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First- or second-line immunotherapy administered to 
patients with advanced stage or metastatic (stage IIIB/IV)  
lung cancer give spectacular results in terms of overall 
survival but only for a limited number of patients. The 
objective now is to increase the percentage of patients who 
benefit from effective treatment but also to better select 
the patients receiving therapy and to propose, if required 
and without delay, an alternative therapy. It is within this 
context that biomarkers predictive of the response to 
immune-checkpoint inhibitors have been developed and 
then validated during clinical trials.

Among the biomarkers of response to immunotherapy, 
PD-L1 expression evaluated by immunohistochemistry 
(IHC), is the only test so far validated in association with 
first-line immunotherapy for stage IIIB/IV non-small cell 
lung cancer (NSCLC) (1). So patients with a tumor that 
expresses PD-L1 on more than 50% of tumor cells and 
that does not show genomic alterations in the EGFR, ALK, 
ROS1 and BRAF genes, can immediately receive treatment 
with pembrolizumab. However, the validated PD-L1 
biomarker is not perfect; patients without PD-L1 tumor 
expression may respond to immunotherapy while patients 
with over 50% PD-L1 expressing tumor cells may show no 
benefit from treatment. A second predictive biomarker, the 
tumor mutational burden (TMB), is being tested in clinical 
trials (2). It is noteworthy that this promising biomarker 
is independent of the predictive value of PD-L1 IHC. 

However, several issues still need to be validated before 
this biomarker is approved as a companion test of anti-
PD1/PD-L1 molecules. In addition, different harmonizing 
studies are ongoing for the validation of the TMB and its 
use in clinical routine practice (3). Clinical trials using the 
genetic signature of tissues associated to T lymphocytes 
(T-cell—inflamed gene-expression profile or GEP) as 
a biomarker are also on going (4). In addition to these 
three biomarkers other potential factors predictive of the 
response to immunotherapy have been identified and may 
be tested in clinical trials (5). Among these biomarkers, the 
quantification of tumor infiltration by CD8 lymphocytes is 
envisaged in association with PD-L1 IHC to optimize the 
predictive value of PD-L1 IHC (6).

The study performed by Sun et al. used radiomic 
approaches to evaluate tumor infiltration by CD8 
lymphocytes as well as the predictive value of the response 
to anti-PD1/anti-PD-L1 by patients with solid cancers of 
different organs and of different histological types (7). This 
work started with 135 patients included in the MOSCATO 
study and correlated the radiological images and results 
of RNA-seq analyses (7,8). The radiological images were 
studied according to a radiological approach following 
segmentation of the images (7). The segmented radiological 
images corresponding to the area of the biopsy was used to 
estimate the number of CD8 lymphocytes by RNA-seq. In 
particular, the transcriptomic signature of the CD8B gene 
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was used to estimate the abundance of CD8 lymphocytes 
infiltrating the tumor tissue. Three cohorts were then used 
to validate this signature (7). The first cohort of 119 patients 
comes from the cancer project gene atlas or TCGA (7). The 
number of CD8 lymphocytes in the tumor was estimated 
by radiomics developed from the available CT scan images 
in association with the RNA-seq and the histological 
data. The second cohort entitled the “immune-phenotype 
cohorte” was composed of 100 patients treated at the 
Institut Gustave Roussy (Villejuif, France). In this cohort 
the scan-nographic images were evaluated in comparison 
with the inflammatory or non-inflammatory character of 
the tumors observed by histology. Thus, the concordance 
between the radiomic signature and the immune-phenotype 
of the tumor could be studied. Finally, the third cohort of 
137 patients of the Institut Gustave Roussy provided CT 
scan data and information concerning the treatment and 
response to the immunotherapy. This latter cohort analyzed 
the correlation between the radiomic data and prediction to 
response to immunotherapy (7). The data of the different 
cohorts (CT scan images, RNA-seq, histology, immune 
phenotype, treatment information and outcome of the 
patients) were studied using machine-learning integrating 
84 variables including 78 radiomic parameters (7). Thus, 
for the first time this study demonstrated that radiomic 
predicted the degree of tissue infiltration by CD8 positive 
lymphocytes and correlated the response to immunotherapy 
by integrating CT scan images (7).

