

## AB007. OS02.01. The integrated genomic landscape of thymic epithelial tumors: a report by the TCGA research network

Milan Radovich<sup>1</sup>, Curtis Pickering<sup>2</sup>, Ina Felau<sup>3</sup>, Gavin Ha<sup>4</sup>, Hailei Zhang<sup>4</sup>, Heejoon Jo<sup>5</sup>, Katherine A. Hoadley<sup>5</sup>, Pavana Anur<sup>6</sup>, Jiexin Zhang<sup>2</sup>, Mike Mclellan<sup>7</sup>, Reanne Bowlby<sup>8</sup>, Thomas Matthew<sup>9</sup>, Ludmila Danilova<sup>10</sup>, Apurva M. Hedge<sup>2</sup>, Jaegil Kim<sup>4</sup>, Max Leiserson<sup>11</sup>, Geetika Sethi<sup>12</sup>, Charles Lu<sup>7</sup>, Michael Ryan<sup>2</sup>, Xiaoping Su<sup>2</sup>, Andrew D. Cherniack<sup>4</sup>, Gordon Robertson<sup>8</sup>, Rehan Akbani<sup>2</sup>, Paul Spellman<sup>6</sup>, John N. Weinstein<sup>2</sup>, David Neil Hayes<sup>5</sup>, Ben Raphael<sup>11</sup>, Tara Lichtenberg<sup>13</sup>, Kristen Leraas<sup>13</sup>, Jean Claude Zenklusen<sup>3</sup>, Junya Fujimoto<sup>2</sup>, Cristovam Scapulatempo-Neto<sup>14</sup>, Andre L. Moreira<sup>15</sup>, David Hwang<sup>16</sup>, James Huang<sup>17</sup>, Mirella Marino<sup>18</sup>, Robert Korst<sup>19</sup>, Giuseppe Giaccone<sup>20</sup> Yesim Gokmen-Polar<sup>1</sup>, Sunil Badve<sup>1</sup>, Arun Rajan<sup>21</sup>, Philipp Ströbel<sup>22</sup>, Nicolas Girard<sup>23</sup>, Ming S. Tsao<sup>24</sup>, Alexander Marx<sup>25</sup>, Anne S. Tsao<sup>2</sup>, Patrick J. Loehrer<sup>1</sup>

<sup>1</sup>Indiana University Simon Cancer Center, Indianapolis, IN, USA; <sup>2</sup>MD Anderson Cancer Center, Houston, TX, USA; <sup>3</sup>National Cancer Institute, Bethesda, MD, USA; <sup>4</sup>Broad Institute, Cambridge, MA, USA; <sup>5</sup>University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; <sup>6</sup>Oregon Health & Science University, Portland, OR, USA; <sup>7</sup>McDonnell Genome Institute at Washington University, St. Louis, MO, USA; <sup>8</sup>Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada; 9University of California, Santa Cruz, CA, USA; <sup>10</sup>John Hopkins University, Baltimore, MD, USA; <sup>11</sup>Brown University, Providence, RI, USA; <sup>12</sup>Institute for Systems Biology, Seattle, WA, USA; <sup>13</sup>Nationwide Children's Hospital, Columbus, OH, USA; <sup>14</sup>Barretos Cancer Hospital, Barretos, Brazil; 15New York University, New York, NY, USA; 16 University Health Network, Toronto, ON, Canada; <sup>17</sup>Memorial Sloan Kettering Cancer Center, Manhattan, NY, USA; <sup>18</sup>Regina Elena National Cancer Institute, Rome, Italy; <sup>19</sup>Valley Health System, Ridgewood, NJ, USA; <sup>20</sup>Georgetown University, Washington, DC, USA; <sup>21</sup>National Cancer Institute, Bethesda, MD, USA; <sup>22</sup>University Medical Center, Gottingen, Germany; <sup>23</sup>Hospices Civils De Lyon, Institute of Oncology, Lyon, France; <sup>24</sup>Princess Margaret Cancer Centre, Toronto, ON, Canada; <sup>25</sup>Institut De Pathologie, Universitaets Medizin Mannheim, Mannheim, Germany

**Background:** Thymoma and thymic carcinoma are the most common malignancies of the anterior mediastinum. Additionally, thymoma has a unique association with autoimmune disorders, notably myasthenia gravis (MG). Histologic classification of thymic epithelial tumors (TETs) has been largely based on the gross description of the epithelial cell appearance and the relative abundance of associated lymphocytes. A comprehensive molecular analysis of TETs has not heretofore been conducted.

Methods: The TCGA Research Network conducted multiplatform analyses of 117 TETs (thymoma =105; thymic carcinoma =10 and micronodular thymoma =2), which included whole-exome, transcriptome, methylome and targeted proteome analysis. Patient characteristics: median age =60 years (range, 17–84 years); M:F (%) =52:48; Masaoka stage {I [36], IIA [39], IIB [19]; III [15]; IVA [1]; IVB [5]}; MG was present in 32 patients. No patient had prior therapy for metastatic disease, but 14 had prior chemotherapy and 39 had prior radiation therapy in the adjuvant setting. WHO histologic classification (blinded review) revealed A =10; AB =48, B1 =12, B2 =25, B3 =10, micronodular thymoma =2 and TC =10.

Results: Thymoma has the lowest tumor mutation burden among adult malignancies in the TCGA. A unique transcription factor, GTF2I, was the most commonly observed mutation in WHO Types A and A/B. All GTF2I mutations were exclusively at the amino acid 424 locus. This is the only tumor with this specific mutation within the entire TCGA database. Differential expression of the RNA and protein data revealed dysregulation of several oncogenic pathways in GTF2I mutants vs. wild-type. Oncogenic HRAS, NRAS and TP53 mutations were also observed, but at a lower frequency among all TETs. We further describe an MSI-unstable thymic carcinoma that was hyper-mutated. Using multi-platform analyses, four distinct molecular-driven subtypes of TETs were identified that strongly correlated with the current WHO histologic classification and were associated with survival. Genomic hallmarks of these subtypes were identified to aid pathologic diagnosis. Lastly, when comparing MG-positive vs. -negative thymomas, we observed increased aneuploidy and overexpression of muscle auto-antigens in MG-positive tumors, providing a pathophysiologic link between thymoma and MG. Conclusions: Based on molecular analysis, four clusters were identified that correlated strongly with the current WHO Histologic Classification. Also identified was a unique mutation in GTF2I, which was associated with WHO Type A and A/B thymoma. Lastly, a molecular link between MG and thymoma characterized by increased aneuploidy and tumoral over-expression of muscle auto-antigens was observed.