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Introduction

Lung cancer represents the most leading cause of mortality 
for cancer worldwide (1). To date, for non small cell lung 
cancer (NSCLC) patients there is a significant improvement 
in the target therapeutic strategies (2-8). For this reason, the 
College of American Pathologists (CAP), the International 
Association for the Study of Lung Cancer (IASLC), and 
the Association for Molecular Pathology (AMP), the 
National Comprehensive Cancer Network (NCCN) 
and the American Society of Clinical Oncology (ASCO) 
guidelines, defined a number of genes to necessarily test in 
advanced NSCLC patients, including epidermal growth 
factor receptor (EGRF), anaplastic lymphoma kinase (ALK), 
ROS proto-oncogene 1 receptor tyrosine kinase (ROS1) and 
V-Raf murine sarcoma viral oncogene homolog B (BRAF) 
for treatment with tyrosine kinase inhibitors (TKIs) (9-11). 
In this evolving scenario, molecular predictive pathology 
plays a key role in the management of NSCLC patients (12).  
An important limitation in advanced NSCLC patients is 

represented by the low quantity of tissue specimens available 
for both morphological and molecular purposes (13).  
In particular, in a high percentage of these patients, 
the only material available to fulfill morphological and 
molecular requests is represented by small tissue biopsy and 
cytological samples, and in 30% of cases no tissue specimens 
are available (14-17). To overcome this limitation, a valid 
approach is the possibility to adopt liquid sources to assess 
the molecular status of these patients, the so called “liquid 
biopsies” (18-20). Among the different analytes that can be 
obtained from blood samples and the possibility to assess 
the molecular status of the different relevant biomarkers on 
other liquid specimens, to date the only approved analyte 
for TKI administration in NSCLC patients is represented 
by circulating tumor DNA (ctDNA) extracted from 
plasma to assess EGFR status (13,18). In particular, the 
analysis of ctDNA extracted from plasma is recommended 
in patients without tissue availability (insufficient tumor 
tissue or impossibility to obtain a tissue specimen) and 
to overcome problems relative to discomfort and risks of 
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biopsies (13,18,21-26). An important limitation in this 
approach is represented by the low amount of ctDNA in the 
bloodstream (<0.5% of the total cell free DNA), that can 
be related to false negative results (13,14). Noteworthy, we 
demonstrated a high level of concordance between ctDNA 
and tissue results by using a next generation sequencing 
(NGS) approach with a small gene panel [SiRe®, Genedin 
(a spin-off of the Department of Public Health, University 
of Naples “Federico II”), Rome, Italy] that covers 568 
clinical relevant mutations in 6 genes (EGFR, KRAS, NRAS, 
BRAF, PDGFRα and c-kit) (27-29). However, blood samples 
feature a number of analytes (e.g. circulating tumor cells, 
exosomes, platelet RNA and circulating tumor RNA), that 
showed an important role in NSCLC treatment decision 
making (30-33). In addition to blood samples, other fluids, 
that can be considered “liquid biopsies”, have the potential 
to give to molecular pathologists and clinicians the relevant 
information on the genetic assessment in NSCLC patients 
in order to administrate TKIs.

In this review, we focalized the attention on the advanced 
in the liquid biopsies approach, in particular paid attention 
on these other liquid sources different from blood samples.

Urine

The glomerular filtration represents a natural “centrifugation 
process” of plasma and allows, due to the low size of DNA 
fragments, the presence of tumor DNA in urine (20,34,35). 
A major advantage of urine samples is represented by 
the non-invasiveness in the collection than in blood  
samples (20). A major disadvantage is represented by 
the higher activity of both DNA and RNA hydrolyzing 
enzymes that contributed to degrade both analytes (36,37). 
Reckamp et al. firstly adopted in the TIGER-X trial, a phase 
1/2 clinical study of a third generation TKI (rociletinib) 
in previously treated patients with a EGFR mutation in 
advanced NSCLC patients, urine sample to identify EGFR 
mutations (38). By using mutation enrichment PCR coupled 
with NGS detection, on n=60 urine samples with matched 
tissue specimens, the Authors showed a sensitivity of the 
EGFR exon 20 p.T790M, exon 21 p.L858R and exon 19 
deletions of 72%, 75% and 67% when considering all urine 
volumes, and of 93%, 80% and 83%, respectively when a 
recommended urine volume of 90–100 mL was collected; 
the specificity was of 96%, 100% and 94% respectively (38). 
Of interest, the Authors emphasized the complementary 
role of urine and plasma with tissue. In particular, the 
authors identified in n=12 cases the EGFR exon 20 p.T790M 

