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Introduction

In laboratory medicine, mislabeled specimens (MLS) are 
pre-analytical errors where blood from one patient is 
given an ID label from a different patient. These errors 
are estimated to occur in between 0.03 to 17 specimens 
per 1000 specimens collected (1-4). It is likely that the 

lower estimates may be falsely low due to the difficulty in 
identifying these errors in clinical practice. When MLS are 
not detected, they can place one or both patients at risk of 
harm as clinical decisions are carried out based on incorrect 
data. MLS are estimated to cost 280,000 USD per million 
specimens collected, and cause 160,000 adverse medical 
events per year in the United States (5).
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Pre-analytical solutions have been relatively successful 
at reducing the number of MLS. In one study, the 
implementation of barcode labels with bedside printers 
reduced the number of MLS by 92% (6). In a multi-
institutional survey, MLS were noted to occur significantly 
less frequently in institutions with ongoing quality 
monitoring systems for specimen identification, and in 
institutions with 24/7 inpatient phlebotomy service (3). One 
approach to reducing MLS is to give patients identifying 
wristbands, but wristband errors can result in downstream 
MLS error. To reduce the number of wristband errors, 
the College of American Pathologists performed a study 
involving 217 institutions where phlebotomists were tasked 
with continuously evaluating patient wristbands for error. 
This strategy reduced wristband errors from 7.40% to 
3.05% (7).

In cases where pre-analytical strategies fail, post-
analytical methods to detect MLS have been developed. 
Delta checks are one such system and are widely used due to 
the low cost of implementation. In this method, patients’ 
analytical test results from two different time points are 
compared. If the value change exceeds a pre-determined 
threshold, the results are flagged and either reviewed, 
repeated, or the specimen is recollected (8). Multiple 
strategies using this framework have been implemented. 
Thresholds, for example, can be applied to the absolute 
change in value (current result minus the previous result), 
or a relative change in value (current result divided by the 
previous result). Change velocities (change in value divided 
by the difference in collection time) can also be used. No 
standard acceptable tolerances have been established, 
although median values have been reported (8). Despite 
widespread implementation of delta-checks in clinical 
laboratories, the value of this strategy is questionable. 
Receiver operator characteristics curve (ROC) analysis has 
shown that the best performing delta check was for mean 
corpuscular volume (MCV) which only achieved an area 
under the curve (AUC) of 0.90 (9). In one analysis, multiple 
analytes were combined and a weighted cumulative delta 
check was implemented. Although this model achieved 
promising results with a maximum AUC of 0.98 (10), the 
same data was used to both generate and test their model, 
introducing a significant source of potential bias.

Recently, delta checks were revisited using machine 
learning techniques. An AUC of 0.97 was achieved 
using a support vector machines (SVM) method (11), 
showing that a better performance could be achieved as 

compared logistical regression (AUC =0.92). Despite their 
achievement, the researchers limited their analysis to a rigid 
panel of 11 analytes, and only examined specimens collected 
within 36 hours of one another. This restrictive approach 
likely meant that only a small minority of all the blood-
specimens collected at their institution could be evaluated 
by their model. Although they compared their method 
to a weighted logistical regression model, these were also 
limited to the same 11 analytes as their SVM method, even 
if more tests were actually performed.

To expand and improve upon previous work, we devised 
two novel machine learning methods to identify MLS using 
neural networks. In one approach, the results from rigid 
analyte panels were used to identify MLS. In the second 
approach, neural networks were created that were not 
limited to a specific panel of analytes, but instead could be 
given any combination of analytes. For both approaches, 
different neural networks were created and evaluated for 
different ranges of time deltas. The performance of each 
neural network was compared directly to the current delta 
check strategy used at our institution.

Methods

Data processing

A MatLab code was created to automate all data processing, 
and to create and test all neural networks. MATLAB 
R2018b (MathWorks, version 9.5.0.944444, Natick, 
Massachusetts, USA) was used.

Datasets

All analytical test results performed on our automated core 
chemistry and immunoassay analyzers at our institution 
between 4/12/2012 to 1/30/2014 (1.8 years) were collected. 
All patient medical record numbers were de-identified via 
assignment of unique numeric codes that were not tied 
to the original numbers. The complete list of analytical 
tests is shown in Table S1. The test results were sorted by 
patient and time of collection, and bundled with all other 
test results from the same patient that were collected at the 
same time (Figure 1A). A total of 4,119,977 analytical tests 
from 122,433 patients over 462,998 unique time points 
were obtained. Test-bundles with less than 5 analytes were 
discarded from the set.

Combinations of two test-bundles from a single patient 
were linked to create properly-labeled-specimen-pairs 
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(PLSP) (Figure 1B). Every possible combination was 
produced, and the time between each linked pair was 
recorded. The delta time, Δt, is the time difference between 
two collection times:
Δt = tB-tA

where tA and tB are the first and second time points. 
PLSP with a Δt greater than 10 days were discarded from 
the dataset.

