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Introduction

Gestational diabetes mellitus (GDM) is a complication of 
pregnancy, defined as the “diabetes diagnosed in the second 
or third trimester of pregnancy that was not clearly overt 
diabetes prior to gestation” (1). The prevalence of this 
condition approximates 14% of worldwide pregnancies, but 
varies widely from 1% to 28% depending on population 
characteristics (e.g., maternal age, socioeconomic status, 
race/ethnicity and body composition) and diagnostic criteria 
(2-4). Caucasian women are at lower risk of developing 
GDM compared to Native Americans, Hispanics, Asians, 
and African-American women (5), though the prevalence 
significantly increases in women with predisposing 

conditions or risk factors. In a large European multicenter 
study based on a cohort of women with body mass index 
(BMI) ≥29 kg/m2, the prevalence of GDM was found to 
approximate 40% using the International Association of 
Diabetes and Pregnancy Study Groups (IADPSG)/World 
Health Organization (WHO) 2013 diagnostic criteria (6).

The pathophysiology of GDM is characterized by 
progressive development of insulin resistance, mainly 
triggered by placental production of diabetogenic hormones 
such as estrogen, progesterone, leptin, cortisol, placental 
lactogen and placental growth hormone (7). GDM develops 
in predisposed pregnant women in whom the adaptation 
β-cell hyper-functionality fails to compensate maternal 
insulin resistance (8). Risk factors for GDM include classical 
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risk factors for metabolic as well as for cardiovascular 
diseases (CVDs) (i.e., overweight/obesity, advanced age, 
gestational weight gain, westernized diet, a family history 
of insulin resistance and/or diabetes) (9,10), but also other 
non-typical risk factors, such as ABO blood group (11) or 
genetic (12,13) and autoimmune conditions (14).

Although GDM typically resolves with and after 
delivery, early diagnosis and consequent management 
(i.e., lifestyle changes followed by oral blood-glucose-
lowering agents or insulin, if necessary) are essential for 
lowering the maternal risk of developing type 2 diabetes 
mellitus (T2DM) (15), fatty liver disease (16), metabolic 
syndrome (17) and CVD (18), along with other short-
term and long-term complications for the offspring (i.e., 
high birth weight, congenital malformations, intrauterine 
growth restriction and preterm birth, respiratory distress 
syndrome, and so on) (19,20). In keeping with this 
evidence, the Hyperglycemia and Adverse Pregnancy 
Outcome Follow-up Study (HAPO FUS) has recently 
confirmed that GDM is independently associated with 
childhood impaired glucose tolerance (IGT) (21).

The current screening/diagnostic approach

Several guidelines have been developed during the past 
decades, which differ for timing of oral glucose tolerance 
test (OGTT), population tested, number of samples 
analyzed, glucose load and glucose thresholds (22) (Table 1).  
Although universal agreement has not been reached, 
the most followed guidelines are those recommending 
one-step 75 g OGTT strategy, following the IADPSG 
criteria (i.e., to be performed between 24–28 gestational 
weeks) (36). This approach has been proposed after 
the publication of the HAPO study, including more 
than 23,000 pregnant women, which demonstrate that 
that complications for mother and offspring increases 
in parallel with maternal glycaemia at 24–28 weeks of 
gestation (37). According to IADPSG criteria, one value 
exceeding the following established cutoffs is sufficient 
for diagnosing GDM: 5.1 mmol/L (92 mg/dL) for fasting 
plasma glucose, 10 mmol/L (180 mg/dL) after 1 hour and 
8.5 mmol/L (153 mg/dL) after 2 hours from the glucose 
intake (38). Since it has been demonstrated that selective 
screening based on traditional risk factors for GDM has a 
relatively low sensitivity (39), the screening approach has 
been extended to the entire population of pregnant women 
not only by the American Diabetes Association (ADA), 
but also by other international scientific organizations 

such as the WHO, the International Diabetes Federation 
(IDF) and the International Federation of Gynecology and 
Obstetrics (FIGO).