(n=10 in urine and plasma samples, n=1 only in plasma 
and n=1 only in urine) previously undetectable or with 
inadequate results in tissue samples. Among these, n=9 
showed a significant decrease of urine concentration of 
EGFR exon 20 p.T790M after 21 days from rociletinib 
administration (38). Li et al. analyzed n=160 urine, plasma 
and tissue samples from NSCLC patients, by digital droplet 
PCR (ddPCR), at various stages (39). On the overall, the 
Authors reported a high overall agreement between urine 
and tissue in particular in advanced stages (42% stages I/II 
vs. 93% stages III/IV) and between urine and plasma (75% 
stages I/II vs. 100% stages III/IV) (39). Hu et al. compared, 
by using ddPCR, urine samples with tissue specimens from 
n=213 NSCLC patients who underwent surgery (stages I–
III) and with a known mutation for EGFR (n=111 EGFR 
exon 21 p.L858R and n=102 EGFR exon 19 deletions) (40).  
On the overall, only n=130 showed an EGFR positive 
result in urine samples (61%; 65.8% for EGFR exon 21 
p.L858R and 55.9% for EGFR exon 19 deletions) (40).
Interestingly, Authors demonstrated a reduction in urine of 
EGFR mutations in concordant cases after treatment (40). 
Zhang et al. performed ddPCR on n=160 urine samples, 
with matched tissue specimens, in advanced NSCLC 
patients (41). The authors showed an agreement on EGFR 
exon 21 p.L858R, EGFR exon 19 deletions and EGFR exon 
20 p.T790M of 79%, 81% and 100% respectively (41).  
Considering all the EGFR mutations the positive predictive 
value (PPV) and negative predictive value (NPV) were 
100% and 53.6% respectively (41). Wu et al. analyzed n=50 
urine samples, in advanced (IIIB/IV) stage of disease with 
a NGS approach (42). The authors showed a concordance 
rate between tissue and urine of 70% (42). Wang et al. 
tested by a ddPRC approach n=200 urine and tissue samples 
from advanced stages NSCLC patients (43). The authors 
focused their attention on KRAS mutations, for prognostic 
purpose (43). On the overall, 78% (109/140) of cases 
showed KRAS mutation on both samples; no false positive 
results emerged in urine samples (n=60 negative cases for 
both samples) (43). The authors, also, emphasized that the 
identification and concentration of KRAS mutant DNA in 
urine is predictor of worse outcome (43). Similarly, Xie et al.  
analyzed n=150 (n=100 KRAS mutated cases and n=50 
KRAS wild type cases) cases to investigate the potential role 
of urine analysis for prognostic purposes (44). Taking tissue 
results as gold standard, the overall agreement for the KRAS 
positive group was 77%; instead in the wild type group the 
concordance rate was 92% (44). The authors addressed an 
increasing number of KRAS positive cases in urine (before 
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tissue positive and urine negative) when serial urine analysis 
was performed (93%) (44). In Table 1 are summarized 
results on urine samples.

Saliva

Saliva contains a wide range of different proteins, nucleic 
acids, electrolytes, and hormones that derived from different 
organs (45). For this reason, saliva can represent a source 
for biomarkers assessment as shown by Streckfus et al.,  
who detected in this specimen c-erbB-2 in breast cancer 
patients (46). In the experience by Wu et al., in addition to 
urine samples the Authors analyzed n=50 saliva samples (42).  
Interestingly, the authors showed a concordance rate 
between tissue and saliva of 74% (42). Pu et al. analyzed 
n=17 saliva samples, collected from NSCLC patients 
before and after surgery, by using an electric field–induced 
release and measurement (EFIRM) technology (47). As 
gold standard, the Authors adopted the Food and Drug 
Administration (FDA) approved Cobas assay on matched 
tissue samples (47). Of interest, all cases harbored an EGFR 
exon 19 deletion or EGFR exon 21 p.L858R and all wild-
type cases were confirmed in saliva samples (47). Only n=1 
EGFR exon 18 p.G719X was not found in saliva by the 
EFIRM assay, due to the absence of the specific probes (47).  
The Authors evidenced only n=1 false positive result (EGFR 
exon 21 p.L858R) on plasma sample (47). Hubers et al. 

performed on n=10 EGFR tissue mutated cases and n=20 
without EGFR mutation (n=10 lung cancer patients EGFR 
wild-type cases and n=10 chronic obstructive pulmonary 
disease (COPD) patients), at least four different tests 
[Cycleave PCR, co-amplification at lower denaturation 
temperature-PCR (COLD-PCR), Pangaea Biotech 
SL Technology (PST), and high resolution melting  
(HRM)] (48). No false positive results were evaluated in 
saliva samples; moreover a sensitivity of 50% was the higher 
evidenced (48). In Table 2 are summarized results on saliva 
samples.