Mislabeled specimen simulation

Mislabeled-specimen-pairs (MLSP) were created by 
randomly reassigning the analytical test results from the 
second time point to a different patient (Figure 1C). Test-
bundles were always reassigned to different patients that 
had the same set of analytes performed. In cases where there 
were insufficient unique patients to reassign the test results 
to a different patient, both the MLSP and corresponding 
PLSP were discarded. A total of 481,956 PLSP and MLSP 
(963,912 pairs in total) were created in this manner, 
spanning 18,886 patients. 80% of the specimen-pairs 
(771,128 pairs) were randomly assigned to a master-training 
set, while 10% (96,392 pairs) each were assigned to a 
validation set and a test set (Figure 1D). The data sets were 
then divided into five groups depending on their Δt: <1.5, 
1.5–2.5, 2.5–3.5, 3.5–5, and 5–10 days.

Neural networks were created to predict if specimen-
pairs were PLSP or MLSP using different methodologies 

described below.

Panel neural networks (PNN)

PNN were created to detect MLS when the same panel was 
ordered at two time points. All analytes that were not in 
the panels were discarded for this analysis. Specimen pairs 
that did not have the full panel were likewise discarded. 
The panels that were evaluated included the basic metabolic 
panel (BMP), the comprehensive metabolic panel (CMP), 
the renal function panel (RFP), and the liver function panel 
(LFP). Analytes for each panel are listed in Table 1, while 
the number of specimen pairs used to train, validate, and 
test each PNN are shown in Table S2, along with neural 
network training parameters.

The prototypical neural network architecture is shown 
in Figure 1E, and the prototypical input layer is shown in 
Figure 1F. In brief, the input layer was an (N+1)×4 matrix, 
where N is the number of analytes in the test-panel. The 
first N columns each correspond to a different analyte. 
The first row was populated with the analytes from the first 
time-point, while the second row was populated with the 
analytes from the second time point. The third row was 
populated with the absolute change in value between the 
two time points (current result minus the previous result), 
while the fourth row was populated by the relative change 
in value (current result divided by the previous result). 
The cell in row 1 of the final column (column N+1) was 
populated by Δt in days, while cells in rows 2, 3, and 4 in 
the final column were left as 0. The PNNs were trained 
between 20 and 100 epochs each. Ten PNNs were created 
for each panel and for each group of Δt ranges in order to 
perform statistical analysis.

Open-ended neural networks (ONN)

ONN were created to detect MLS regardless of what tests 
were ordered at either time point. For these networks, the 
data sets were separated based on the number of analytes 
ordered at the second time point. The specimen pair 
data was thus divided into three groups: group 1 (5 to 8 
analytes tested at the second time-point), group 2 (9 to 12 
analytes), and group 3 (13 or more analytes). The number 
of analytical tests performed at the first time point did 
not affect what category the specimen pair was placed in. 
Likewise, the same analytes did not need to be ordered 
at both time points in the specimen pair. The number of 

Table 1 Analytes within each panel

Panel name Analytes

Basic metabolic 
panel (BMP)

Na, K, Cl, CO2, BUN, CRE, GLUC, Ca

Comprehensive 
metabolic panel 
(CMP)

Na, K, Cl, CO2, BUN, CRE, GLUC, Ca, ALKP, 
ALT, AST, TBILI, TP, ALB

Hepatic function 
panel (HFP)

ALKP, ALT, AST, ALB, TBILI, DBILI, TP

Renal function  
panel (RFP)

Na, K, Cl, CO2, BUN, CRE, GLUC, Ca, ALB, 
PHOS

ALB, albumin; ALKP, alkaline phosphatase; ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; BUN, blood 
urea nitrogen; CA, calcium; CL, chloride; CO2, bicarbonate; 
CRE, creatinine; DBILI, direct bilirubin; GLUC, glucose; K, 
potassium; NA, sodium; PHOS, phosphorus; TBILI, total 
bilirubin; TP, total protein.
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specimen pairs used to train, validate, and test each ONN 
are shown in Table S2, along with neural network training 
parameters.

The structure for the ONNs is similar to that of the 
PNNs. The difference between the approaches was in the 
input layer, which consisted of a 131×4 matrix. The first 130 
columns either corresponded to different analytes, or was 
left blank (assigned a value of zero). Similar to PNNs, the 
first row corresponded to the value at the first time point, 
the second row corresponded to the value at the second 
time point, the third row corresponded to the absolute 
change in value, and the fourth row corresponded to the 
relative change in value. When an analyte was not tested at 
a given time-point, that column was left as zero. When an 
analyte was only tested at the first time point and not at the 
second time point, row 1 was populated with the test result, 
and rows 2, 3, and 4 were left as zero. Similarly, when an 
analyte was only tested at the second time point and not the 
first, row 2 was populated with the result and rows 1, 3 and 
4 were left as zero.

