzymes with 
vocational disability and mortality in male construction 
workers in Southern Germany between 1986 and 1988. 
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Table 1 Association of alanine aminotransferase with outcomes

Author (year) 
(reference)

Type of  
study

Number of  
participants (age)

Follow-up 
(years)

Alanine  
aminotransferase 

cutoff
Outcome/adjusted risk estimate P value

Arndt et al. 
(1998) (26)

Cohort 7,858 construction 
workers  
(25–64 years)

5 >22 U/L Total mortality: RR =1.3 (0.9–1.9) Not given

Vocational disability:  
RR =1.3 [1.0–1.7)

Kim et al. 
(2004) (27)

Prospective 
cohort

94,533 men/47,522 
women (35–59 years)

8 ≥100 (men) Total mortality: RR =5.2 (4.2–6.4) Not given

≥100 (men) CVD mortality: RR =2.9 (1.5–5.6)

≥50 U/L (women) Total mortality: RR =1.2 (0.5–3.0)

≥50 U/L (women) CVD mortality: Not analyzed

Nakamura  
et al.  
(2006) (28)

Cohort 4,524 community-
dwelling residents 
(40–69 years)

10 ≥50 vs. <20 U/L Total mortality:  
HR =8.11 (3.16–20.82) for body 
mass index <22.7 kg/m2

<0.001

Total mortality: HR =1.38 (0.34–5.63) 
for body mass index ≥22.7 kg/m2

P=NS

Elinav et al. 
(2006) (29)

Prospective 
cohort

455 ambulatory  
subjects (70 years)

12 <13 U/L (men) Total mortality:  
HR =1.50 (1.08–2.19) (all subjects)

Not given

<11 U/L (women) Total mortality:  
HR =2.42 (1.15–5.08) (men)

Survival rates similar in women 
(78%, each)

Schindhelm 
et al.  
(2007) (30)

Population-
based cohort

1,439 subjects 
(50–75 years)

10 Tertile 3 (>21 U/L) 
vs. tertile 1 (≤14 U/L)

Total mortality: HR =1.10 (0.77–1.61) Not given

CVD events: HR =1.22 (0.94–1.60)

IHD events: HR =1.88 (1.21–2.92)

Goessling  
et al.  
(2008) (31)

Cohort Framingham 
Offspring Heart 
Study participants 
(mean age: 44 years)

>20 1 sex-specific SD 
increase in log ALT

Metabolic syndrome:  
HR =1.21 (1.09–1.34)

<0.001

Diabetes: HR =1.48 (1.30–1.69) <0.001

CVD: HR =1.05 (0.96–1.16) 0.27

Total mortality: HR =0.99 (0.88–1.10) 0.82

Lee et al. 
(2008) (32)

Survey 6,823 community 
residents

10.9 >2× ULN higher Standardized mortality ratio =1.51 
(1.04–2.14)

0.018

Fraser et al. 
(2009) (33)

Cohort 686 twins  
(73–94 years)

8.8 
(median)

1 logged unit 
increase

Total mortality: HR =1.07 (0.82–1.40) NS

Yun et al. 
(2009) (34)

Survey 37,085 subjects 
undergoing health 
examinations

5 Quartile 4  
(≥31 U/L) vs.  
quartile 1 (≤15 U/L)

CVD or diabetes mortality:  
HR =2.28 (1.02–5.08)

<0.05

Ruhl et al. 
(2009) (35)

NHANES III; 
1988–1994 

survey

14,950 community 
residents negative 
for hepatitis B or C 
infections (>20 years) 

8.8 
(median)

>30 U/L (men); 
>19 U/L (women)

Total mortality: HR =1.2 (0.88–1.6) 0.240

CVD mortality: HR =0.90 (0.56–1.40) 0.670

Liver disease mortality:  
HR =8.2 (2.1–31.9)

0.003

Table 1 (continued)
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Table 1 (continued)

Author (year) 
(reference)

Type of  
study

Number of  
participants (age)

Follow-up 
(years)

Alanine  
aminotransferase 

cutoff
Outcome/adjusted risk estimate P value

Hovinen  
et al.  
(2010) (36) 

Cohort 397 community 
residents  
(75 to 90 years)

5.8 
(median)

> 21 U/L (men) Total mortality: HR =0.45 (0.24–0.86) Not given 

>19 U/L (women) Total mortality: HR =0.62 [0.39–1.00)

Le Couteur  
et al.  
(2010) (37)

Cohort 1,673 community-
dwelling men  
(70–97 years)

4.9 < median (value 
not given)

Total mortality:  
HR = 2.10 (1.53–2.87)

<0.001

Ford et al. 
(2011) (38) 

Randomized 
clinical trial

6,595 men;  
ALT <3× ULN  
(45–64 years)

15 Continuous  
log ALT

Total mortality: HR =0.91 (0.86–0.97) 0.002

IHD mortality: HR =0.92 (0.82–1.03) 0.13

Ford et al. 
(2011) (38)

Randomized 
clinical trial

5,804 subjects;  
ALT <3× ULN  
(70–82 years)