Cerebrospinal fluid (CSF)

The incidence of leptomeningeal metastases (LMs) in 
NSCLC patients is about 3% to 5% with an increasing in 
EGFR-mutated patients (49,50). Although lumbar puncture 
is an invasive procedure, CSF is a useful tool to obtain cell 
free DNA (cfDNA) in NSCLC patients with brain metastasis 
(20,51). Li et al. performed a NGS approach on n=26 CSF 
samples in EGFR mutated NSCLC patients with LM (52). 
In all cases the mutation was correctly evidenced in cfDNA 
extracted from CSF specimens (52). Additionally, mutations 
were found in matched precipitate of CFS and plasma 
samples (52). Interestingly, the detection rate of EGFR exon 
20 p.T790M in CSF cfDNA was higher (7/23, 30.4%) than 
in plasma (5/23, 21.7%) (52). In another experience by the 

Table 1 Studies focusing on the adoption of urine samples

First author
N of urine samples (type 

of matched samples)
Technology Concordance rate Sensitivity Specificity

Reckamp et al. 
(38)

60 (tissue) NGS – p.T790M (93.0%), p.L858R 
(80.0%), del 19 (83.0%)

p.T790M (96.0%), p.L858R 
(100.0%), del 19 (94.0%)

Li et al. (39) 160 (tissue) ddPCR p.L858R (97.0%)*, del 19 
(89.0%)*, overall (93.0%)*

– –

160 (plasma) p.L858R (100.0%)*, del 19 
(100.0%)*, overall (100.0%)*

– –

Hu et al. (40) 213 (tissue) ddPCR p.L858R (65.8%), del 19 
(55.9%), overall (61.0%)

– –

Zhang et al. (41) 160 (tissue) ddPCR p.L858R (79.0%), del 19 
(81.0%), p.T790M (100.0%)

80.0% 100.0%

Wu et al. (42) 50 (tissue) NGS 70.0% – –

Wang et al. (43) 200 (tissue) ddPCR – 70.0% 100.0%

Xie et al. (44) 150 (tissue) ddPCR – 77.0%, 93.0%** 92.0%

*, advanced stages (III/IV); **, evaluation after serial urine analysis. ddPCR, digital droplet PCR; del, deletions; N, number; NGS, next 
generation sequencing.
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Table 2 Studies focusing on the adoption of saliva samples

First author N of saliva samples (type of matched samples) Technology Concordance rate Sensitivity Specificity

Wu et al. (42) 50 (tissue) NGS 74.0% – –

Pu et al. (46) 17 (tissue) EFIRM 100.0%* 100.0%* 100.0%*

Hubers et al. 
(47)

10 (tissue) Cycleave PCR – 30.0% 100.0%

COLD-PCR – 40.0% 100.0%

PST – 50.0% 100.0%

HRM – 30.0% 100.0%

*, considering only EGFR exon 19 deletion and EGFR exon 21 p.L858R. COLD-PCR, co-amplification at lower denaturation temperature-
PCR; del, deletion; EFIRM, electric field-induced release and measurement; EGFR, epidermal growth factor receptor; HRM, high resolution 
melting; N, number; PST, PangaeaBiotech SL Technology.

Table 3 Studies focusing on the adoption of CSF samples

First author N of CSF samples (type of matched samples) Technology Concordance rate Sensitivity Specificity

Li et al. (52) 26 (tissue) NGS 100.0% – –

Zheng et al. (53) 11 (tissue) NGS 81.8% – –

Ying et al. (54) 72 (plasma) NGS 47.7%*, 32.7%** – –

Kawahara et al. (56) 12 (tissue) RT-PCR – 87.5% 100%

Yang et al. (57) 30 (tissue) ARMS-PCR 75.0% 67.0% 82.0%

Rong et al. (58) 5 (tissue) ARMS-PCR 60.0% – –

*, considering EGFR activating mutations; **, considering all mutations. ARMS-PCR, amplification refractory mutation system-PCR; CSF, 
cerebrospinal fluid; N, number; NGS, next generation sequencing; RT-PCR, real time PCR.

same group, Zheng et al. analyzed n=11 CSF and plasma 
samples in ALK rearrangement positive patients (53). On the 
overall, the concordance rate was higher (9/11, 81.8%) in 
CSF samples than in plasma (5/11, 45.5%) (53). Ying et al.  
performed a capture-based targeted sequencing on n=72 
matched CSF and plasma samples (54). The authors showed 
a higher mutation detection rate in CSF than plasma when 
considering either any mutations (81.5% vs. 62.5%) or EGFR 
mutations (58.3% vs. 44.4%) (54). In a detailed analysis on 
EGFR mutated cases, the Authors evidenced that EGFR 
activating mutations were identified in 51.4% of CSF samples 
and in 38.9% of plasma samples (54). Zhao et al. focused 
the attention on n=7 NSCLC patients who failed EGFR 
TKI treatment (gefitinib) (55). In particular, different from 
matched plasma samples, the authors showed the persistence 
of EGFR mutated clones in all CSF samples respect to plasma 
(2/7, 28.6%) due to the low penetration of gefitinib of blood–
brain barrier (55). Kawahara et al. evidenced a high sensitivity, 
specificity and accuracy (87.5%, 100%, 91.7% respectively) 
for the detection of EGFR mutations, including EGFR exon 