Unlike other countries which actually follow the 
recommendations of ADA, WHO, IDF and FIGO, the 
Italian National Health System guidelines in 2011 has 
limited the screening to women at risk of GDM rather than 
endorsing an approach based on universal screening (40). 
According to this Italian guideline, high risk women (i.e., 
previous GDM, pre-pregnancy BMI ≥30 kg/m2, FPG 100–
125 mg/dL in the first trimester of pregnancy) should be 
screened between the 16th and 18th gestational weeks, which 
screening repeated between the 24th and 28th gestational 
weeks in the presence of normal glucose tolerance, whilst in 
women with medium risk (i.e., age ≥35 years, pre-pregnancy 
BMI 25–29.9 kg/m2, family history of T2DM, previous 
macrosomia and of an ethnic group at GDM risk) screening 
is only recommended between the 24th and 28th gestational 
weeks (40). Recently published studies showed that this 
approach is characterized by low sensitivity for detecting 
GDM, thus emphasizing the real need of a substantially 
critical revision (41,42).

Another aspect that merits consideration is the 
preanalytical quality of the samples, which include reliable 
conditions of storage, sample management and use of suitable 
glycolysis inhibitors (43-46). Screening and diagnostic tests 
can be performed more or less accurately, thus potentially 
increasing the number of false negatives (47).

Epigenetics changes as potential biomarkers of 
GDM

Epigenetics plays a substantial role in the pathogenesis 
of several conditions, as well as in disorders of glucose 
metabolism (48-51). It has also been hypothesized that 
some epigenetic mechanisms, including DNA methylation, 
histone modifications and small non-coding RNAs, could 
fill the knowledge gap between environmental factors (i.e., 
diet, pollution, stress, smoke and others) and heritable 
genetic susceptibility (52).

DNA methylation is a reversible process consisting of 
addition of a methyl group to the fifth carbon position of a 
cytosine residue within cytosine-phosphate-guanine (CpG) 
dinucleotides (a process catalyzed by the enzyme DNA 
methyltransferase), thus inhibiting gene transcription (53). 
Both aberrant global methylation and DNA methylation of 
specific genes involved in insulin resistance, for example in 
response to nutritional and environmental factors, have been 
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Table 1 Different strategies for screening/diagnosis of GDM

Year References
Number of 

steps
Oral glucose load

Number of abnormal 
values required

Glucose cut-offs

1964 O’Sullivan et al. (23) 1 100 g ≥2 Fasting ≥2 SD above the mean

1 h ≥2 SD above the mean

2 h ≥2 SD above the mean

3 h ≥2 SD above the mean

1973 O’Sullivan et al. (24) 2 First-step: 50 g; 
second-step: 100 g

≥2 Fasting ≥5.0 mmol/L (90 mg/dL)

1 h ≥9.2 mmol/L (165 mg/dL)

2 h ≥8.1 mmol/L (145 mg/dL)

3 h ≥7.0 mmol/L (125 mg/dL)

1979 NDDG (25) 1 100 g ≥2 Fasting ≥5.9 mmol/L (105 mg/dL)

1 h ≥10.6 mmol/L (190 mg/dL)

2 h ≥9.2 mmol/L (165 mg/dL)

3 h ≥8.1 mmol/L (145 mg/dL)

1982 Carpenter et al. (26) 2 First-step: 50 g; 
second-step: 75 g

≥2 Fasting ≥5.3 mmol/L (95 mg/dL)

1 h ≥10.0 mmol/L (180 mg/dL)

2 h ≥8.6 mmol/L (155 mg/dL)

1996 EASD (27) 1 75 g ≥1 Fasting ≥6.0 mmol/L (108 mg/dL)

2 h ≥9.0 mmol/L (162 mg/dL)

1999 WHO (28) 1 75 g ≥1 Fasting ≥7.0 mmol/L (126 mg/dL)

2 h ≥7.8 mmol/L (140 mg/dL)

2007 Metzger et al. (29) 1 100 g ≥2 Fasting ≥5.3 mmol/L (95 mg/dL)

1 h ≥10.0 mmol/L (180 mg/dL)

2 h ≥8.6 mmol/L (155 mg/dL)

3 h ≥7.8 mmol/L (140 mg/dL)

2000 ADA (30) 1 75/100 g ≥2 Fasting ≥5.3 mmol/L (95 mg/dL)

1 h ≥10.0 mmol/L (180 mg/dL)