3.2  
(mean)

Continuous  
log ALT

Total mortality: HR =0.85 (0.77–0.93) 0.0004

IHD mortality: HR =0.80 (0.69–0.94) 0.0037

Ford et al. 
(2011) (38)

Cohort 561 residents  
(85 years)

9–11 Continuous  
log ALT

Total mortality:  
HR = 0.87 (0.78–0.97)

0.011

IHD mortality: HR = 0.97 (0.72–1.31) 0.91

CVD mortality:  
HR = 0.87 (0.73-1.05)

0.14

Schooling  
et al.  
(2012) (39)

NHANES III; 
1988–1994 

survey

16,865 adults  
(>17 years)

13.2  
(mean)

3rd vs. 1st tertile Diabetes mortality:  
HR = 2.17 (1.19–3.98)

<0.05

Nondiab-rel. IHD mortality:  
HR =0.76 (0.58–0.98)

<0.05

Diab-rel. IHD mortality:  
HR =2.14 (1.07–4.31)

<0.05

Hernaez  
et al.  
(2013) (40)

Random  
cohort

3,961 male vs. 1,864 
males who died 
(40–80 years)

2 >30 U/L Total mortality HR =1.37 (1.11–1.69) 0.003

CVD mortality HR =1.00 (0.75–1.33) 0.981

Kim et al. 
(2013) (41)

Pooled analysis 
of 4 cohorts

279,982 participants 
(>20 years)

9-15 10 U/L increment ICH incidence (men):  
HR =1.04 (1.03–1.04)

<0.01

ICH incidence (women):  
HR =1.01 (0.98–1.04)

0.38

ICH mortality (men):  
HR =1.04 (1.02–1.05]

<0.01

ICH mortality (women):  
HR =1.04 (1.00–1.08)

0.03

Ramaty et al. 
(2014) (42)

Cohort 23,506 adults  
(15–97 years)

8.5 
(median)

<17 U/L Total mortality:  
HR = 1.60 (1.34–1.92)

<0.001

Koehler et al. 
(2014) (43)

Population-
based cohort

5,186 individuals 
(55–99 years)

14  
(median)

75th–95th vs. 
<25th percentile

Total mortality: HR =0.81 (0.72–0.90) <0.001

CVD mortality: HR =0.83 (0.65–1.05) NS

Table 1 (continued)
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Table 1 (continued)

Author (year) 
(reference)

Type of  
study

Number of  
participants (age)

Follow-up 
(years)

Alanine  
aminotransferase 

cutoff
Outcome/adjusted risk estimate P value

McCallum  
et al.  
(2015) (44)

Cohort 12,000 hypertensive 
patients (50.8± 
14.6 years of age)

35 Quartile 4 vs. 
quartile 1

Total mortality: HR =0.84 (0.74–0.97) <0.05

CVD mortality: HR =0.83 (0.70–0.98) <0.05

IHD mortality: HR =0.77 (0.61–0.97) <0.05

Kunutsor  
et al.  
(2015) (45)

Population-
based cohort

6,899 subjects free 
of CVD (28–75 years)

10.5 For SD increase in 
loge scale

Incident CVD: HR =0.88 (0.80–0.96) 0.003

Incident IHD: HR =0.88 (0.78–0.99) 0.031

 Stroke: HR =0.92 (0.76–1.11) 0.386

Deetman  
et al.  
(2015) (46)

Prospective 
cohort

1,187 patients with 
diabetes  
(67±12 years of age)

11.1 
(median)

Doubling in ALT 
value

Total mortality: HR =0.81 (0.72–0.92) 0.001

CVD mortality: HR =0.87 (0.72–1.05) 0.15

Non-CVD mortality:  
HR =0.77 (0.65–0.90)

0.001

Peltz-Sinvani 
et al.  
(2016) (47)

Clinical trial 
screening

6,575 adults with IHD 
with ALT ≤40 U/L 
(40–74 years)

22.8 
(median)

<17 U/L Total mortality:  
HR = 1.11 (1.03–1.19)

<0.001

Oh et al. 
(2016) (48)

Retrospective 
cohort

313,252 subjects  
undergoing health 
check-up (>20 years)

6 (mean) >40 vs. 21–30 U/L Total mortality:  
HR =1.34 (1.19-1.52) (≥60 years)

<0.001

≤10.0 vs.  
21–30 U/L

Total mortality:  
HR =1.37 (1.22–1.52) (≥60 years)

<0.001

Harada et al. 
(2016) (49)

Randomized 
trial

17,515 subjects free 
of CVD

5 For SD increase Incident CVD: HR =0.82 (0.72–0.93) 0.002

Williams  
et al.  
(2016) (50)

Randomized 
trial

9,795 participants 
with diabetes  
(50–75 years)

5 For SD increase 
(13.2 U/L)

Total mortality: HR =0.85 (0.78–0.93) <0.001

CVD mortality: HR =0.77 (0.67–0.90) 0.001

Williams  
et al.  
(2016) (51)