Similar to PNNs, for ONNs, the cell in the first row of 
the final column (column 131) was populated by Δt in days, 
while cells in rows 2, 3, and 4 of the final column were set to 
zero. The ONNs were trained between 20 and 100 epochs 
each. Ten ONNs were created for each panel and for each 

group of Δt ranges for statistical analysis.

Statistical analysis

ROC analysis was performed for each neural network using 
the PLSP and MLSP categories as the gold standard, and 
the neural network output score as the analyte. The AUC 
was calculated for each neural network. The sensitivity and 
specificity were obtained for the optimal operating point 
(OOP) on the ROC curve as calculated by the MATLAB 
perfcurve function that relies on a previously described 
cost-function curve analysis (12). The specificity was also 
calculated for each neural network at the points where the 
sensitivities reached 50% and 80%. A positive predictive 
value (PPV) was calculated assuming a mislabeled-specimen 
frequency of 1 in 200 (0.5%). This was performed for the 
OOP, as well as at the points where the sensitivities were set 
to 50% and 80%. Neural networks performance metrics are 
reported as mean ± standard deviation.

Classic delta checks

The data sets used to test the PNNs and ONNs were also 
evaluated using the classic delta check limits used at our 
institution. Classic delta check limits were derived from 

Figure 2 Area under the curve (AUC) results for the neural networks generated from the receiver operator characteristics curve (ROC) analysis. 
The basic metabolic panel (BMP), comprehensive metabolic panel (CMP), hepatic function panel (HFP) and renal function panel (RFP) were 
all assessed by panel neural networks (PNN). The 5–8, 9–12, and ≥13 analyte protocols were all assessed by open neural network (ONN).

A
U

C

Panel Neural Networks

5-8 analytesCMPBMP 9-12 analytesHFP RFP ≥ 13 analytes

Open Neural Networks

1

0.95

0.9

0.85

0.8

0.75
< 1.5 Days                        1.5-2.5 Days                    2.5-3.5 Days                          3.5-5 Days                       5-10 Days



Journal of Laboratory and Precision Medicine, 2020Page 6 of 10

© Journal of Laboratory and Precision Medicine. All rights reserved. J Lab Precis Med 2020;5:10 | http://dx.doi.org/10.21037/jlpm.2020.02.03

reference change limit calculations and can be viewed in 
Table S1. In order to properly compare the two methods, 
the classic delta checks were applied to all analytes that were 
performed at both time points in the specimen pairs. For 
the PNNs, analytes that were not in a given panel were still 
included in the classic delta check analysis. The number of 
times each test was ordered in our cohort, and the mean and 
standard deviation change over the course of 1.5 days are 
described in Table S1. The PPVs for each PNN and ONN 
test set were calculated using the classic delta checks.

Results

ROC analysis

ROC analysis was applied to all neural networks. The mean 
AUCs for all the neural networks are compiled in Figure 2 
and listed in Table S3. The best performing neural network 
was the CMP PNN for Δt <1.5 days, which achieved an 
AUC of 0.994±0.001. The CMP neural networks were the 
best performing of all neural networks, maintaining an AUC 
above 0.95 even for the 5 to 10 day Δt. The HPF PNNs 
were the second best performing PNNs, the BMP PNNs 
were third, and the RFP PNNs were fourth. In general, 
the ONNs performed similar to or worse than the PNNs. 
Performance in the ONNs improved as the number of test-
analytes increased. In general, both PNNs and ONNs with 
low Δt performed best, and performance decreased as the Δt 
increased.

Sensitivity and specificity analysis

The sensitivities, specificities, and PPVs are shown for the 
PNNs and the ONNs in Tables S4 and S5, respectively. 
PNN results are shown in Figure 3, while the ONN results 
are shown in Figure 4. Similar to the AUC values, sensitivity 
and specificity generally decreased as the Δt increased. 
The CMP PNN with a Δt of <1.5 days had the highest 
OOP sensitivity and specificity which were 98.4% and 
96.4% respectively. When sensitivities were set to 50%, 
the specificities for the CMP PNNs were all in excess of 
99.4% regardless of the Δt. These additionally had PPVs 
greater than 29% for all time periods when a 0.5% MLSP 
frequency was assumed. The PPVs for the CMP PNNs 
with Δt <1.5 days and 1.5 to 2.5 days were both greater than 
68%, however, these groups each represent less than 1% of 
the total specimen pairs. Although the BMP PNN with Δt 
<1.5 days had a smaller PPV (41.7%), this neural network 

covers a much larger proportion of all the specimen pairs 
(19.3%).

For the ONN, when sensitivity was set to 50%, only the 
13-analyte ONN with a Δt <1.5 days had a specificity that 
exceeded 99% (actual value =99.5%), which resulted in a 
PPV of 17.6%.

The classic delta checks were highly sensitive in 
identifying MLSPs, but their specificities were lower than 
all the neural networks at the OOP. When classic delta 
checks were evaluated on the panel data sets, the highest 
PPV achieved was 1.7% for the BMP data set with a Δt 
<1.5 days. The highest PPV achieved using the classic delta 
checks in the open data sets was 1.9% for the 5–8 analyte 
data set with a Δt <1.5 days.

