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ALK+ disease: status quo and current challenges

ALK+ tumors are unique among metastatic non-small cell 
lung cancers (NSCLC) in many aspects: they have the 
lowest genetic complexity, with a mean tumor mutational 
burden (TMB) below 3 mutations/Mbp (1,2), require the 
most complex management at present, i.e., high-level 
expertise and close cooperation between medical oncology, 
interventional pneumology and radiology, thoracic surgery, 
radiation oncology as well as, molecular pathology over 
several years, and enjoy the best outcome. Even ALK+ 

NSCLC patients that received just one tyrosine-kinase 
inhibitor (TKI) have a better prognosis than their TKI-
treated EGFR+ counterparts, while sequential ALK TKI 
administration meanwhile confers a median overall survival 
(OS) over 5 years, which is certainly one of the greatest 
successes in modern thoracic oncology (1,3). Instrumental 
for this remarkable achievement has been exquisitely rapid 
drug development, with already 5 routinely available ALK 
inhibitors spanning over 3 generations: crizotinib, ceritinib, 
alectinib, brigatinib, and lorlatinib (4). Outside the setting 
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of clinical trials, these are used in variable sequences 
within the rapidly evolving frame of regulatory approval, 
and complemented with local-ablative treatments in case 
of oligoprogression (5). In this highly dynamic field, two 
major issues emerge currently as having key importance 
for further advances: the optimal use of already available 
treatment options, especially TKI, and the molecular 
characterization of early treatment failure in order to guide 
novel therapeutic approaches.

Best first or later?

A “good” drug generally combines efficacy with tolerability 
and safety (Figure 1A). Efficacy, in turn, is best assessed 
based on the progression-free survival (PFS) of first-line 
treatment, which is a composite measure of response rate 
and response duration in the clear setting of treatment-
naivety. Thus, among several different compounds, 
“best” would be the drug with the longest first-line PFS 
(Figure 1A). Should this “best drug” lose efficacy when 

Figure 1 “Best drug” and its optimal placement in the treatment sequence. (A) The “best drug” generally combines superior efficacy with 
good tolerability and safety. Efficacy, in turn, is best assessed based on the progression-free survival (PFS) of first-line treatment, which is a 
composite measure of response rate and response duration in the clear setting of treatment-naivety. Thus, among three well-tolerated drugs 
A, B and C with a first-line PFS of 11, 17 and 26 months respectively, the “best drug” would be drug C. (B) Decisions about the optimal 
placement of the “best drug” in the treatment sequence need to additionally consider the subsequent course. Should the “best drug” lose 
efficacy when administered in the second line, it would be better to use it first (“best first” strategy), but if it would retain efficacy, it might 
be preferable to keep it for later (“best later”). In the special scenario of our “best drug” causing non-druggable resistance, we might even 
choose to offer it as the last TKI, after all other targeted therapy options have been exhausted.
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administered in the second line, it would be better to use it 
first (“best first”, Figure 1B), but if it would retain efficacy, 
it might be preferable to keep it for later (“best later”,  
Figure 1B). In the special scenario of our “best drug” 
causing non-druggable resistance, we might even choose to 
offer it as the last TKI line, after all other targeted therapy 
options have been exhausted (Figure 1B).

So, what is “best” for ALK+ disease today? Clearly, 
the two second-generation ALK inhibitors alectinib 
and brigatinib, which in randomized head-to-head 
comparisons vs. the first-generation compound crizotinib 
have demonstrated impressive superiority in first-line 
systemic efficacy, with similar objective response rates 
(ORR) about 80% and similar PFS hazard ratios (HR) of 
0.5, suggesting similar median PFS intervals over 2 years  
(Table 1) (8,9,11,21). Of note, the ALEX trial, which has 
a longer follow-up, shows that the alectinib PFS curve 
flattens at about 50%, which makes the median first-

line PFS relatively “unstable” (9,10) and highlights the 
superiority of PFS HR as efficacy measure in this context. 
It should also be noted here, that despite the overall 
superiority of alectinib, during the first 6 months the PFS 
curves of both arms in the ALEX trial run similarly (9). 
In contrast, other next-generation ALK TKI have either 
shown a shorter first-line PFS, like 17 months for ceritinib 
in the ASCEND-4 trial (7), or have single-arm, phase 2 
data only, like ensartinib with 26 months (12), and lorlatinib 
with a promising first-line ORR of 90%, but still immature 
PFS data (Table 1) (13). The first-line brain efficacy of 
alectinib and brigatinib relative to crizotinib is even better, 
with PFS HRs of 0.4 and 0.27, respectively, and intracranial 
progression rates below 10% per year (Table 2) (9,11). Due 
to good central nervous system (CNS) penetration, brain 
ORR for all next-generation ALK TKI is actually very 
high, around 80%, similar to their systemic ORR (Table 1) 
and to brain ORR under radiotherapy, and much higher 