Randomized 
trial

9,795 participants 
with diabetes  
(50–75 years)

5 Below and above 
the reference 
range*

Incident CVD: HR =1.86 (1.12–3.09) 0.001

Incident CVD: HR =0.65 (0.49–0.87) 0.001

Choi et al. 
(2018) (52)

Nationwide 
cohort

16,624,006 Korean 
adults (>20 years)

9.1  
(median)

Quartile 4 vs. 
quartile 1

Total mortality: HR =1.17 (1.17–1.18] <0.001

Ischemic stroke:  
HR =1.06 (1.05–1.07]

<0.001

Myocardial infarction:  
HR =1.10 (1.07–1.10]

<0.001

Yamazaki  
et al.  
(2019) (53)

Population-
based cohort

2,484 elderly 
individuals  
(≥65 years)

5.75 
(median)

<10 vs. 20–30 U/L Total mortality or LOI:  
HR =3.02 (1.57–5.81)

0.001

10–20 vs.  
20–30 U/L

Total mortality or LOI:  
HR =1.55 (1.07–2.24)

0.020

Ndrepepa  
et al.  
(2019) (54)

Observational 
study

9,523 patients with 
IHD (67.0±10.8 years) 

3 1 unit decrement 
in log scale

CVD mortality: HR =1.43 (1.11–1.85) 0.006

Total mortality: HR =1.19 (0.97–1.45) 0.095

*, reference range 8–41 U/L for women and 9–59 U/L for men. ALT, alanine amino transferase; CVD, cardiovascular disease; Diab-rel., 
diabetes related; HR, hazard ratio; ICH, Intracerebral hemorrhage; IHD, ischemic heart disease; LOI, loss of independence; MACE, major 
adverse cardiovascular events; NHANES III, third National Health and Nutrition Examination Study; NS, not significant; RR, relative risk; 
SD, standard deviation; ULN, upper limit of normal.
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Elevated activity of gamma-glutamyl transferase (GGT), 
ALT and AST was observed in 32%, 22% and 12% of 
subjects, respectively. Self-reported alcohol consumption, 
diabetes and arterial hypertension were strongly associated 
with elevated levels of all three enzymes whereas body mass 
index (BMI) was strongly associated with GGT and AST 
elevation but not with ALT. Notably GGT and AST but 
not ALT were strongly associated with early retirement 
and all-cause mortality. Kim et al. (27) investigated the 
association of liver enzymes (ALT and AST) with all-
cause and cause-specific (cancer, CVD and digestive tract 
diseases) mortality in a large cohort study in Korean 
population. ALT elevation was associated with higher risk 
of all-cause and CVD-related mortality in men with a dose-
response relationship for values from <20 to ≥100 U/L. 
Results in women were inconsistent with respect to all-
cause mortality whereas CVD mortality was not calculated 
due to paucity of events. A cohort study of community 
dwelling individuals in Japan found a significant ALT-by-
BMI interaction. In individuals with BMI below the median 
value (22.7 kg/m2) there was a >8-fold increase in the risk 
of 10-year mortality compared with an insignificant 1.38-
fold increase in individuals with BMI ≥ the median value 
(both adjusted risk estimates calculated for ALT ≥50 vs. 
<20 U/L). The increased risk associated with higher ALT 
in lean participants was explained by chronic liver disease 
associated with low BMI in the baseline survey (28). Of 6,823 
adult residents of Olmsted County, Minnesota, who had a 
health care encounter at Mayo Clinic, Rochester in 1995, 
ALT higher than upper limit of normal (ULN) was found 
in 13% of them. Higher ALT was associated with higher 
standardized mortality ratio which was significant for ALT 
>2× ULN. Conversely, ALT within the normal range was 
associated with lower risk of death [standardized mortality 
ratio =0.61 (0.53–0.71); P<0.001]. Deaths were mostly due 
to hepatobiliary diseases (32). In a survey of 37,085 subjects 
undergoing health examinations at a health promotion 
center between 2000 and 2001 in Seoul, Korea, subjects 
with ALT in the 4th quartile had a 2.28-fold higher adjusted 
risk for CVD- or diabetes-related mortality over a median 
follow-up of 5 years (34). 

Recent studies in Asian population provided further 
support for an association between higher ALT and 
mortality. Of 54,751 males in Taiwan undergoing health 
screening from 1996 to 2003 who were free of cancer at 
baseline, a random cohort of 3,961 males was selected and 
compared with 1864 males who died. After adjustment, 
higher ALT levels were associated with all-cause mortality 

and cancer mortality but not with CVD mortality. However, 
if ALT was entered into the model after log transformation, 
ALT was inversely associated with risk of mortality [hazard 
ratio (HR) =0.69, 85% confidence interval (CI) 0.53 to 
0.91] (40). The association between ALT and intracerebral 
hemorrhage incidence and mortality in men and women was 
investigated in a large study from the East Asian Network for 
Stroke Prevention. After adjustment for age, blood pressure, 
diabetes, total cholesterol, smoking and alcohol intake, for each 
10 U/L higher ALT, the intracerebral incidence and mortality 
increased by 4% (each) in men and 1% (insignificant) and 4% 
in women, respectively (41). In the largest, so far, study that 
included >16 million adult Koreans, Choi et al. (52) showed a 
significant association of ALT with total mortality, ischemic 
stroke and myocardial infarction after adjustment for age, 
sex, BMI, smoking, alcohol, exercise, diabetes, hypertension, 
and dyslipidemia. The risk for total mortality, ischemic 
stroke and myocardial infarction increased by 17%, 6% and 
10%, respectively (4th vs. 1st ALT quartiles). ALT showed a 
U-shaped association with mortality.