Conclusions

Neural networks were created to identify MLS. Using this 
method, the best AUC achieved was 0.994±0.001 for a 
CMP PNN with Δt <1.5 days. This study improves upon 
previous work by increasing the maximum AUC achieved in 
detecting mislabeled specimen (11). We additionally created 
neural networks designed to detect MLS when alternative 
panels were performed, namely BMPs, RFPs, and HFPs. 
We compared this strategy to an unrestricted approach, 
where any analyte could be used at either time point. These 
ONNs were less accurate than the PNNs at detecting MLS, 
however their flexibility may have some niche applications.

Although the BMP PNN only produced a PPV of 
41.7% with a sensitivity of 50%, it is worth highlighting 
the magnitude of difference in PPV of the PNN when 
compared to the classic delta checks. The BMP PNN had a 
24-fold improvement in PPV when compared to the classic 
delta checks which had a maximum PPV of 1.7% using the 
same BMP analytes, though at the sacrifice of sensitivity. 
The low PPV is in part due to an overly-sensitive classic 
delta check strategy, which increased both the true-positive 
rates as well as the false positive rates. A high false positive 
rate diverts laboratory resources and can become costly 
to investigate MLS. The analytical tests often need to be 
repeated, there can be additional blood loss incurred due 
to the necessity of repeating phlebotomy, and laboratory 
personnel need to spend time reviewing and analysing the 
error. The implementation of machine learning-based 
protocols to detect MLS with fewer false-positive errors 
may have a dramatic impact on patient care and health care 
costs, and require little-to-no monetary investment.

One of the strengths and limitations of our study was 
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that pre-existing clinical data obtained from our middleware 
system was utilized. Using pre-existing data, rather than 
simulated data, allowed for the direct analysis of realistic 
scenarios in which the blood-in-tube of the MLS sample 
could come from any random patient. The limitation of 
this strategy is that undetected MLS were likely present 
in the raw data, and these were miscategorized as PLSP in 
the training and test sets. The effect of undetected MLS 
pairs in our training and test sets would be expected to have 
decreased the performance and lowered the AUC of the 
PNNs and ONNs.

Neural networks and other machine learning strategies 
have clear advantages over conventional classic delta checks, 
but these should be implemented with caution due to a 
number of practical limitations. The algorithms typically 
generate a “black box” approach to error detection which 
needs to be evaluated empirically. The strategy relies 
heavily on the use of contemporary clinical data to train 
the algorithm. The frequency by which new data must be 
collected and new neural networks must be trained needs to 
be established.

Finally, the implementation of machine learning 
based MLS-detection protocols requires a dedicated 
understanding of rapidly evolving artificial intelligent 
technologies. Given the demonstration of improved 
performance of these protocols over the classic delta checks, 
laboratory information systems and middleware vendors 
must be pressed to develop software that can utilize these 
tools in real-time.
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Table S1 Characterization of test analytes

Analyte Abbreviation Number of tests
Test pairs

Units
Classic strategy

N pairs with Δt <1.5 days Absolute change (mean +/− SD) Relative change (mean +/− SD) Threshold Absolute vs. relative

Thyroid stimulating hormone TSH 97,125 128 0.23±2.39 1.15±0.71 mcIU/mL 1 R

Thyroxine T4 4,453 12 −0.30±1.21 0.980±0.083 ng/dL 1 R

Free thyroxine FREE T4 20,156 37 0.157±0.494 1.09±0.25 mcg/dL – None

Triiodothyronine T3Q 3,509 26 24.9±69.3 1.24±0.49 pg/mL 0.3 R

T-uptake TUP 1,131 3 0.0073±0.0481 1.01±0.060 Ratio 0.25 R

Estradiol E2 2,705 0 – – pg/mL – None

Testosterone TSTO 3,556 0 – – ng/mL – None

Prolactin PROLAC 2,571 1 –1.73±0 0.858±0 ng/mL – None

Progesterone PROGEST 638 0 – – ng/mL – None

Total bilirubin TBILI 151,747 8,982 −0.04±1.21 1.09±0.47 mg/dL 0.75 R

Luteinizing hormone LH 1,569 0 – – mIU/mL – None

Follicle stimulating hormone FSH 2,978 0 – – mIU/mL – None

Cortisol CORT 2,802 69 0.3±10.7 1.29±1.40 mcg/dL – None

High density lipoprotein cholesterol HDL 93,934 32 0.16±3.15 1.01±0.09 mg/dL – None