Table 1 Systemic efficacy of ALK inhibitors upfront and post-crizotinib

ALK TKI Crizotinib Ceritinib Alectinib Brigatinib Ensartinib Lorlatinib

First line

Study PROFILE 
1014 (6)

ASCEND-4 (7) J-ALEX (8) ALEX (9,10) ALTA-1L (11) FIH phase 
I/II (12)

Global phase  
II (13) (EXP-1)

Comparator Chemo Chemo Crizotinib Crizotinib Crizotinib Single arm Single arm

Patients (N) 172 189 103 152 137 15 30

ORR (%) 74 73 76 83 76 80 90

Median PFS 
(months)

10.9 16.6 NR 25.7* (34.8**) NR 26.2 NR

Hazard ratio 0.45 0.50 0.34 0.50 0.49 N/A N/A

Post-crizotinib

Study ASCEND-1 (14) ASCEND-2 (15) Global  
phase II (16)

Phase  
II (17)

Phase  
I/II (18)

ALTA 90/180  
(19,20)

FIH phase  
I/II (12)

Global phase II 
(13) (EXP-2/3A)

Patients (N) 163 140 138 87 70 110 29 59

ORR (%) 56 38 50 48 71 55 69 70

Median PFS 
(months)

6.9 5.7 8.9 8.1 13.4 12.9/16.7 9 NR

First-line PFS 
(months)

26 NR (probably ≥26)*** 26 NR

ΔPFS (2L-1L) 
(% of 1L)

−10 (60%) −17 (65%) At least −13  
(at least 50%)***

−17 (65%) NA

*, IRC-assessed 2017; **, INV-assessed 2018; ***, based on the similar PFS HR of alectinib and brigatinib in the ALEX and ALTA-1L trials 
against crizotinib. HR, hazard ratio; PFS, progression-free survival; 1L, first line; 2L, second line; FIH, first-in-human; NR, not reached; N/A, 
not applicable.
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than the brain ORR of crizotinib or chemotherapy (Table 2)  
(6,22-26,29). This high brain efficacy of novel ALK 
inhibitors is especially important, because brain metastases 
affect a considerable fraction of ALK+ NSCLC patients, 
about 25% at initial diagnosis and 60% at 3 years if initially 
treated with crizotinib (30,31), and because these patients 
are younger, have a longer life expectancy and would suffer 
more from impairment of cognition, driving restrictions 
and reduced quality-of-life due to progressive CNS 
involvement.

On the other hand, if next-generation ALK inhibitors 
are given after crizotinib, they lose >50% of their systemic 
efficacy, with a PFS drop of 17 months for alectinib 
(16,17,32) and (estimated) at least 13 months of brigatinib 
(18-20,33), which is longer than the entire first-line PFS 
with crizotinib (Table 1). Second-line brain efficacy is also 
reduced, with a brain ORR for alectinib and brigatinib 
about 65% (Table 2) (15,27,28,34), considerably lower than 
the 80% noted in the first line (Table 1). More important, 
an additional about 20% of patients will experience brain 
progression under treatment with first-line crizotinib before 
they even get the opportunity to receive second-generation 
compounds, based of a brain progression rate of >20% per 
year with crizotinib and <10% per year with alectinib and 
brigatinib (Table 2). Thus, two main compelling arguments for 
a “best-first” approach with alectinib or brigatinib in ALK+ 
disease today are: (I) the longer median PFS with first-

line alectinib or brigatinib compared to the composite 
PFS under first-line crizotinib followed by second-line 
alectinib or brigatinib (Table 1 and Figure 2); and (II) the 
greater delay of brain progression with upfront alectinib 
or brigatinib, with a PFS HR <0.5 compared to crizotinib, 
or <10% vs. >20% per year in absolute terms, respectively  
(Table 2). Consequently, and pending regulatory approval for 
upfront brigatinib, both the NCCN and ESMO guidelines 
currently recognize alectinib as a better first-line treatment 
option than crizotinib (35,36).