Several studies have been neutral or have reported mixed 
results in terms of association between ALT and CVD or 
mortality. In the 10-year follow-up of the Hoorn study, 
age- and sex-adjusted HRs for all-cause mortality, incident 
CVD events and ischemic heart disease (IHD) events were 
1.30 (0.92–1.83), 1.40 (1.09–1.81) and 2.04 (1.35–3.10), 
respectively, for 3rd vs. 1st ALT tertile. However, after 
adjustment for age, sex, alcohol-intake, smoking, physical 
activity, waist circumference, triglycerides, systolic blood 
pressure, fasting glucose and high-density lipoprotein 
(HDL)-cholesterol, the association with all-cause mortality 
and CVD events was attenuated, whereas the association 
with IHD remained significant (30). The Framingham 
Offspring Heart Study showed that the risk for the 
development of metabolic syndrome and diabetes was 
increased in subjects with higher ALT over 20 years of 
follow-up. There was an increased risk of CVD in age-sex 
adjusted models [HR =1.23 (1.12–1.34); P<0.001] which 
was attenuated after multivariable adjustment. There was 
no association between ALT and all-cause mortality (31). In 
the third US National Health and Nutrition Examination 
Survey (NHANES) that included 14,950 adult participants 
who were negative for markers of viral hepatitis B and 
C, elevated ALT was found in 13.5% of the participants. 
Subjects with ALT elevation were younger and more 
likely to be Mexican American, obese, diabetic, lighter 
smokers, and less physically active, and to have a central 
fat distribution, higher total cholesterol, diastolic blood 
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pressure, serum transferrin saturation, more prevalent 
elevated C-reactive protein and lower HDL-cholesterol. 
Over a median of 8.8 years, cumulative all-cause and 
CVD mortality were 13.9% and 4.2%, respectively. After 
adjustment, elevated ALT was not associated with all-cause 
or CVD mortality but was associated with >8-fold higher 
adjusted risk for mortality due to liver disease (35). The 
Longitudinal Study of Aging found no strong evidence 
of an association between ALT and all-cause mortality 
after controlling for potential confounders. Additionally, 
the intra-pair analysis in which one twin had higher ALT 
found no strong evidence that higher ALT was associated 
with earlier death and the results were consistent in both 
monozygotic and dizygotic twins (33). A 2012 report 
from the NHANES study demonstrated that diabetes is 
a modifier of the association between ALT and mortality. 
Specifically, ALT was positively associated with mortality 
from diabetes among men and mortality from IHD related 
to diabetes and negatively with mortality unrelated to 
diabetes after adjustment for age, gender, education, race/
ethnicity, smoking, and alcohol use (39). A retrospective 
analysis of data from the National Health Insurance 
Corporation in South Korea including >300,000 subjects 
receiving medical health check-ups from 2002 to 2008 
showed a U-shaped relationship between ALT and risk of 
mortality in subjects ≥60 years of age (48). Sustainability 
of ALT elevation seems to be also important. In one study 
in men (n=68,431), only the group with sustained ALT 
elevation in 2 screening measurements [adjusted HR =2.29 
(1.27–4.12)] but not the group with normalization [adjusted 
HR =1.35 (0.70–2.61)] showed higher risk of CVD 
mortality. Total mortality remained elevated in sustained 
[HR =1.41 (1.10–1.80)] and normalized [HR =1.38 (1.06–
1.80)] elevation groups (55). 

In aggregate, evidence linking elevated ALT levels with 
CVD or mortality is inconsistent. The association between 
elevated ALT and mortality appears to be stronger in 
studies in Asian populations compared to US or European 
populations. The association between ALT and CVD 
and mortality seems to be stronger in men than women. 
However this should be interpreted with caution due to 
the lower prevalence of CVD which renders some sex-
based comparative analyses inconclusive due to lower rates 
of incident CVD (or CVD events) in women. Finally, 
elevated ALT seems to correlate with metabolic liver disease 
(primarily non-alcoholic fatty liver disease) and CVD 
risk factors. Consequently, several studies have reported 
an attenuation of the association between elevated ALT 

and incident CVD or mortality after adjustment for these 
factors. The association between elevated ALT and CVD 
risk factors is addressed later in this review.

