
Page 1 of 4

© Biotarget. All rights reserved. Biotarget 2018;2:10Biotarget.amegroups.com

Ubiquitination, which targets proteins for degradation 
or modifies their activity, is central to cellular function. 
Proteins controlling ubiquitination have attracted a lot 
of attention as potential therapeutic targets for a variety 
of diseases. In particular, E3 ligases are responsible for 
attachment of ubiquitin (Ub) to target proteins, and thus, 
dictate specificity of ubiquitination and could be targets 
for therapeutic intervention. Among more than 600 E3 
ligases in the human genome, Cullin Ring Ligases (CRLs) 
constitute the largest family with approximately 200 
members (1). CRLs share a common architecture, in which 
a Cullin subunit is responsible for tethering a substrate 
receptor, and a RING protein recruits E2-Ub. The family 
of human Skp1-F-box-Cul1 ligases (SCFs), the best 
characterized CRL family, contains 69 F-box proteins that 
are responsible for substrate binding and are attached to a 
cullin subunit (Cul1) through the adaptor Skp1 (2). 

The functions of cullin scaffolds extend far beyond 
simply bringing substrate receptors and RING-E2-Ub 
together. All cullin scaffolds are modified by attachment 
of a Ub-like modifier, Nedd8, which serves to re-orient 
RING protein and increase the efficiency of ubiquitination 
(3,4). Importantly, the presence of a substrate protein 
undergoing ubiquitination inhibits Nedd8 removal by 
Cop9-signalosome (5,6), providing a positive feedback loop 
for the ubiquitination reaction. An additional layer of CRL 
regulation is provided by the Cand1 protein. In the absence 
of Nedd8 modification, Cand1 wraps around the cullin 
subunit and blocks the recruitment of substrate receptor 
proteins (7,8).

Although Cand1 appears to act as inhibitor that blocks 

assembly of CRL ligases, it was observed in multiple studies 
that deletion of Cand1 in cells actually decreases CRL 
activity (9,10). This conundrum was explained by several 
studies focused on human (11) and yeast (12,13) SCF E3 
ligases. These studies demonstrated that Cand1 functions 
as an exchange factor, by freeing Cul1 from unproductive 
SCF complexes (Figure 1). Neddylation of Cul1 plays a 
crucial role in this process, as upon substrate removal, Cul1 
is deneddylated and Cand1 is able to bind. The binding 
of Cand1 in turn removes the Skp1-F-box component 
and liberates Cul1 for binding to a different Skp1-F-box 
complex. Importantly, this mechanism favors assembly of 
SCF complexes for which substrates are available, and this 
has been experimentally confirmed (14).

A recent study by Liu et al. (15) set out to describe the 
complexity of SCF regulation by neddylation and Cand1 
binding with a mathematical model that takes into account 
all known aspects of SCF regulation, protein concentrations 
and kinetic parameters of protein interactions, some 
of which were derived in the study. Highlighting the 
complexity of SCF regulation, the authors serendipitously 
discovered that the binding of Cand1 actually increases 
association of Cul1 with Dcn1, the E3 ligase responsible 
for Nedd8 addition. The authors suggested that this primes 
Cul1 for neddylation immediately upon Cand1 removal, 
and indeed, Cand1-Cul1 complex in the presence of Skp1-
F-box complexes is neddylated more efficiently then Cul1 
alone. This positive cooperativity between Cand1 and Dcn1 
was also included in the model.

The developed mathematical model accurately predicted 
several experimental observations that would be difficult 
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to anticipate otherwise. For example, the model correctly 
predicted that the degradation defect of β-TrCP substrate 
in Cand1 deleted cells is fully rescued by re-expression of 
Cand1 at only 13% of wild-type levels. Another counter-
intuitive prediction of the model was that the defect in 
the degradation of β-TrCP substrate (IκBα) upon Cand1 
deletion could be rescued by Cul1 overexpression, but 
not by β-Trcp overexpression. This prediction was 
experimentally confirmed and further highlighted Cul1 
as a limiting factor for SCF activity and the importance 
of Cand1 exchange activity for liberating Cul1 from 
unproductive complexes.

A striking prediction of the model is that if Cul1 binds 
an F-box protein unoccupied by substrate, it is able to 
exchange it for another F-box protein with an average time 
of 87 seconds (Figure 2). The authors suggest that this 
allows Cul1 to rapidly sample through the whole pool of 
cellular F-box proteins and, given a ratio of Skp1 to Cul1 
of 4:1 (14), an F-box protein should gain access to Cul1 
approximately every four minutes. Once Cul1 is engaged 
with an F-box protein with a bound substrate, it is removed 
from the rapidly cycling pool of Cul1 and the SCF complex 
persists until the substrate is degraded. This numerical 
description of Cul1 function re-enforces the “on demand” 
concept introduced in earlier studies, which states that Cul1 

distribution is biased towards those F-box proteins that are 
needed at the moment.

Another important prediction of the model is that 
cells without Cand1 function are particularly sensitive 
to variations in the levels of F-box proteins. This was 
experimentally verified by showing that cells lacking Cand1 
(and Cand2 that can partially compensate for Cand1 
function) exhibited significant growth defects and abnormal 
morphology upon over-expression of F-box proteins. It 
would be interesting to further explore this observation 
by testing whether cancer cells that are known to over-
express F-box proteins (16,17) are particularly sensitive to 
Cand1 deletion, which may identify Cand1 as a potential 
therapeutic target. While this study relied on deletion of 
the Cand1 gene, it would also be worthwhile to use the 
developed model coupled with the experimental validation 
to explore the effects of inhibiting Cand1 binding to Cul1. 
In particular, it would be informative to compare the 
effects of targeting different protein interaction surfaces to 
abrogate the interaction between Cand1 and Cul1. While 
it is difficult to develop chemical compounds to block 
protein interactions, research by our group developed 
the use of Ub variants (UbVs) to target proteins of the 
ubiquitin proteasome system (18), and this approach could 
be extended to investigate the effects of blocking Cand1 

Figure 1 Cand1 functions as an exchange factor for SCF E3 ligases. Attachment of Nedd8 (N) to Cul1 activates the ligase and blocks Cand1 
binding. The presence of substrate prevents removal of Nedd8 by Cop9-Signalosome. Upon substrate degradation, Nedd8 is removed, 
allowing binding of Cand1 and liberation of Cul1 from the Skp1-F-box complex. In wild-type cells, the presence of Cand1 allows efficient 
re-distribution of Cul1 from the Skp1-F-box 1 complex, for which Substrate 1 is no longer present, to the Skp1-F-box 2 complex bound 
to substrate 2. In Cand1 deficient cells, a portion of Cul1 remains bound to the Skp1-F-box 1 complex, thus limiting the amount of Cul1 
available for binding to the Skp1-F-box 2 complex.
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interactions. 
In summary, the mathematical model developed by Liu 

et al. (15)was able to accurately predict response of SCF 
activity to different perturbations. The model can serve as 
a powerful tool to investigate different sensitivities of SCF 
activity, which may be useful for therapeutic applications. 
For example, the small-molecule MLN4924 inhibits 
neddylation and is currently being investigated in clinical 
trials for treatment of various cancers (19). Researches may 
ask what new sensitivity is introduced into the system upon 
treatment with MLN9294 and could potentially uncover 
new avenues for therapeutic intervention.
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