Troponin T CTNT 10,182 2,339 −0.24±2.89 1.00±0.84 ng/mL 0.5 A

L-lactate LLACT 12,053 6,360 0.57±1.90 1.46±0.94 mmol/L 0.5 R

Carcinoembryonic antigen CEA 1,002 0 – – ng/mL – None

Prostate specific antigen PSA 16,183 5 −2.32±5.25 1.04±0.11 ng/mL – None

Creatine phosphokinase CPK 31,573 6,520 −30±2180 1.19±0.76 U/L 0.75 R

Ferritin FERRI 14,633 9 −14.1±39.6 0.979±0.234 ng/mL – None

Lactate dehydrogenase LDH 2,335 165 −145±686 1.10±0.68 U/L 0.9 R

Pro B-type natriuretic peptide PROBNP 6,693 83 460±4740 1.07±0.47 pg/mL – None

Vitamin B12 B12 14,068 6 −26±187 1.00±0.16 pg/mL – None

folate, serum S FOLATE 5,888 4 0.815±1.72 1.10±0.20 ng/mL 1 R

urine protein U Prot 3,208 1 74.0±0 3.85±0 g/24 hrs – None

human chorionic gonadotropin HCG 5,524 1 −61.2±0 0.685±0 mIU/mL – None

alkaline phosphatase ALKP 151,745 8,914 3.6±46.8 1.04±0.22 U/L 0.7 R

High sensitivity C-reactive protein HSCRP 21,555 90 27.7±78.0 1.67±2.58 mg/L – None

Beta-hydroxybutyrate BOHB 809 513 0.97±2.10 5.8±17.8 mmol/L – None

Albumin ALB 155,262 9,162 0.080±0.379 1.03±0.15 g/dL 0.3 R

Rheumatoid factor RF 4,324 0 – – IU/mL – None

Acetaminophen ACAM 138 14 48.1±75.8 9.23±8.66 mg/L – None

Blood urea nitrogen BUN 285,912 113,112 0.92±7.41 1.09±0.36 mg/dL 0.6 R

Urine urea nitrogen U UREA 593 5 19.8±258 1.37±0.84 g/24 hrs – None

Total cholesterol CHOL 94,742 38 10.2±38.2 1.05±0.14 mg/dL 0.3 R

Bicarbonate CO2 288,534 119,059 −0.30±2.87 0.993±0.140 mmol/L 0.5 R

Ammonia AMON 1,733 78 11.1±50.8 1.28±0.73 mcmol/L 1 R

Gamma glutamyl transferase GGT 1,123 1 1±0 1.2±0 U/L 0.55 R

Amylase AMY 4,531 450 44±182 1.21±0.49 U/L 0.75 R

Direct bilirubin DBILI 149,189 7,807 −0.011±0.789 1.12±0.58 mg/dL 0.75 R

Iron IRON 11,867 22 1.43±8.82 1.03±0.21 mcU/dL – None

Total protein TP 152,787 8,826 0.146±0.626 1.03±0.12 g/dL 0.3 R

Alanine aminotransferase ALT 156,572 8,571 4±292 1.08±0.37 U/L 0.8 R

Aspartate aminotransferase AST 156,583 8,147 16±377 2.7±99.3 U/L 0.8 R

Magnesium MG 42,159 24,722 −0.009±0.132 0.997±0.174 mmol/L 0.5 R

Urine magnesium U MG 50 1 0.88±0 1.378±0 mmol/L – None

Uric acid URIC 6,066 334 0.18±1.46 1.13±0.92 mg/dL 0.5 R

Uric acid, urine U URIC 80 0 – – g/24 hrs – None

Ethanol ETOH 2,403 19 1530±1270 278±909 mg/L – None

Calcium CA 264,544 103,280 0.008±0.546 1.00±0.07 mg/dL 0.1 R

Urine calcium U CA 395 0 – – mg/24 hrs – None

Phosphorus PHOS 30,784 18,717 0.04±1.08 1.06±0.49 mg/dL 0.8 R

Urine phosphorus U PHOS 102 0 – – mg/dL – None

Lipase LIPA 9,099 693 86±528 1.56±1.87 U/L 0.75 R

Glucose GLUC 292,116 108,102 7.2±61.6 1.09±0.44 mg/dL 1.6 R

Creatinine CRE 291,889 111,619 0.061±0.463 1.07±0.46 mg/dL 0.8 A

Urine creatinine UCRE RAN 19,497 9 17.4±61.3 1.54±1.16 mg/dL – None

Salicylate SALI 146 15 114±112 50.5±99.5 mg/L – None

Triglyceride TRIG 90,779 76 65±267 1.14±0.54 mg/L 0.75 R

Unsaturated iron binding capacity UIBC 11,317 19 0.2±16.6 0.968±0.155 mcg/dL 0.4 R