Besides, there are some additional, less straightforward, 
but also important arguments in favour of the “best-
first” approach. First, a comparison among trials of next-
generation ALK inhibitors shows that “best first” might 
increase the rate of long-term responses. For example, in the 
ALEX trial, the PFS curves for alectinib and crizotinib 
run similar for the first 6 months, but show an increasing 
deviation afterwards (9,10). Moreover, in the 2014 analysis 
of the ASCEND-1 trial, the PFS curve of treatment-naive 
patients receiving ceritinib flattened at about 50%, 
while the PFS curve of the crizotinib-pretreated patients 
decreased continuously, even though the difference in 
the median PFS of the two curves was negligible (37). A 
similar difference could be seen in the 2016 update of the 
same trial (14), and is also evident upon comparison of the 
PFS curves between the first- and the second-line alectinib 
(9,17), as well as between the first- and the second-line 

Figure 2 Median PFS with various ALK TKI treatment strategies. Median PFS with upfront alectinib and brigatinib is longer than the 
composite PFS of first-line crizotinib followed by second-line alectinib or brigatinib. This is a graphical summary of data presented in Table 1. 
NR, not-reached.
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brigatinib trials (11,19). In all cases, upfront administration 
of the second-generation ALK inhibitor results in the 
tail of the PFS curve flattening at a higher level than if 
the same substance is administered after crizotinib, and 
this difference is more pronounced than the difference of 
the median PFS among the curves. Interestingly, upfront 
administration of second-generation TKI in case of chronic 
myeloid leukemia, the model disease of precision medicine, 
facilitates achievement of deep molecular remissions and 
successful drug discontinuation in a higher percentage 
of cases than imatinib (38). Admittedly, it will definitely 
take much more than a TKI to cure NSCLC, even in case 
of the less malignant ALK+ disease (1), but, still, second-
generation ALK inhibitors are a more promising partner for 
definitive local treatments in oligometastatic cases, and for 
experimental approaches to eradicate widespread residual 
disease in other patients.

Along the  same l ines ,  some data  suggest  that 
chemotherapy could also impair benefit if administered 
upstream of “best-first” TKI. In the first report of the 
PROFILE-1014 trial in 2014 (6), there was a considerable 
difference of about 20% in the long-term PFS (i.e., in the 
tail of the PFS curve, beyond 2 years) between patients 
receiving crizotinib and chemotherapy as the first systemic 
treatment. In contrast, no such difference was evident when 
crizotinib and chemotherapy were both given after first-
line chemotherapy in another trial (39), despite very similar 
PFS HRs in the two studies (0.45 vs. 0.49). Importantly, the 
final results of PROFILE-1014 published in 2018 showed 
that the aforementioned difference of about 20% was 
also reflected in the 5-year OS of the two patient groups 
despite crossover, i.e., patients that began with crizotinib 
fared better in the long run than patients that began with 
chemotherapy and received crizotinib subsequently (40). 
Such an impairment of TKI benefit after exposure to 
chemotherapy is presumably due to the genotoxic effect 
of cytostatics (41), since the accumulation of genetic 
abnormalities is crucial for the development of TKI failure 
(42-44), and possibly even more deleterious in the case of 
ALK+ disease, which has a particularly low baseline TMB (1). 
Based on these considerations, previous chemotherapy is 
likely to also impair the benefit from other TKI, including 
the currently “best drugs” alectinib and brigatinib, for 
which no formal first-line testing against chemotherapy 
will ever be performed. Concrete implications for clinical 
practice are: (I) that the results of molecular testing, 
including ALK status, should generally be awaited instead of 
“blind” initiation of chemotherapy for metastatic NSCLC; 

(II) that available TKI treatment options should generally 
be exhausted before resort to cytostatics; and (III) that not-
yet-approved ALK inhibitors should ideally be accessible 
within compassionate use programs before administration 
of palliative chemotherapy.

