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Introduction

MicroRNAs (miRNAs, miRs) are small endogenous 
noncoding RNA molecules that negatively regulate gene 
expression affecting many biological processes and diseases, 
including cancer (1,2). The active and mature miRNA 
form is ~22 nucleotides (nt) in length, and is the result of 
a multiple-step process. This begins with the primary long 
transcript (pri-miRNA) being processed by an RNase, 
termed Drosha, and its partner protein DiGeorge syndrome 
chromosomal region 8 (DGCR8), that cut it into a ~70-nt 
stem loop (SL) precursor (pre-miRNA), which contains 
the mature miRNA sequence in one of its arms and the less 
abundant, partially complementary miRNA mature form, 
in the other arm (3,4). The pre-miRNA is then actively 
transported by exportin-5 (XPO5) from the nucleus to 
the cytoplasm, where it is processed by another RNase, 
termed Dicer (5,6). The result of this second processing 
event is a double stranded RNA, where one of its strands is 

incorporated into the Argonaute (Ago) protein of the RNA-
induced silencing complex (RISC) that commonly targets it 
to a 3' untranslated region (3'UTR) of a specific mRNA and 
leads to its degradation (1). 

The precursor miRNA terminal loop (TL) is an 
important platform for different RNA-binding proteins 
(RBPs) which operate as activators or repressors of Drosha 
and Dicer (7). Two of these RBPs are known to selectivity 
regulate miRNA processing by binding to guanine (G) 
residues-enriched motifs in the TL: miRNAs with the 
sequence motif GGAG in their TL are regulated through 
the binding of the RBP Lin28, which interferes with 
Dicer processing (8), while the sequence AGGGU in the 
TL promotes miRNA maturation by the K-homology 
splicing regulatory protein (KSRP) RBP (9). It has 
recently been shown that modification of KSRP results 
in the downregulation of a subset of TL G-rich miRNAs, 
subsequently promoting tumorigenesis (10).

The widespread downregulation of miRNA expression 
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is a phenomenon observed in many types of human cancer 
(11-14). A comprehensive repression of miRNA expression 
has also been reported after exposure to cigarette-smoke 
(CS) (15-17), and treatment with the hormone estrogen 
(17β-estradiol; E2) (18-20). These aforementioned 
alterations in miRNA expression can occur as a result 
of changes in the transcription of miRNA genes, as was 
shown after c-Myc activation (21), miRNA export from the  
nucleus (22), or at any stage of the miRNA maturation 
process by modulation of key regulators or components 
of  the miRNA biogenesis  pathway,  including the 
microprocessor complex Drosha-DGCR8, and Dicer (23).

Recently, we have found an association between the 
comprehensive miRNA reduction observed in human 
cancers and a high TL-G content in their precursors 
(24,25), as well as a similar G enrichment existing in TLs 
of downregulated miRNAs after E2 exposure (26). The 
potential carcinogenic activity of estrogens involves their 
oxidative metabolism to catechol estrogens and the reactive 
quinone metabolites forming specific DNA adducts at the 
N-7 G (27,28). These adducts generate apurinic sites that 
can be converted into mutations by error-prone repair, 
which in turn may initiate tumorigenesis (29). Furthermore, 
oxidative metabolites of estrogens form 8-oxoguanine  
(8-oxoG); a major product of oxidation damage, which 
serves as a biomarker of oxidative stress and eventually leads 
to carcinogenesis (30).

Because G has a lower oxidation potential it is most 
easily oxidized among the four nucleobases (31). Also, 
sequences with repeated G bases (GG or GGG) show 
higher reactivity toward oxidation than isolated G bases (32).  
Most interestingly, of the different G combinations in TL 
sequences of both cancer and E2-repressed miRNAs, the 
relative enrichment of double G (GG) and triple G (GGG) 
was especially dominant (24-26). Therefore, oxidation 
and/or adduct formation by carcinogens, such as CS 
and estrogen metabolites, that react with G/GG/GGG 
in precursor of tumor suppressor (TS) miRNA TL may 
contribute to the development of cancer. Herein we suggest 
several hypotheses and potential ways for the prevention of 
cancer that may be initiated by interaction of carcinogens 
with the G content of TS precursor miRNA’s TL.

Cellular pathways used to repair G damage 

There are various types of DNA repair mechanisms that 
specialize in removing different kinds of DNA lesions 
caused by endogenous and environmental insults, thereby 

helping to prevent cancer. One example is the base excision 
repair (BER) system used to repair oxidative lesions 
caused by reactive oxygen species (ROS) such as 8-oxoG 
(33,34). Another example is O6-methylguanine DNA 
methyltransferase (O6MT) that removes O6-alkylguanine 
adducts and effectively restores the G base in DNA (27).

A number of lines of evidence indicate that there are 
several possible cellular repair mechanisms to cope with 
RNA damage (35). For example, it has been previously 
shown that the repair of damaged bases in RNA can be 
executed by several members of the AlkB family of enzymes, 
by a unique oxidative demethylation repair mechanism 
that removes methyl adducts (36). Thus, activation of 
such cellular defense mechanisms may represent a possible 
therapeutic direction for repairing various adducts (37), 
including potential G adducts in miRNA TLs.