2 h ≥8.6 mmol/L (155 mg/dL)

3 h ≥7.8 mmol/L (140 mg/dL)

2010 IADPSG and ADA (31) 1 75 g ≥1 Fasting ≥5.1 mmol/L (92 mg/dL)

1 h ≥10.0 mmol/L (180 mg/dL)

2 h ≥8.5 mmol/L (153 mg/dL)

2013 WHO (32) 1 75 g ≥1 Fasting ≥5.1 mmol/L (92 mg/dL)

1 h ≥10.0 mmol/L (180 mg/dL)

2 h ≥8.5 mmol/L (153 mg/dL)

2015 NICE (33) 1 75 g ≥1 Fasting ≥5.6 mmol/L (100 mg/dL)

2 h ≥7.8 mmol/L (140 mg/dL)

Table 1 (continued)
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linked to the pathogenesis of GDM (54). On the other hand, 
it has been suggested that also GDM may have an impact on 
epigenetic modifications in mother and offspring (55).

Several studies investigating the role of epigenetics in 
the pathogenesis of GDM have been originally carried 
out in the animal model (56-59). More recently, these 
epigenetic modifications have been also demonstrated in 
different human tissues, including placenta, cord blood, 
as well as in visceral and subcutaneous adipose tissues. 
Placenta DNA methylation of more than 385,000 CpG sites 
has been assessed by Rong et al. (60) in 36 GDM women 
and 40 controls. The authors identified both hyper- and 
hypo-methylated regions in GDM patients compared to 
healthy subjects, thus hypothesizing a role of this epigenetic 
modification in the pathophysiology of GDM. The 
differentially methylated genes, IGF2, GCKR and KCNQ1, 
are involved in pathways of cell growth, death regulation, 
immune and inflammatory response and nervous system 
development (60).

Although Nomura et al. failed to find an association 
between methylation status and GDM in an earlier study 
based on 50 placenta samples (61), Reichetzeder et al. (62) 
analyzed a larger number of placental tissues (n=1,030) 
by means of liquid chromatography coupled with tandem 
mass spectrometry (LC-MS/MS), observing that placental 
global DNA hypermethylation was associated with GDM, 
independently from other risk factors. Deng et al. (63) 
conducted a global gene methylation and whole genome 
expression profiling in visceral omental adipose tissue of 

GDM and normal pregnancies. The authors found that 
935 genes were commonly dysregulated in the GDM group 
compared to healthy pregnant women (63).

Since it has been shown that maternal peripheral blood 
reflects placental epigenetics changes (64), several studies 
have been carried out for evaluating methylation status in 
blood. In a study performed in peripheral blood cells of  
63 South African women with GDM, no difference in 
global DNA methylation could be observed between women 
with or without GDM (65). In this study the analysis was 
performed in women between the 24–28 gestational weeks, 
and it is hence conceivable that differences in methylation 
would be more clearly evident when measured earlier. 
In keeping with this hypothesis, Enquobahrie et al. (66) 
studied GDM women before the 20th gestational week, 
and reported that 17 CpG sites were hypomethylated, 
whilst 10 CpG sites were found to be hypermethylated. 
Even more interestingly, a recent study identified a 
characteristic genome-wide DNA methylation profiling 
measured between the 12th and 16th gestational weeks in 
11 GDM women compared to 11 matched controls (67).  
In particular, five genes (COPS 8, PIK3R5, HAAO, 
CCDC124, and C5orf34) displayed a significantly different 
methylation status (67). Kang et al. carried out a genome-
wide DNA methylation profile on 8 women with GDM 
and 8 healthy controls, observing as many as 151 genes with 
different degree of methylation (68). Among these, genes 
codifying for pro-inflammatory cytokine interleukin-6 
(IL-6) and for anti-inflammatory cytokine IL-10 were 

Table 1 (continued)

Year References
Number of 

steps
Oral glucose load

Number of abnormal 
values required

Glucose cut-offs

2015 FIGO (34) 1 75 g ≥1 Fasting ≥5.1 mmol/L (92 mg/dL)

1 h ≥10.0 mmol/L (180 mg/dL)