Sodium NA 310,234 122,406 −0.19±3.25 0.999±0.023 mmol/L 8 A

Potassium K+ 309,187 119,008 0.026±0.540 1.01±0.14 mmol/L 1 A

Chloride CL 310,390 122,609 −0.49±4.02 0.996±0.038 mmol/L 8 A

Haptoglobin HAPTO 727 22 −24.4±22.3 0.853±0.558 mg/dL – None

Immunoglobulin A IGA 4,243 4 26.3±34.5 1.05±0.06 mg/dL – None

Immunoglobulin M IGM 1,944 3 4.3±10.5 1.07±0.12 mg/dL – None

Carbamazepine CARB 974 4 0.370±0.940 1.03±0.10 % COHB – None

Digoxin DGXN 849 16 −0.054±0.438 1.02±0.33 mcg/L – None

Immunoglobulin G IGG 2,353 3 25.0±71 1.037±0.078 mg/dL – None

Phenobarbital PHENOB 415 33 −1.19±4.93 0.968±0.174 mg/L – None

Phenytoin DPH 977 58 −0.50±5.17 0.950±0.329 mg/L – None

Theophylline THEO 61 0 – – mg/L – None

Lithium LITH 1,163 13 0.170±0.388 1.49±1.04 mmol/L 0.3 R

Valproic acid VALP 1,913 47 −3.4±20.3 1.04±0.61 mg/L – None

C4 complement C4 1,573 1 1.00±0 1.06±0 mg/dL – None

Prealbumin PRE ALB 4,152 41 0.71±3.78 1.09±0.33 mg/dL – None

Direct low density lipoprotein cholesterol DLDL 8,400 1 0.00±0 1.00±0 mg/dL – None

Urine albumin UALB 17,694 0 – – mg/24 hrs 0.9 R

C3 complement C3 1,464 1 13.0±0 1.19±0 mg/dL – None

Gentamicin peak GENT P 58 0 – – mg/L – None

Gentamicin 6–14 hours post-dose GENT LVL 6 - 14 
POST DOSE

29 0 – – mg/L – None

Gentamicin trough GENT T 90 2 −0.28±1.80 1.30±1.15 mg/L – None

Tobramycin, peak TOBRA P 34 0 – – mg/L – None

Tobramycin TOBRA 182 3 −0.570±0.450 0.481±0.325 mg/L – None

Tobramycin, through TOBRA T 83 0 – – mg/L – None

Vancomycin, peak VANC P 34 0 – – mg/L – None

Vancomycin, trough VANC T 4,587 78 −0.57±8.45 1.01±0.44 mg/L – None

Urine sodium U NA 2,649 18 −23.2±23.3 0.530±0.350 mmol/L – None

Urine potassium UK 2,561 17 −15.9±35.9 0.941±0.740 mmol/L – None

Urine chloride U CL 2,587 18 −32.1± 37.3 0.543±0.363 mmol/L – None

Kappa free light chains Kap 260 0 – – – – None

Lambda free light chains Lam 260 0 – – – – None

Alpha fetoprotein AFP 876 0 – – ng/mL – None

Cyclic citrullinated peptide antibody CCP 246 0 – – U/mL – None

Cancer antigen 125 CA 125 309 0 – – U/mL – None

Carbohydrate antigen 19-9 CA 19-9 125 0 – – U/mL – None

Dehydroepiandrosterone sulfate DHEAS 145 0 – – mcg/dL – None

Homocysteine Homocyst T 198 0 – – mcmol/L – None

Insulin Insulin 144 0 – – mcU/mL – None

Hepatitis A total antibody HepA 1 0 – – – None

Hepatitis B surface antibody HepB sAb 18 0 – – IU/L – None

Parathyroid hormone PTH 4,613 12 12.0±40.9 1.18±0.23 pg/mL – None

Beta-2-microglobulin B2MG 44 0 – – mg/L – None

Alpha 1 antitrypsin A1AT 285 0 – – mg/dL – None

Ceruloplasmin Cerulopl 353 0 – – mg/dL – None

Free triiodothyronine Free T3 72 0 – – pg/mL – None

A, absolute change; N, number; R, relative change; SD, standard deviation.
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Table S2 Characterization of training, validation, and testing data sets, along with training parameters, for all neural networks

Neural network type Δt range (days)
Dataset sizes Training data

Train Validation Test Total % of specimen pairs Batches/iteration Iteration drop Epochs