The potential use of G analogs for cancer 
prevention

Several guanosine analogs, such as acyclovir (ACV), are 
widely used for the treatment of herpesvirus infections and 
also as antitumor agents for the combined chemotherapy 
of cancer (38). These drugs compete with deoxyguanosine 
triphosphate (dGTP) as a substrate for viral DNA 
polymerase in herpesvirus-infected human cells, resulting 
in early chain termination and inhibit virus DNA synthesis 
and replication (39). ACV is a nucleic acid analog made 
from guanosine (also known as acycloguanosine), which 
has incomplete cyclic sugar ribose where the carbons at 
the 3' and 4' positions are missing, while its G moiety 
is left intact (40). Therefore, introduction of ACV into 
cells may cause competition for carcinogens binding with 
the natural G nucleotides, and may reduce oxidatively-
generated damage to cellular RNA and nuclear DNA. 
Notably, a recent study has shown a potent anti-cancer 
effect by ACV (41). ACV treatment of MCF7 breast 
cancer cells decreased their growth and proliferation rate, 
inhibiting both colony formation ability and cell invasion  
capacity (41). The exact role of ACV in these anti-
cancer effects is currently unknown (41), however, it may 
potentially involve protection of G-rich TS miRNAs.

Restoration of TL G-enriched TS miRNA 
expression 

As mentioned above, the global miRNA repression 
observed in cancer has been found to be associated with 
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G enrichment in the TLs of their precursors. Whether 
this repression is caused by the carcinogen’s effects on the 
miRNA processing machinery (42), or through changes 
in the expression or deletion of miRNA encoding genes 
(21,43), the result is the downregulation of TS miRs (e.g., 
let-7, miR-34) which probably contributes to neoplastic 
transformation by allowing an increased expression of their 
target oncogenes [e.g., Kirsten rat sarcoma viral oncogene 
homolog (KRAS), epidermal growth factor receptor 
(EGFR)]. Intriguingly, we have recently revealed that 
the pre-miRNAs TLs of TS miRs are predominantly G 
enriched (44).

A therapeutic approach for systemically delivering 
synthetic TS miR mimics have been demonstrated, 
including several studies showing that restoring the 
oncosuppressor activity of miR-34a can successfully inhibit 
tumor growth (45,46). Interestingly, miR-34a precursor 
TL has a relatively high G content (35% G enrichment). 
Another potential candidate for such an intervention is 
miR-218, which is downregulated and acts as a TS miR in 
various types of human cancers, including lung cancer (47), 
where it is shown to inhibit cell proliferation and migration 
by targeting the EGFR oncogene (48). MiR-218 is the most 
differentially expressed miRNA in the airway epithelium 
of smokers, with its expression being 4-fold down-
regulated (16). Its predicted targets, such as V-Maf Avian 
Musculoaponeurotic Fibrosarcoma Oncogene Homolog 
G (MAFG), EGFR-coamplified and overexpressed protein 
(ECOP), and LIM and SH3 protein 1 (LASP-1), are 
significantly overrepresented among the genes upregulated 
in the bronchial epithelium of smokers (49). Moreover, the 
pre-miRNA’s TL of miR-218 is remarkably G-enriched 
(43% G enrichment) (44).

Fruits and vegetables and their phytochemicals 
used for cancer chemoprevention

The preventative and therapeutic effects of using fruit 

and vegetables and their dietary phytochemicals against 
various types of cancer are well documented (50,51). 
Amongst them, cruciferous vegetables have been extensively 
studied and are especially known for their cancer 
chemopreventive compounds; phenethyl isothiocyanate 
(PEITC), sulforaphane (SFN), and indole-3-carbinol (I3C) 
(52,53). Administration of PEITC and I3C attenuated 
the CS-induced downregulation of miRNAs (54), which 
were shown to have a high G content in their TLs (42). 
Furthermore, PEITC was shown to significantly inhibit the 
formation of the xenoestrogen bisphenol A (BPA)-induced 
DNA adducts in mice (55). 

Another compound with known antioxidant and 
chemopreventive activities is the dietary polyphenol derived 
from grapes, Resveratrol (RES) (56). Multiple studies have 
shown that RES prevents cancer initiation by blocking 
oxidation of catechol estrogens to their quinones and 
estrogen-DNA adducts formation (57-60). Further, both 
RES and SFN were shown to induce protective phase II 
enzymes activity, resulting in reduction of estrogen-induced 
DNA damage (61). Thus, increasing fruits and vegetables 
(including cruciferous) intake in the diet seems to be a 
simple and effective way for cancer prevention (62). 

Conclusions

Endogenous and exogenous carcinogens may oxidize 
and form adducts at the G (especially GG and GGG) 
content of TS miRNAs TLs. The resulted G lesions may 
cause extensive repression of TS miRNAs, leading to the 
induction of their target oncogenes and carcinogenesis, 
while several potential methods may be used for its 
prevention (Figure 1). Once the molecular mechanisms of 
global miRNA downregulation during tumorigenesis is fully 
elucidated, it can lead to the development of novel strategies 
for combating cancer. Revealing the role of G content of 
precursor miRNA’s TL in these processes appears to be a 
promising direction towards this goal. 
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Figure 1 A flowchart describing the miRNA biogenesis pathway and its possible modulation through the guanine (G) content in terminal 
loops (TLs). Disruption of transcription and the processing of tumor suppressor (TS) miRNAs (denoted by the red crosses) by endogenous 
and environmental carcinogens, such as estrogens/cigarette-smoke (CS), may lead to carcinogenesis, while introduction of TS miRs/G 
analogs/phytochemical compounds, may potentially prevent it. ACV, acyclovir; KSRP, K-homology splicing regulatory protein; XPO5, 
exportin-5; PEITC, phenethyl isothiocyanate; SFN, sulforaphane; RES, resveratrol; I3C, indole-3-carbinol.
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