2 h ≥8.5 mmol/L (153 mg/dL)

2018 ACOG (35) 2 First-step: 50 g; 
second-step: 100 g

≥2 Fasting ≥5.3 mmol/L (95 mg/dL)

1 h ≥10.0 mmol/L (180 mg/dL)

2 h ≥8.6 mmol/L (155 mg/dL)

3 h ≥7.8 mmol/L (140 mg/dL)

ACOG, American College of Obstetricians and Gynecologists; GDM, gestational diabetes mellitus; IADPSG, International Association of 
Diabetes in Pregnancy Study Groups; NICE, National Institute for Health and Care Excellence; OGTT, oral glucose tolerance test; WHO, 
World Health Organization; EASD, European Association for the Study of Diabetes; NDDG, National Diabetes Data Group; ADA, American 
Diabetes Association; FIGO, International Federation of Gynecology and Obstetrics; SD, standard deviation.
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identified. In addition to studying the global methylation 
profile, another approach involves the study analysis of 
methylation of single genes, though locus-specific DNA 
methylation methods are expensive and require large 
bioinformatics expertise (69). The gene codifying for 
leptin is among those most studied in GDM, since it is 
finely regulated by many epigenetic mechanisms (70).  
In two subsequent studies, Bouchard et al.  (71,72) 
observed an association between hyperglycemia and 
alterations in placental DNA methylation of leptin and 
adiponectin genes in a cohort of mothers with impaired 
glucose metabolism. Kang et al. enrolled a Taiwanese 
population encompassing of 8 GDM and 24 controls, and 
found decreased methylation of IL-10 in blood of GDM, 
which was also found to be associated with increased 
serum values of IL-10 (73). More recently, Zhang et al. 
studied the methylation level of HIF3A promoter region in  
20 GDM patients, showing that HIF3A expression is 
down-regulated in omental tissues (74). Notably, previous 
studies showed that HIF3A is involved in insulin resistance 
and glucose metabolism, thus providing a reasonable 
support to these findings (75).

Although translation of methylation study into clinical 
practice is challenging, microRNAs (miRNAs)—small non-
coding RNAs (approximately 20 nucleotides in length) 
that regulate gene expression—can be seen as potentially 
useful circulating biomarkers for monitoring pregnancy and 
screening GDM. Studies performed using placenta tissues 
revealed that placenta has a specific miRNA expression 
pattern (76,77), and that this profile dynamically changes 
during pregnancy (78). A number of studies have explored 
differential expression of miRNAs at delivery in GDM 
pregnancies versus healthy controls to date (79-84), whilst 
other studies have investigated the potential clinical 
usefulness of miRNAs deregulation in assessing the risk 
of developing GDM though measurement of circulating 
miRNA levels in first or second-trimester in women with 
and without GDM (85-90).

In 2011, Zhao et al. (85) studied 24 GDM pregnant 
women (16–19 gestational week) and 24 healthy pregnant 
women, and identified three miRNAs (miR-132, miR-
29a and miR-222) significantly down-regulated in GDM. 
In another study based on 28 women with GDM and  
53 controls, down-regulation of miR-222, associated with 
low expression of miR-20a, was also confirmed in the study 
of Pheiffer and colleagues (89). Unlike these findings, 
Wander et al. (88) failed to find significant differences 
in plasma levels of miR-222 and miR-29a assayed in  

36 GDM cases and 80 controls from the Omega prospective 
study. More interestingly, Wander et al. reported enhanced 
circulating values of miR-155 and miR-21 in GDM women, 
especially in overweight/obese pre-pregnancy or pregnant 
with male offspring (88). MiR-222 expression was also 
studied by Shi et al. (84) in omental adipose tissue of GDM 
patients and was found to be over-expressed. Moreover, 
miR-222 levels were positively correlated with maternal 
estradiol concentrations and negatively with estrogen 
receptor, thus reinforcing the idea of a role of this miR in 
the pathogenesis of insulin resistance.

These findings were confirmed in the recent study of 
Tagoma et al. (90), who found that miR-222 and several 
other miRNAs were over-expressed in maternal plasma of 
women with GDM. Other case-controls studies, mainly 
based on small sized populations (86,87,91-94) identified a 
number of other miRNAs that were deregulated in pregnant 
women with GDM.