Inverse association between ALT and CVD or 
mortality

Over the last two decades, evidence has accumulated that 
lower ALT levels are associated with increased risk of 
overall and CVD mortality. A 2006 prospective cohort study 
by Elinav et al. (29) showed a significantly lower survival 
in men with ALT below the median (13 U/L) versus men 
with ALT > median (54% vs. 65%) corresponding to a  
2.42-fold higher adjusted risk for 12-year mortality. No such 
association was observed in women with ALT < or > median 
(11 U/L). The negative association between low ALT 
and mortality was explained by age-related comorbidities, 
hepatic aging and possibility that subjects high-normal ALT 
might have already died by the time the study had started. 
Moreover direct association between ALT and BMI and 
a high AST/ALT ratio implicated worse nutritional status 
and occult pyridoxal-5’-phosphate deficiency as putative 
contributors to increased mortality (29). In a cohort study by 
Hovinen et al. (36) age-specific (men: 31, 27, and 24 U/I for 
75, 80, and 85–90 years, respectively; women: 29, 27, and 23 
IU for 75, 80, and 85–90 years, respectively) high ALT was 
found in 45 women (17.4%) and 27 men (19.6%). Overall, 
127 participants (32.0%) died, and low ALT was associated 
with lower survival in men (log rank P=0.002) and women 
(log rank P=0.03). In age-adjusted Cox model, logarithmic 
ALT was independently associated with mortality in men 
[HR =0.19 (0.06–0.62); P=0.006 for 1 unit higher log ALT] 
but not in women [HR =0.27 (0.07–1.08); P=0.06 for 1 unit 
higher log ALT]. Sex-specific adjusted HRs are shown in 
Table 1. In 1,673 community-dwelling men ≥70 years of 
age, participants with ALT below the median value had 
reduced survival up to 4.9 years of follow-up compared with 
participants with ALT > median. ALT was lower in older 
participants (24.9±18.0 U/L in the 70- to 74.9-year-old 
participants vs. 16.8±7.8 U/L in the participants >90 years; 
P<0.002). Of note, low ALT was associated with frailty [odds 
ratio (OR) =3.54 (2.45–5.11)] and the association between 
ALT and survival was attenuated once frailty and age were 
entered into the model (37). In a 2011 publication by Ford 
et al. (38) that included three independent populations 
(WOSCOPS and PROSPER trials that explicitly excluded 
subjects with clinically significant liver damage and Leiden 
85-plus study of survivors to age 85 years) reported a 
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consistent negative association between ALT and total 
mortality across all populations. In the WOSCOPS trial, 
ALT was inversely associated with non-CVD deaths 
(P=0.0061), cancer deaths (P=0.021), composite of IHD 
death or hospitalization (P=0.029) and CVD death or 
hospitalization (P=0.0003) and fatal and nonfatal stroke 
(P=0.034). In the PROSPER trial, ALT was inversely 
associated with IHD deaths (P=0.0037), non-CVD deaths 
(P=0.017), IHD death or nonfatal myocardial infarction 
(P=0.0042) and CVD death (P=0.040). In the Leiden 85-
plus study, ALT was significantly associated with the risk 
for total mortality only (38). A recent report from the 
NHANES 1988–1994 survey showed that mortality risk 
was significantly higher in subjects with ALT in decile 1 
[HR =1.42 (1.24–1.63)], decile 2 (HR =1.27 [1.06–1.53]) 
and decile 3 [HR =1.25 (1.04–1.50)] and non-significantly 
higher in decile 10 [HR =1.21 (0.91–1.61)] compared with 
subjects with ALT in deciles 4 to 9. It was hypothesized that 
low ALT was associated with higher mortality risk, possibly 
attributable to decreased appendicular lean mass assessed by 
dual-energy X-ray absorptiometry (56).

In the last 5 years additional evidence supporting a 
negative association between ALT and the risk of mortality 
has been gathered. Ramaty et al. (42) showed in a large 
cohort of adults (48±11 years of age) with ALT within 
normal range that ALT levels <17 U/L were associated 
with a significant 60% higher risk of total mortality 
over an 8.5-year follow-up. The association remained 
significant after adjustment for age, gender, glomerular 
filtration rate, albumin, arterial hypertension, diabetes 
mellitus and IHD. Another cohort study by Koehler  
et al. (43) showed a J-shaped relationship between ALT and 
the risk of mortality. Subjects with ALT <25th percentile  
(<12 U/L for women and <13 U/L for men) and those with 
ALT ≥95th percentile (33 U/L for women and 35 U/L for 
men) showed the highest risk of mortality. The association 
of ALT with CVD-related mortality was not significant. The 
Bezafibrate Infarction Prevention (BIP) registry showed an 
11% increased adjusted risk for total mortality in subjects 
with ALT <17 U/L compared with subjects with ALT  
≥17 U/L over a 22.8-year follow-up (47). The study 
identified older age, lower BMI, female sex as independent 
correlates of low ALT. A study by McCallum et al. (44) 
with 12,000 hypertensive subjects showed an independent 
inversely linear association between ALT and total mortality 
and mortality due to CVD and IHD. Kunutsor et al. (45) 
showed a significant 12% decrease in the adjusted risk 
for incident CVD or incident IHD and an insignificant 