PNN-BMP <1.5 148,480 18,818 18,824 186,122 19.3 300 4 20

PNN-BMP 1.5–2.5 94,830 11,868 11,512 118,210 12.3 300 4 20

PNN-BMP 2.5–3.5 73,594 9,210 9,202 92,006 9.5 300 4 20

PNN-BMP 3.5–5 86,744 10,900 10,932 108,576 11.3 300 4 20

PNN-BMP 5–10 193,874 24,414 24,294 242,582 25.2 300 4 20

PNN-CMP <1.5 8,014 1,076 1,030 10,120 1.0 40 20 80

PNN-CMP 1.5–2.5 5,378 696 618 6,692 0.7 40 20 80

PNN-CMP 2.5–3.5 4,192 530 498 5,220 0.5 40 20 80

PNN-CMP 3.5–5 4,768 640 622 6,030 0.6 40 20 80

PNN-CMP 5–10 10,810 1,344 1,374 13,528 1.4 40 20 80

PNN-HFP <1.5 10,404 1,352 1,384 13,140 1.4 40 20 80

PNN-HFP 1.5–2.5 6,664 862 808 8,334 0.9 40 20 80

PNN-HFP 2.5–3.5 5,168 662 638 6,468 0.7 40 20 80

PNN-HFP 3.5–5 5,996 782 816 7,594 0.8 40 20 80

PNN-HFP 5–10 13,906 1,710 1,702 17,318 1.8 40 20 80

PNN-RFP <1.5 2,050 274 288 2,612 0.3 10 20 100

PNN-RFP 1.5–2.5 1,460 188 152 1,800 0.2 10 20 100

PNN-RFP 2.5–3.5 1,110 168 148 1,426 0.1 10 20 100

PNN-RFP 3.5–5 1,302 188 176 1,666 0.2 10 20 100

PNN-RFP 5–10 2,478 328 284 3,090 0.3 10 20 100

ONN, 5–8 analytes <1.5 110,236 13,756 13,776 137,768 14.3 100 4 40

ONN, 5–8 analytes 1.5–2.5 66,002 8,226 8,152 82,380 8.5 100 4 40

ONN, 5–8 analytes 2.5–3.5 49,664 6,198 6,284 62,146 6.4 100 4 40

ONN, 5–8 analytes 3.5–5 57,074 7,094 7,174 71,342 7.4 100 4 40

ONN, 5–8 analytes 5–10 124,404 15,522 15,448 155,374 16.1 100 4 40

ONN, 9–12 analytes <1.5 66,962 8,344 8,622 83,928 8.7 100 4 40

ONN, 9–12 analytes 1.5–2.5 40,824 5,080 4,926 50,830 5.3 100 4 40

ONN, 9–12 analytes 2.5–3.5 32,744 3,986 3,960 40,690 4.2 100 4 40

ONN, 9–12 analytes 3.5–5 39,736 5,040 5,036 49,812 5.2 100 4 40

ONN, 9–12 analytes 5–10 88,750 11,252 11,074 111,076 11.5 100 4 40

ONN, ≥13 analytes <1.5 22,696 2,914 2,954 28,564 3.0 100 4 40

ONN, ≥13 analytes 1.5–2.5 13,506 1,768 1,638 16,912 1.8 100 4 40

ONN, ≥13 analytes 2.5–3.5 11,296 1,416 1,384 14,096 1.5 100 4 40

ONN, ≥13 analytes 3.5–5 13,796 1,730 1,784 17,310 1.8 100 4 40

ONN, ≥13 analytes 5–10 33,434 4,066 4,178 41,678 4.3 100 4 40

BMP, basic metabolic panel; CMP, complete metabolic panel; HFP, hepatic function panel; ONN, open neural network; PNN, panel neural network; RFP, 
renal function panel.



Table S3 Area under the curve (AUC) obtained from receiver operator characteristics curve (ROC) analysis

Δt range (days)
PNN AUC ONN AUC

BMP CMP HFP RFP 5–8 analytes 9–12 analytes ≥13 analytes

<1.5 0.966±0.004 0.994±0.001 0.989±0.001 0.943±0.009 0.911±0.012 0.935±0.004 0.964±0.002

1.5–2.5 0.932±0.011 0.980±0.003 0.968±0.002 0.902±0.007 0.870±0.018 0.869±0.008 0.920±0.010

2.5–3.5 0.894±0.018 0.967±0.004 0.950±0.006 0.876±0.020 0.830±0.014 0.833±0.012 0.871±0.013

3.5–5 0.859±0.020 0.953±0.007 0.930±0.006 0.831±0.008 0.802±0.011 0.795±0.014 0.845±0.006

5–10 0.862±0.007 0.954±0.004 0.928±0.005 0.827±0.011 0.805±0.018 0.799±0.018 0.829±0.005

BMP, basic metabolic panel; CMP, complete metabolic panel; HFP, hepatic function panel; ONN, open neural network; PNN, panel neural network; RFP, 
renal function panel.