Despite many studies could identify many miRNAs 
which can be potentially used as diagnostic biomarkers, 
the real utility of this approach in clinical practice has not 
been demonstrated so far, and larger well-performed studies 
are needed. Moreover, consensus is lacking on several pre-
analytical and analytical aspects (i.e., biological matrix, 
sample handing procedure, sample storage, quantification 
technique, data normalization, etc.), which finally preclude 
results comparability. Important standardization or 
harmonization efforts shall hence be planned to overcome 
these current drawbacks (95,96).

Future perspectives

A new class of endogenous ncRNA biomarkers, named 
circular RNAs (circRNAs), has been investigated in 
different diseases during the past decade, including 
age-related pathologies such as cancer, CV disorders, 
neurodegenerative disease and diabetes (97,98). CircRNAs 
essentially originate from pre-miRNAs, are characterized 
by a covalently closed loop structure and regulate miRNAs 
expression through acting as miRNA sponges (99). These 
molecules carry some notable advantages compared to 
linear RNAs, being essentially more stable and expressed at 
high levels in paternal tissues (100).

Yan and colleagues (101) carried out next-generation 
sequencing (NGS) in placental villi of women with GDM 
and normal controls, and were capable of identifying 
as many as 48,270 circRNAs, 227 of which were found 
to be significantly up-regulated and 255 circRNAs 
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significantly down-regulated in the GDM cohort. They 
could hence hypothesize that these circRNAs may play 
some important roles in the development of GDM (101). 
Wu et al. carried out an interesting study measuring six 
circRNAs (hsa_circRNA_0054633, hsa_circRNA_103410, 
hsa_circRNA_063981, hsa_circRNA_102682, hsa_
circRNA_0018508, and hsa_circRNA_406918) in serum 
samples of 40 healthy pregnant women, 40 women 
with GDM during the second trimester of pregnancy,  
65 controls and 65 GDM cases during the third trimester 
of pregnancy, as well as in placental tissues and cord 
blood of 20 GDM cases and 20 controls (102). Notably, 
circRNA_0054633 was found to be highly expressed 
in blood during the second and third trimesters. The 
expression was also high in the placenta, low in the cord 
blood (P<0.05) and was highly correlated with glycosylated 
hemoglobin (HbA1c) values levels in maternal blood 
samples. The assessment of this circRNA displayed a 
notable diagnostic performance in the second and third 
trimesters of pregnancy, placenta, and cord blood [area 
under the curve (AUC) of 0.79, 0.66, 0.75, and 0.78, 
respectively; all P<0.001] (102). Since circRNA_0054633 
is involved in cell cycle progression and molecular 
catabolism (103), it was finally hypothesized that it may be 
also involved in regulating the proliferation of pancreatic 
β cells (104).

Very recently, Wang et al. explored the differential 
expression of circRNAs in the placentas of 30 GDM 

and 15 normal pregnant women (105). Among the  
8,321 circRNAs identified in human placenta, three were 
found to be over-expressed and 43 down-regulated in GDM 
patients. By performing functional analysis of differentially 
expressed circRNAs, the authors concluded that these 
circRNAs may be active players in the pathogenesis of 
GDM since they are involved in advanced glycation end 
products-receptor for advanced glycation end products 
(AGE-RAGE) signaling pathway (106).

Conclusions

Epigenetic testing, encompassing the assessment of DNA 
methylation, miRNAs and circRNAs, is an intriguing 
and promising perspective for prediction/early diagnosis 
of GDM, whereby epigenetic abnormalities not only 
emerge throughout the pathogenesis of GDM, but may 
also contribute to development and progression of the 
disease by means of a bidirectional interrelationship 
(Figure 1). Thereby, it is conceivable that the assessment 
of some predictive epigenetic biomarkers may allow—in 
a foreseeable future—the early identification of women at 
enhanced risk of developing pregnancy complications, even 
before glucose metabolism is significantly impaired.
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Figure 1 Multifactorial predisposition to GDM. GDM, gestational diabetes mellitus.
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