8% lower risk for stroke for each SD higher log ALT. 
An analysis of patients recruited in a recent randomized 
trial on statin efficacy showed that each higher SD unit 
of ALT was associated with 18% lower risk of incident 
CVD (defined as CVD death,  stroke,  myocardial 
infarction, hospitalization for unstable angina and arterial 
revascularization). The statin efficacy was not modified 
by baseline ALT (49). A recent study in Japanese elderly 
showed an association between low ALT (ALT values 
<10 U/L or 10–20 U/L) and the risk for death or loss of 
independence over a median of 5.75 years compared with 
ALT reference (20–30 U/L) values (53). Subjects with 
ALT values 30–40 or ≥40 U/L, did not show a higher risk 
for death or loss of independence [HR =1.29 (0.72–2.31) 
and HR =1.49 (0.68–3.25), respectively]. Our group 
investigated the association between ALT and mortality 
in 9,523 patients with angiography-confirmed IHD over 
a 3-year follow-up. The study showed a significant 43% 
higher risk of cardiac mortality, an insignificant 19% higher 
risk of total mortality and no association between ALT (for 
1 unit decrement in log ALT scale) and the risk for stroke or 
myocardial infarction. Of note, ALT increased significantly 
but modestly the C-statistic of the multivariable model for 
prediction of cardiac mortality showing an improvement in 
risk prediction for mortality by this biomarker. The study 
raised the hypothesis that a low ALT level reflects CVD risk 
that is poorly mediated by traditional CVD risk factors (54). 
Two studies in adult subjects with type 2 diabetes showed 
an inverse relationship between ALT and the risk for total 
mortality (46,50). However, the findings were discordant 
with respect to the association between low ALT and the 
risk of CVD mortality. One study (51) showed an association 
between low ALT and the risk for incident CVD (defined as 
nonfatal myocardial infarction, stroke, coronary and other 
CVD death, coronary or carotid revascularization).

The association between ALT and the risk for CVD or 
mortality has been investigated in Mendelian randomization 
studies and meta-analyses. A Mendelian randomization 
study showed that genetically predicted ALT was associated 
with higher risk of diabetes [OR =2.99 (1.62–5.52) whereas 
the association with IHD/myocardial infarction was 
questionable [OR =0.74 (0.54–1.01)]. ALT and other liver 
enzymes tended to be inversely related to both low-density 
lipoprotein (LDL)- and HDL-cholesterol (57). Another 
recent Mendelian randomization study showed that ALT 
was negatively associated with IHD [OR =0.92 (0.87–0.97)] 
and triglycerides (coefficient beta =−0.08) but not with 
other CVD risk factors (58). A 2014 meta-meta-analysis 
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of 12 prospective studies with 206,678 participants and 
16 249 deaths, showed that the association between ALT 
and total or CVD-related mortality was modified by age. 
In older subjects (≥70 years of age), ALT was associated 
with lower risk of total [HR =0.91 (0.88–0.94)] and CVD-
related [HR =0.91 (0.85–0.96)] mortality: in younger 
subjects (<70 years of age) the respective HRs were 1.06 
(1.06–1.07) and 1.03 (1.02–1.05) calculated for 5 U/L of 
ALT increment (59). Another meta-analysis by Kunutsor  
et al. (60) showed no evidence of an association of ALT with 
CVD [relative risk (RR) =1.00 (0.99-1.02)]; however, ALT 
was inversely associated with IHD [RR =0.95 (0.90–1.00)] 
and positively associated with stroke [RR =1.01 (1.00–1.02)] 
with both of associations being of marginal significance. 
The heterogeneity across the studies was significant 
and potentially attributable to differences in baseline 
characteristics, cause-specific CVD outcome and length of 
follow-up and geographic location. A 2019 meta-analysis 
of 6 studies showed no independent association between 
ALT and CVD-related mortality [HR =0.89 (0.73–1.07); 
P=0.221] in the whole group of subjects and a significant 
inverse association between ALT and CVD-related 
mortality in subjects >55 years of age [HR =0.86 (0.75–0.99), 
P=0.001] (61).

In summary, evidence available strongly supports an 
independent, inverse and linear association between ALT 
and the risk for CVD or mortality. The inverse association 
was more frequently reported in studies that have included 
subjects with ALT within normal range. This might 
have minimized the risk associated with abnormal higher 
ALT level (mostly due to underlying liver disease) and its 
contribution to total mortality and pattern of relationship. 
There is evidence to suggest that the association between 
ALT and mortality may differ according to age, sex, 
diabetes, obesity and geographic location. There is no 
convincing evidence supporting an association between ALT 
and the risk for acute coronary events. Limited evidence 
suggests that low ALT may improve risk prediction for 
mortality by providing prognostic information poorly 
presented by traditional CVD risk factors. There appears 
to be a positive association between ALT and the risk of 
stroke, which is of marginal statistical significance and 
doubtful clinical meaning. 