What about radiotherapy and the “best-first” approach? 
A retrospective study of EGFR+ NSCLC patients with 
brain involvement published in 2017 by Magnuson et al. 
argued strongly for cerebral irradiation in addition to 
first-line TKI, but viewed from today, it actually provides 
good evidence for the opposite (45). In this study, the 
rate of brain progression was slightly higher for patients 
treated with TKI and stereotactic (SRT) or whole-brain 
radiotherapy (WBRT) compared to TKI alone, which also 
translated to a significant OS benefit. However, the rate of 
brain progression in all three patient groups (i.e., treated 
with first-/second-generation EGFR inhibitors with or 
without SRT or WBRT) was >20% per year, comparable 
to that observed in the similarly treated control arm of the 
FLAURA trial, and much higher than the <10% per year 
observed with osimertinib in the experimental arm of 
FLAURA (22). In other words, cross-trial comparison 
suggests a much stronger protective effect of osimertinib 
against brain progression compared to radiotherapy, which 
should therefore be probably reserved as salvage treatment 
at the time of osimertinib failure (Table 2). Upfront alectinib 
and brigatinib also confer a similar very low annual rate 
of brain progression below 10% (Table 1) (9,11), which 
suggests that ALK+ patients receiving “best-first” treatment 
can presumably also enjoy a “radiation-free” first line, even 
if asymptomatic and/or stable brain metastases are present 
(Table 2). Interestingly, recent data suggest that this probably 
holds true for large (>1 cm) or symptomatic brain lesions as 
well: even though such cases had been excluded from TKI 
trials, their treatment with alectinib in the routine setting 
showed an efficacy comparable to that observed in clinical 
studies (46). One exception, however, remains, and this 
concerns patients with oligometastatic disease to the brain, 
for which consolidative radiotherapy should still be offered, 
similar to the standard practice in case of extracranial 
oligometastases (47). In other patients, initial surveillance 
using magnetic resonance imaging appears to be preferable, 
with SRT to be offered as salvage treatment at the time of 
brain progression, since efficacy of next-generation ALK 
inhibitors in the second line is considerably lower and 
similar to first-line efficacy of erlotinib/gefitinib (Table 2), 
for which complementation with SRT improved survival in 
the study by Magnuson et al. (45). It should also be noted 
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here that the demonstrated feasibility of SRT for up to 10 
brain lesions (48), and the serious neurocognitive sequelae 
of WBRT (49) should obviate use of the latter for ALK+ 
NSCLC, as long as potentially effective targeted treatments 
are still available. In contrast, tolerability is no issue with 
alectinib and brigatinib, which show low, single-digit rates 
of grade 3 adverse events, and discontinuation rates of 
about 10% similar to crizotinib (9,11). Even the “early-
onset pulmonary events” under brigatinib appear to be less 
frequent in the first compared to the second line (about 3% 
vs. 6%) (11,19).

A first cautionary note about the “best-first” approach 
concerns the still immature OS data of the ALEX and 
ALTA-1L trials (10,11), which have not demonstrated 
an advantage over crizotinib yet. However, this is not 
an argument for waiting: given the very long survival 
of ALK+ NSCLC patients today, the OS advantage of 
the “best-first” approach would need several years to 
become apparent. Furthermore, the final analysis of the 
PROFILE-1014 study teaches that crossover can obscure 
the OS advantage even in case of an obviously superior 
treatment, such as crizotinib in the comparison against  
chemotherapy (40). Another cautionary note comes from 
the next-line treatment options following the “best-first” 
approach. Small series suggest limited efficacy of other 
second-generation ALK inhibitors, namely ceritinib (n=20) 
and brigatinib (n=18 cases evaluable for response), after 
alectinib (50,51). For brigatinib, however, in vitro and 
in vivo data show good activity against ALK resistance 
mutations, including G1202R (52), and a definite answer is 
eagerly awaited from an ongoing large international phase 
2 trial (NCT03535740, n=103). On the other hand, the 
third-generation compound lorlatinib has already shown 
considerable activity after failure of second-generation 
ALK inhibitors in a global phase 2 trial, with a response 
rate about 40–50% for unselected patients and over 60% 
for the approximately 50% with detectable ALK resistance 
mutations (13,53). The latter represent the most frequent 
mechanism of acquired resistance to ALK TKI and are 
frequently amenable to therapy with different, more potent 
ALK inhibitors, the choice of which can be informed by 
the specific mutation present (5,43). Therefore, methods 
for the detection of ALK resistance mutations are rapidly 
gaining importance as tools for therapy guidance in ALK+ 
NSCLC (54,55). Currently available platforms are generally 
based on next-generation sequencing (NGS) of exons in 
the ALK kinase domain utilizing DNA obtained through 
tissue or liquid rebiopsies (ctDNA) at the time of disease 

progression (56,57). Interestingly, clinico-pathologic 
correlations show that the specific profile of ALK resistance 
mutations is shaped not only by TKI sequencing (58), but 
also by the ALK variant status (59), which therefore acquires 
therapeutic relevance in advanced ALK+ disease. However, 
the clinical significance of ALK fusion variants is much 
broader and therefore warrants a thorough discussion in the 
next section.