20 p.T790M, by using cobas® EGFR Mutation Test v2 (56). 
Yang et al. performed amplification refractory mutation 
system (ARMS)-PCR assay on n=30 lung adenocarcinomas 
with brain metastasis (57). The authors showed a PPV, NPV, 
sensitivity and specificity between tissue and CSF samples of 
75%, 75%, 67% and 82% respectively; the concordance rate 
in EGFR mutated cases was 75% (57). Similarly, Rong et al. 
adopted ARMS-PCR on n=5 CSF of NSCLC patients with 
EGFR sensitizing mutations (58). In only n=3 (60%) cases 
the mutation was confirmed (58). In Table 3 are summarized 
results on CSF samples.

Pleural effusion (PE)

Malignant pleural effusions (MPEs) are often observed in 
advanced NSCLC patients (59). Although thoracentesis 
is an invasive procedure, it is necessary for diagnostic, 
therapeutic and molecular purposes (60-62). Kimura et al. 
firstly reported the possibility to detect EGFR sensitizing 
mutation by analyzing DNA extracted from PE, and the 
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correlation with response (partial response in this paper) 
with TKI treatment (63). Liu et al. performed the EGFR 
analysis on n=41 matching metastatic pleural tumor tissues 
(MPTTs), MPE supernatant and MPE cell blocks (CBs) 
by using ARMS-PCR (64). On the overall, confronting 
the MPTT and MPE supernatant results, the EGFR 
mutation detection sensitivity and specificity in MPE 
supernatants was 84.2% and 90.9%, respectively (64).  
A higher sensitivity (94.7%) but lower specificity (81.8%) 
was observed when considering both MPE samples (64). 
Lin et al. analyzed n=22 matched MPE supernatant, MPE 
cell pellet and tissue biopsy samples by using HRM (65). 
Considering tissue biopsy results as gold standard, no false 
positive results were evaluated among MPE supernatant 
samples (specificity 100%), whereas only n=1 false 
negative results was evidenced (sensitivity 92.3%) (65).  
A higher number of false negative results (4/22, 18.2%) 
was evidenced in MPE cell pellet samples (65). Similarly, 
Kawahara et al. analyzed n=74 (n=29 EGFR wild type and 
n=45 EGFR mutated cases) matched MPE supernatant, 
MPE cell pellet and tissue biopsy samples by using TaqMan 
Mutation Detection assay or fluorescence resonance 
energy transfer-based preferential homoduplex formation 
assay (F-PHFA) (66). The Authors showed a sensitivity 
and specificity on MPE supernatant of 44.4% and 100%, 
respectively (66). Lee et al. performed the EGFR analysis by 
using a peptide nucleic acid (PNA) mediated PCR clamping 
on two groups of lung adenocarcinoma (ADC) patients (67).  
In particular, the Authors analyzed cfDNA extracted from 
PE in previously genotyped TKI-naïve patients (n=32; 
n=19 EGFR mutated patients and n=13 wild type cases) 
and TKI-acquired resistance patients (n=18) (67). In the 
first group a concordance between the two samples of 88% 
was obtained; in particular in cfDNA extracted from PE 
n=2 out of 19 EGFR mutations were missed and in the wild 
type group n=2 additional mutations were found (67). In 

the second group only n=1 EGFR mutation was missed 
in cfDNA extracted from PE. Of interest, in n=11 (61%) 
cases in addition to the initial EGFR sensitizing mutation, 
an additional EGFR exon 20 p.T790M was found (67). On 
the overall, considering the EGFR sensitizing mutations the 
concordance rate in this second group was of 94% (67). In 
Table 4 are summarized results on PE samples.

Future perspectives and conclusions

In addition to “body liquid biopsies”, another source 
of cfDNA for molecular purposes is represented by the 
supernatant after cytological preparations. This neglected 
material is normally discarded in cytological laboratories. 
However, several studies demonstrated the suitability 
of cfDNA extracted from supernatant obtained from 
cytological preparations for NGS analysis (68-74).

In conclusion, the so called “liquid biopsies” represent a 
valid material, not only in alternative to tissue based testing, to 
better define the molecular status of biomarkers in NSCLC 
patients, in order to define the best treatment choice (75,76).
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