Mechanism of association of high and low ALT 
with CVD

Knowledge of the underlying mechanisms of the association 

between ALT and the risk of CVD or mortality is 
incomplete and remains hypothetical. Before addressing 
putative mechanisms of increased risk associated with high 
or low ALT, 3 aspects may be discussed. First, although ALT 
(an aminotransferases in general), catalyze reactions that 
are of fundamental metabolic importance, the association of 
ALT with CVD risk is hardly explainable with transaminase 
reaction per se. Second, there are no known specific 
metabolic functions of circulating aminotransferases. 
Third, there is no evidence to suggest that circulating 
aminotransferase activity correlates with enzyme activity 
in cytoplasm of the cells. Thus in order to explain the risk 
associated with ALT, attention should be focused on factors 
or conditions that are associated with high or low ALT 
levels. Putative mechanisms of the association of high and 
low ALT with CVD risk are separately discussed (Figure 2).

The association between elevated ALT and CVD risk is 
explainable by association of this condition with an array 
of CVD risk factors. Muscle diseases and injury lead to 
elevated aminotransferase levels and may mediate a poor 
prognosis. However, the most important mechanism 
explaining CVD risk associated with higher ALT values is 
clinical or subclinical underlying liver disease, particularly 
nonalcoholic fatty liver disease. ALT was shown to correlate 
with liver fat measured by magnetic resonance spectroscopy 
both in men and women (62,63). Nonalcoholic fatty 
liver disease is common and is associated with an array of 
metabolic disorders for which it is considered as a metabolic 
syndrome equivalent. ALT correlates with hepatic 
insulin resistance, insulin secretion, and glucagon level in 
healthy men and women (64). In adult subjects with no 
serologically diagnosable chronic liver diseases or excessive 
alcohol consumption, ALT was significantly associated 
with metabolic syndrome and all its components and the 
association remained significant after adjustment for insulin 
resistance (65). Elevated ALT was positively associated with 
atherogenic lipids such as apolipoprotein B, triglycerides 
and small dense LDL particles and high plasma glucose, 
CVD risk factors such as abdominal obesity and high blood 
pressure and negatively with atheroprotective lipoproteins 
such as, apolipoprotein A1 and HDL-cholesterol, 
potentially due to underlying nonalcoholic fatty liver disease  
(36,66-69). The association of ALT and plasminogen 
activator inhibitor-1 antigen, factor XIII B subunit, and 
factor XII indicating an increased thrombotic risk associated 
with elevated ALT has been reported (68). Associations 
of elevated ALT with the Framingham risk score (70,71), 
endothelial dysfunction (72), coronary calcification (73), 
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presence (74) and severity (75) of coronary artery disease, 
C-reactive protein (36) and low adiponectin (76) have 
been reported. These and other studies clearly show that 
an elevated ALT is a correlate of CVD risk mostly due 
to underlying liver disease. Thus, it comes to no surprise 
that the association between ALT and the risk for CVD 
or mortality is vulnerable and is frequently attenuated 
after adjustment for CVD risk factors and liver disease. 
Moreover, liver disease related mortality may be a great 
contributor to total mortality in studies investigating the 
association between ALT and this outcome.

Although the association between low ALT and 
increased risk for CVD or mortality remains obscure, 
several explanations have been offered. Low ALT was 
shown to be associated with advanced age (37). Since ALT 
in the blood is primarily hepatic in origin, the association 
between low ALT and age was explained by age-related 
hepatic aging characterized by reduced liver size and 
blood flow and histological alterations presumably due to 
chronic oxidative stress (29,38). Moreover, hepatic diseases 
characterized by large-scale fibrosis substituting large parts 
of liver parenchyma may lead to low ALT due to reduced 
production and release of the enzyme, commonly found in 
association with other markers of reduced hepatic function 
such as low albumin and cholesterol. Low ALT is also 

associated with frailty (37) and loss of independence (53) 
and is explained by mechanisms similar to those explaining 
lower ALT with aging and occult diseases commonly 
coexisting with these syndromes, particularly in elderly. 
Low ALT has been associated with sarcopenia (56) a well-
known risk factor for mortality. It has been recently reported 
that low ALT in subjects ≥65 years of age without chronic 
liver disease, malignancies or alcohol abuse is a marker 
of frailty, disability, and sarcopenia and an independent 
correlate of reduced survival (77). Malnutrition and 
pyridoxal-5’-phosphate deficiency have also been implicated 
as a possible factor of poor survival associated with low ALT 
levels (29). Since ALT correlates with BMI, lower BMI 
values in subjects with low ALT have been suggested to 
reflect worse nutritional status (29). Pyridoxal-5’-phosphate 
deficiency, either isolated or in the setting of malnutrition 
may lead to low ALT and poor subsequent outcomes (77). 
If ALT in circulation parallels ALT in cells, then lower rates 
of transamination may lead to metabolic consequences such 
as reduced rates of glyconeogenesis and reduced oxidative 
capacity of the cells. Low testosterone level may lead to 
low ALT levels, either via androgen participation in ALT 
expression (14) or as part of frailty syndrome (78) in men. 
Since low testosterone levels is common in elderly and 
correlates with markers of atherosclerotic heart disease 

Figure 2 Putative mechanisms of the association of low and high alanine aminotransferase with overall and cardiovascular mortality. Ca2+, 
Calcium; NAFLD, nonalcoholic fatty liver disease; Vit, vitamin.