Table S4 Panel neural networks (PNN) performance

Panel Δt range (days)
OOP Sn set to 0.5 Sn set to 0.8 Classic

Sn Sp PPV Sn Sp PPV Sn Sp PPV Sn Sp PPV

BMP <1.5 89.6 91.4 4.9 50.0 99.7 41.7 80.0 96.6 10.7 91.3 74.0 1.7

BMP 1.5–2.5 84.0 87.4 3.2 50.0 98.7 15.9 80.0 90.5 4.0 91.1 57.2 1.1

BMP 2.5–3.5 78.5 83.6 2.3 50.0 97.0 7.6 80.0 81.7 2.1 90.1 47.0 0.8

BMP 3.5–5 75.4 79.3 1.8 50.0 94.9 4.7 80.0 73.9 1.5 91.5 39.8 0.8

BMP 5–10 75.8 80.6 1.9 50.0 94.8 4.6 80.0 75.5 1.6 91.5 31.9 0.7

CMP <1.5 98.4 96.4 12.1 50.0 99.9 68.1 80.0 99.4 39.2 99.6 61.4 1.3

CMP 1.5–2.5 92.3 94.3 7.5 50.0 100 100 80.0 99.0 28.5 99.0 37.2 0.8

CMP 2.5–3.5 90.8 92.9 6.0 50.0 99.6 36.1 80.0 97.7 14.7 100 26.5 0.7

CMP 3.5–5 86.0 91.4 4.8 50.0 99.7 46.4 80.0 94.2 6.4 99.7 19.3 0.6

CMP 5–10 89.3 88.5 3.7 50.0 99.4 29.0 80.0 93.8 6.1 99.4 20.1 0.6

HFP <1.5 96.4 95.0 8.9 50.0 99.8 61.1 80.0 99.0 28.1 99.3 61.4 1.3

HFP 1.5–2.5 89.4 92.9 6.0 50.0 99.9 66.8 80.0 97.6 14.4 99.3 37.4 0.8

HFP 2.5–3.5 88.7 89.9 4.2 50.0 99.1 21.6 80.0 94.1 6.4 99.7 26.6 0.7

HFP 3.5–5 84.5 87.1 3.2 50.0 98.8 17.2 80.0 89.5 3.7 99.5 19.1 0.6

HFP 5–10 85.5 84.7 2.7 50.0 98.6 15.5 80.0 88.7 3.4 98.6 21.3 0.6

RFP <1.5 90.9 85.9 3.1 50.0 97.9 10.7 80.0 91.0 4.2 99.3 59.0 1.2

RFP 1.5–2.5 80.3 89.1 3.5 50.0 98.7 16.0 80.0 85.3 2.6 100 42.1 0.9

RFP 2.5–3.5 84.5 82.0 2.3 50.0 93.2 3.6 80.0 82.7 2.3 100 17.6 0.6

RFP 3.5–5 70.7 83.4 2.1 50.0 94.5 4.4 80.0 68.1 1.2 100 14.8 0.6

RFP 5–10 75.5 75.8 1.5 50.0 91.7 2.9 80.0 66.9 1.2 99.3 7.0 0.5

Sensitivity (Sn), specificity (Sp), and positive predictive values (PPV) are reported in percent (%). BMP, basic metabolic panel; CMP, complete metabolic 
panel; HFP, hepatic function panel; ONN, open neural network; OOP, optimal operating point; PNN, panel neural network; RFP, renal function panel.



Table S5 Open neural networks (ONN) performance

N analytes (range) Δt range (days)
OOP Sn set to 0.5 Se set to 0.8 Classic

Sn Sp PPV Sn Sp PPV Sn Sp PPV Sn Sp PPV

5–8 <1.5 80.3 84.5 2.5 50.0 97.4 8.7 80.0 84.0 2.4 82.4 78.6 1.9

5–8 1.5–2.5 74.2 81.7 2.0 50.0 94.1 4.1 80.0 75.4 1.6 83.8 62.5 1.1

5–8 2.5–3.5 77.0 72.4 1.4 50.0 91.9 3.0 80.0 67.8 1.2 84.4 52.2 0.9

5–8 3.5–5 69.1 75.5 1.4 50.0 87.9 2.0 80.0 63.7 1.1 84.4 45.9 0.8

5–8 5–10 71.5 73.4 1.3 50.0 88.4 2.1 80.0 63.7 1.1 84.8 40.3 0.7

9–12 <1.5 86.6 84.5 2.7 50.0 99.0 19.7 80.0 90.0 3.8 89.1 68.7 1.4

9–12 1.5–2.5 81.4 75.6 1.6 50.0 95.1 4.9 80.0 76.2 1.7 89.6 53.4 1.0

9–12 2.5–3.5 76.5 73.8 1.4 50.0 92.3 3.1 80.0 68.9 1.3 87.5 45.6 0.8

9–12 3.5–5 71.7 71.1 1.2 50.0 88.5 2.1 80.0 61.2 1.0 88.6 39.7 0.7

9–12 5–10 73.3 70.8 1.2 50.0 89.2 2.3 80.0 62.3 1.0 88.4 30.8 0.6

≥13 <1.5 90.4 88.9 3.9 50.0 99.5 35.5 80.0 95.7 8.5 93.7 64.7 1.3

≥13 1.5–2.5 83.6 85.1 2.7 50.0 98.3 12.7 80.0 87.1 3.0 94.3 44.7 0.8

≥13 2.5–3.5 80.3 77.2 1.7 50.0 95.5 5.2 80.0 76.3 1.7 93.9 34.5 0.7

≥13 3.5–5 74.5 77.5 1.6 50.0 93.3 3.6 80.0 71.0 1.4 93.6 29.1 0.7

≥13 5–10 74.6 73.3 1.4 50.0 91.5 2.9 80.0 66.9 1.2 93.8 26.1 0.6

Sensitivity (Sn), specificity (Sp), and positive predictive values (PPV) are reported in percent (%). BMP, basic metabolic panel; CMP, complete metabolic 
panel; HFP, hepatic function panel; ONN, open neural network; OOP, optimal operating point; PNN, panel neural network; RFP, renal function panel.