And do we care about the variants?

Diagnosis of ALK+ NSCLC is usually based on detection 
of ALK overexpression by immunohistochemistry or ALK 
translocation by fluorescence in situ hybridisation, which 
are common to all cases and similarly predict benefit from 
ALK TKI (60-62). But the actual molecular alteration, 
the ALK fusion itself, varies among patients, and involves 
the echinoderm microtubule-associated protein-like-4 
(EML4) as the partner gene in about 90% of cases (63). 
Within EML4-ALK+ NSCLC variability also exists: 
approximately 30–40% of cases have the shorter EML4-
ALK variant 3 (V3, E6;A20), while V1 (E13;A20) and V2 
(E20;A20) are encountered about in 40% and 10% of cases,  
respectively (63). In routine clinical specimens, the ALK 
fusion variant could be typed by RT-PCR or NGS (64), 
but this is currently performed only in very few centers 
worldwide.

As a lready stated,  these  di f ferences  af fect  the 
development of ALK resistance mutations, which are 
encountered more frequently in V3- vs. V1-driven tumors 
(about 65% vs. 45%) (59). However, it is important 
to recognize that V3 has a relative resistance to ALK 
inhibitors in its native, “wild-type” state, as well. In vitro 
studies have demonstrated an increased IC50 of V3- vs. V1- 
and V2-transfected cells to first- and second-generation 
ALK inhibitors, which is presumably attributable to the 
higher stability of the V3 oncoprotein, resulting in greater 
accumulation and stronger ALK phosphorylation (65-67). 
In addition, V3 promotes microtubule stabilization through 
recruitment of NEK9 and NEK7 kinases, which increases 
cell migration and enhances metastatic potential (68). These 
characteristics are directly related with the special structure 
of V3, which is a shorter variant, devoid of the truncated 
EML4 β-propeller domains that reduce stability and limit 
interaction with the cytoskeleton in case of V1 and V2 (67).

Several clinical implications ensue from the biological 
differences of ALK variants. First, if the IC50 to ALK 
TKI varies by the ALK fusion variant per se, then the IC50 
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of ALK resistance mutations will not only depend on the 
mutation itself, but also on the ALK fusion variant that the 
mutation develops on. Most ALK mutation “resistograms” 
are generated on the V1 background (43) and do not 
accommodate the fact that ALK resistance mutations 
predominantly (in over two-thirds of cases) occur with 
V3 (59), which itself has a higher IC50 to ALK inhibitors 
than V1 (65). On the other hand, in case of a V3-based 
resistogram, it is important to address the shorter, V3a 
splice variant, which displays a higher oncogenic potential 
(65,66), and not V3b, which in vitro behaves similar to  
V1 (66,69).

Even more important is the impact of ALK fusion 
variants on patient outcome, which was the subject of 
several retrospective studies recently. PFS under ALK TKI 
was found longer with V1 vs. other variants (70), longer 
with V2 vs. other variants (71), shorter with V3 vs. V1 and 
V2 as analyzed by RECIST (64,65,68,72) or as time-to-
next-treatment (64), and OS was also found shorter with V3 
vs. V1 and V2 after a longer patient follow-up (64,68,72). At 
the same time, the V3-associated risk appears to be present 
already at diagnosis, that is before initiation of a specific 
treatment (73). Newly-diagnosed V3-driven tumors have 
a higher frequency of metastatic disease (74) and a higher 
number of metastatic sites when stage IV (64), consistent 
with the stronger ALK expression and the higher migratory 
capacity of V3-positive tumor cells (68,74). In line with 
these data, carefully controlled retrospective analyses show 
that V3 status is relevant for the outcome not only of double 
TKI-refractory patients in the third line (59), but also with 
first-line administration of TKI and other treatments, 
namely chemotherapy and cerebral radiotherapy (64). Of 
note, limited retrospective data suggest that other, “short” 
EML4-ALK variants, such as V5 (E2;A20) (65), and non-
EML4-ALK fusions (75) are also associated with worse 
outcome, while the longer EML4-ALK V2 (E20;A20) 
appears to be favourable (71).