Older age/Liver aging
End-stage liver disease/fibrosis
Frailty/Loss of independence
Disability
Reduced muscle mass
Sarcopenia
Poor nutrition
Vit B6 deficiency/Inhibitors
Low testosterone level

Liver disease/NAFLD
Muscle disease/Dyslipidemia
Insulin resistance/Diabetes
Obesity/Arterial hypertension
Metabolic syndrome
Endothelial dysfunction
Oxidative stress/Coronary Ca2+

Proinflammatory cytokines
Low adiponectin

Poorly linked
with traditional 
cardiovascular 
risk factors

Closely linked 
with traditional 
cardiovascular 
risk factors

Increased Increased

Cardiovascular risk

Alanine aminotransferase activity

Increased risk of overall and cardiovascular mortality

Low High



Journal of Laboratory and Precision Medicine, 2019Page 12 of 16

© Journal of Laboratory and Precision Medicine. All rights reserved. J Lab Precis Med 2019;4:29 | http://dx.doi.org/10.21037/jlpm.2019.08.01

in diabetic patients (79) or reduced survival in patients 
with IHD (80), it may help to explain increased CVD risk 
associated with low ALT. However this hypothesis requires 
testing. One characteristic of almost all factors postulated 
to explain the association between low ALT levels and 
increased risk of mortality or CVD is that they are poorly 
(if at all) linked with traditional risk factors. Information on 
these factors is not readily available and consequently most 
studies did not adjust for them. They remain unaccounted 
for and are qualified as residual confounders. Thus, 
under-adjustment for these factors appears to increase the 
likelihood of finding an inverse association between low 
ALT and CVD or mortality mostly in studies that have 
excluded subjects with elevated ALT levels. 

Concluding remarks

Evidence linking ALT with CVD or mortality remains 
incomplete and controversial. In various studies, positive, 
negative, neutral and J- or U-shaped relationships between 
ALT and CVD or total (or CVD-related) mortality have 
been reported. Although the reasons for such a high 
magnitude of controversy across the studies remain poorly 
understood, some putative explanations exist. Thus, in 
studies that have included subjects without restrictions 
in terms of ALT level, a positive, neutral or U-shaped 
relationship between ALT and CVD outcomes appears to 
be more likely. This sounds reasonable considering that 
this approach includes both categories of CVD risk, i.e., 
CVD risk associated with high ALT levels (underlying a 
positive association between ALT and CVD outcomes) 
and the risk associated with low ALT levels (underlying a 
negative association between ALT and CVD outcomes). 
Conversely in studies that have included only subjects with 
ALT within the reference range, i.e., excluding those with 
abnormal (high) ALT levels, an inverse association between 
ALT and CVD outcomes appears to be more likely. In 
addition evidence available suggests that the association 
between ALT and CVD or total (or CVD-related) mortality 
may differ according to age (more likely to be positive 
in younger and inverse in older subjects), sex (stronger 
in men), diabetes (more likely to be positive in diabetic 
subjects and inverse in nondiabetic subjects), obesity 
(stronger association in lean subjects) and geographic 
location (stronger association in Asian population). In 
case of a non-linear (J- or U-shaped) relationship between 
ALT and outcomes of interest, the use of appropriate 
statistical test (i.e., restricted cubic spline regression or 

other) is needed otherwise the true association may remain 
undetected. The related mechanisms can be grouped into 
two categories (Figure 2). The first category includes risk 
factors that tend to cluster in subjects with high ALT 
levels and most of them are directly or indirectly related 
to liver inflammation or nonalcoholic fatty liver disease. 
They are closely linked with CVD risk factors and this 
may explain the positive association between high ALT and 
increased risk of CVD or mortality and susceptibility of this 
association to adjustment for traditional CVD risk factors. 
The second category of risk includes risk factors which 
tend to cluster in subjects with low ALT level (advanced 
age, hepatic aging, frailty, sarcopenia, malnutrition and 
occult diseases associated with these conditions). These 
risk factors are poorly linked with traditional CVD risk 
factors and this may explain the inverse association between 
ALT and CVD or mortality. Commonly these risk factors 
remain unaccounted for. The current level of evidence does 
not allow a firm recommendation of ALT measurement 
for CVD risk prediction. However, aminotransferases are 
commonly measured for health assessment and subjects 
with normal-low or high ALT activity may need screening 
for CVD risk factors. As recently suggested, low enzyme 
activities (including ALT) have clinical meaning and should 
be reported and analyzed (81). Finally, future dedicated 
and well-conducted epidemiological and clinical studies are 
needed to better clarify the association between ALT and 
the risk for CVD or mortality.
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