This study holds a number of pitfalls, some of which 
were mentioned by the authors (7). First of all the cohorts 
of patients were composed of tumors of miscellaneous 
origin with at least 15 tumor sites and 15 different solid 
tumors, for example for the initial training cohort. This 
was the same for the three validation cohorts. This can 
have an impact on the statistic results knowing that a high 
number of variables were used by approaches of machine-
learning. Another point of discussion concerns the  
RNA-seq approach that  used the transcr iptomic 
signature of the CD8B gene to quantify the CD8 positive 
lymphocytes in the tissue. In fact it is impossible with this 
analysis, in the absence of associated histological images, 
to identify the spatial organization of the cells of interest 
(intra-tumoral infiltration, exclusion of immune cells at the 
periphery of the tumor mass, mixed feature associating the 
two topographies). In fact, one of the predictive factors of 
response to immunotherapy is certainly the intra-tumoral 
infiltration by CD8 lymphocytes and this would be assess 
in this study. The evaluation of CD8 antigen expression by 

lymphocytes without the analysis of certain co-expressing 
antigens is certainly a simplified approach to the biology 
of cells and the analysis by RNA-seq should be able to 
quantify other associated biomarkers which should be taken 
into consideration too (9,10). The tumor heterogeneity is 
a point for discussion when considering the study of Sun 
et al. (7). In fact, it is not certain that the RNA-seq analysis 
was totally representative of the inflammatory status of the 
studied tumor. A large degree of variation can exist from 
one site to another of a tumor and between the different 
sites of the tumor of the same patient. So it would have been 
of strong interest to analyze by RNA-seq several biopsies 
from different locations of the tumor and compared it to 
the radiological analyzes. Finally, this study was performed 
on four different cohorts of patients and was retrospective. 
This raises a number of issues: (I) discordance regarding 
the quality of the approaches can exist, the information 
obtained and the techniques used according to the series, 
which can lead to difficulties concerning the homogeneity 
of the data, and, (II) it would be interesting to confirm the 
results of this first study by validation with a prospective 
cohort of patients including a large number of patients and 
by targeting only one or two pathologies.

The radiomic is a novel and extremely promising method 
that probably will soon be used in oncology to validate the 
efficacy of the radiological approach as a new diagnostic, 
prognostic or predictive marker of lung cancers (11-13). 
One of the present challenges is to be able to predict the 
hyperprogression behavior of some tumors treated by 
immunotherapy (14-16). Likewise, it seems important to be 
able to predict the response to immunotherapies of elderly 
patients knowing the high number of this population of 
patients in thoracic oncology (17).

It is necessary to compare the different biological and 
clinical parameters of the radiological images obtained from 
the same patients and to ensure the high quality of the data. 
Without this robustness in the data assessment there is a 
risk of transforming this incomplete or erroneous data into 
new uncontrolled data of poor quality. Several radiomic 
applications can already be envisaged in thoracic oncology, 
including prediction of adverse events on the lungs due to 
the immunotherapy, the development of radiogenomics to 
detect the presence of different genomic alterations based 
on imagery and, the possibility of distinguishing the benign or 
malignant character of lung nodules (18,19). We need now to 
know when and how the transfer of radiomic methods will be 
realize in routine practice, in particular within the context of 
thoracic oncology and immunotherapy (20). 
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The implementation of radiomics in the clinic must 
involve independent validation steps and studies with large 
cohorts of patients while ensuring that no inter observer 
variation occurs (21). The biological and clinical data 
(histology, IHC, genetics, transcriptomics, etc.) that can be 
associated to radiomic methods are presently inexhaustible, 
including the data obtained from liquid biopsies (22). In 
this context, the development of new tools using artificial 
intelligence should allow integration and exploitation 
of all the complex data (23). These approaches will not 
replace radiologists and pathologists but will provided rapid 
diagnostic aid and medical decisions for optimal care of 
patients with lung cancer.
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