Still, a major problem for the field currently is that 
prospective data are lacking, because typing of ALK fusion 
variants has not been part of any clinical trial so far. A 
recent effort to complement the ALEX trial with ALK 
fusion variant information a posteriori, demonstrates the 
difficulties and limitations of this approach: typing of tissue 
samples using the FoundationOne panel was successful in 
slightly over 1/3 of cases (76). Overall, the collected data 
suggested a superior outcome with alectinib compared to 
crizotinib across the three main EML4-ALK variants V1, 

V2, V3, but also a trend that the benefit from alectinib, i.e., 
the response rate (P=0.103) and the PFS (P=0.114), might 
be lower in non-V1 cases. These data are still immature 
(they are based on the data cut-off of December 2017), 
and have to be interpreted with some caution, because the 
compared patient groups are small (n=8–25, which is lower 
than in previous retrospective analyses) and possibly not 
well balanced for other clinical and molecular parameters. 
However, they raise the important possibility that the ALK 
variant status could influence choice of the “best drug” 
and implementation of the “best-first” approach. Updated 
results of this analysis as well as the results of a planned 
similar analysis in the ALTA-1L trial of upfront brigatinib 
are eagerly awaited.

Recently, TP53 mutations were also recognized as an 
additional, independent molecular risk factor for earlier 
TKI failure and shorter OS in ALK+ NSCLC (71,72,77,78). 
Furthermore, detection of TP53 mutations in tissue or liquid 
rebiopsies at the time of disease progression in previously 
TP53 negative patients identifies another approximately 
20% of cases with a poor outcome comparable to that with 
primarily TP53 mutated tumors (79). The independent 
and possibly synergistic effects of both the ALK fusion 
variant and TP53 mutations on the clinical course of ALK+ 
NSCLC patients (72) mean that considerable biological 
and clinical variability is to be expected in studies that take 
only one of these two factors into account. For guidance of 
patient management based on the molecular properties of 
the tumor, typing of both (likely in addition to assessment 
of further, still unidentified molecular features) will be 
required, which could for example be achieved by combined 
targeted RNA and DNA NGS (80).

Optimal management of higher-risk, i.e., V3+, TP53mut and 
particularly “double-positive” V3+TP53mut ALK+ NSCLC 
patients is unclear at present (1). When discussing prognosis, 
some reservation is warranted, especially for V3+TP53mut 
cases, most of which will probably not reach the 5-year 
landmark (72). Also, a more aggressive strategy regarding 
local ablative therapies should be considered at progression, 
otherwise some high-risk patients will fail each available 
ALK TKI within a few months and end up with palliative 
chemotherapy within a couple of years (72). More frequent 
radiologic surveillance, additional ctDNA monitoring (79), 
upfront administration of more potent ALK inhibitors and 
combination with experimental compounds, such as TP53-
directed drugs (81), will probably also be beneficial, but 
requires testing in prospective clinical trials.
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Conclusions

ALK+ NSCLC is currently the forerunner of “precision 
medicine” in thoracic oncology and a model disease for the 
development of novel approaches. “Best-first” treatment 
with upfront administration of second-generation ALK 
inhibitors, especially alectinib and brigatinib according 
to the current data, significantly delays systemic and 
brain progression, apparently obviates the need for early 
radiotherapy and is expected to increase the rate of long-
term responders. Besides, the identification of EML4-
ALK fusion variant 3 and TP53 mutations as independent 
and possibly synergistic molecular risk factor, assists 
selection of cases for more aggressive management and 
guides preclinical modeling in order to advance therapeutic 
options. Common denominator appears to be the lower 
genetic complexity of ALK+ disease, which not only 
facilitates the relatively favourable clinical course, but 
also makes study of the effects from individual molecular 
features easier. The growing understanding about critical 
molecular parameters in ALK+ disease and the increasing 
availability of more effective drugs continue to refine our 
concepts and expand the therapeutic armamentarium.
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