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The concept of precision medicine can be arguably dated 
back into the 1960s when such medicines were introduced 
for the first time through the concept encompassing the 
terms pharmacogenetics/pharmacogenomics by Evans 
and Clark (1). With the advent of high-throughput data 
generated through next generation sequencing (NGS) 
technologies, the term started metamorphosing from 
‘Systems medicine’ or ‘Systems biomedicine’ to ‘Precision 
medicine’ and ‘Personalized medicine’ (1-5). Later, with 
more genome level data analysis and systems biological 
data pouring in, terms like ‘Genomic-era medicine’ (6), 
‘Predictive, preventative, personalized and participatory (P4) 
medicine’ (7), ‘Me medicine’ (8), ‘P4 systems medicine’ (9)  
and ‘Computational systems biomedicine’ (10) were 
referred to the same concept. Essentially, this involves 
intervention therapies encompassing the impact of any 
genes of individuals and their exposures to lifestyle and 
environment (11). Despite almost similar in thoughts, 
‘Personalized medicine’ and ‘Precision medicine’ differ 
vividly (12). In the words of Ginsburg and Phillips, the 
former refers to an approach to patients that considers their 

genetic make-up but with attention to their preferences, 
beliefs, attitudes, knowledge and social context. In contrast, 
the latter ‘describes a model for health care delivery that 
relies heavily on data, analytics, and information’ (12). The 
main concept of precision medicine, however, revolves 
around the rapid identification of new drug targets and an 
interpretation of the patient-specific mechanisms causing 
or contributing to the genetic variation of the diseases (13). 
This concept has revolutionized the medical treatment 
of many complex diseases. Mentionable among them 
is cancer, which had been proliferating at the mercy of 
unimpressive efficacy of earlier developed drugs, mainly due 
to its heterogeneous causes (13). To this end, side-effects, 
arising from the pleiotropic nature of genes, has also been 
taken into account while addressing the pressing need of 
identifying new cancer drug targets (14).

While research continues to identify novel cancer 
protein targets, there is a necessity for further therapeutic 
exploration. Moreover, advances in high-throughput 
genomics and proteomics have vastly increased the scope 
to better understand such cancer pathogenesis cropping 
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up from the complex interactions between the genes and 
the environment. Such complex interactions between the 
genes can give rise to pleiotropism wherein a single gene 
affects a number of phenotypic traits in the same organism. 
Thus, the protein products of these genes, if targeted 
indiscriminately through different drugs, could then be 
affected. In this context, a detailed holistic approach has 
been attempted for identifying novel cancer genes and 
proteins which upon drug targeting, would give rise to 
side effects (14). However, to cure/treat complex diseases 
like cancer, it is essential that we identify and target their 
root causes. This, in turn, requires a detailed exploration 
at genomic level to identify and validate mutations and/
or other genomic/transcriptomic changes specific to a 
cancer in general or a subgroup of patients within a cancer. 
Essentially, high frequency of chromosomal aberrations 
has been observed in different cancer types. These include 
translocations of chromosomes, amplification and deletion 
events, mutations as well as elongation of telomeres (15). 
The large-scale genomic changes, at both the DNA 
sequence and chromosome level, are not only seen in 
cancer patients at diagnosis, but continue to evolve with 
time. This indicates a genomic instability, a fundamental 
feature of most human cancers, and contributes to the 
development and progression of malignant phenotypes (15).  
A pertinent role of elevated levels of recombinase 
(RAD51) and homologous recombination activity, in such 
aforementioned aberrations in cancer, has been explored 
in detail (15-17). Other instances of genomic instability, 
arising from impaired DNA double strand break (DSB) 
repair, has been shown to be caused by SPOP (Speckle-
type POZ protein) mutation in prostate cancer (18).  
Further insights on clonal mutations of proteins like L1 cell 
adhesion molecule (L1CAM) and APOBEC are obtained 
for urothelial carcinoma (19). Increased mutations and/or 
changes in the expression of these type of genes may also 
contribute to cancer multidrug resistance, thereby posing 
plausible hindrances towards the development of precision 
cancer medicines.

Due to a new open data initiative over the last few 
decades, a wide range of clinical and basic biological 
research data have become available. These range from 
genomic, transcriptomic and proteomic to metabolomic and 
interactomic data. Thus, with an ultimate goal to effectively 
manage this huge deluge of information, a new field of study 
has emerged to give a global perspective (20,21). Coined 
as ‘Systems Biology’, this would aid in understanding the 
diseases per se, which themselves serve as a conglomerate of 

multitudes of molecular entities regulated through different 
networks and belonging to various affected pathways 
(21,22). Thus, a systems biological approach of the diseases 
is considered to give a bird’s eye view at the systems level 
of diseases. Essentially, this would help in identifying 
different diagnostic biomarkers and developing intervention 
therapies through discovery, optimization and combinations 
of the drugs (20,21). Table 1 deals with such huge explosion 
of experimental data from different biotechnological 
procedures and maintained in different types of databases.

In one of the attempts to provide a systems level model 
for breast cancer, Carels et al. used different cell lines 
having different histological subtypes to understand the 
state of the hormonal receptors (23). These are the estrogen 
receptor (ER), progesterone receptor (PR), and human 
epidermal growth factor receptor 2 (HER2, also known 
as ERBB2) which can give an indication of the patient 
specific therapies (23). With a temporal data of the post 
personalized treatments, they have provided a Kaplan-
Meier graph illustrating the relative 5-year survival of 
the patients (23). Delving deep into the molecular time 
of the spread of the breast cancer, they have delineated a 
modified version of the tumour heterogeneity evolution, 
encompassing genomic instability and clonal expansion (23). 
Further utilisation of patient-derived tumour samples has 
been attempted to aid in identifying effective drugs and/or 
combinations thereof, for further clinical trial assessments 
and personalized therapeutic treatments (11). For this, Pauli 
et al. have integrated the whole-exome sequences with the 
56 tumor-derived organoid cultures and 19 patient-derived 
xenograft (PDX) models of uterine malignancies and colon 
cancers (11). Furthermore, concepts of integrating huge 
accessible biological data of the traditional natural products 
with those of the synthetic western medicines have been 
proposed as an alternative and effective strategy towards 
cancer precision medicines. This has become a necessity 
owing to the challenges posed by cell subpopulations, 
differing phenotypically and genetically, thereby giving 
rise to tumour heterogeneity (24). With a network 
pharmacological approach of leukaemia cells affected by 
treatment with neoambrosin or damsin from Ambrosia 
maritima, Efferth et al. have analysed to portray the three 
different gene targets. These are the master, responder and 
effector for all natural products, therapeutic antibodies and 
synthetic small molecules (24). The main reason for such 
integration, they believe, is possible due to the fact that 
natural products serve as the repertoire of mixtures with 
multi-specificity such that they can aim different targets 
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Table 1 Data generated through different omics-based approaches and maintained through different databases

Representative databases Experimental data Biotechnologies

Genbank, DDBJ, Ensembl DNA sequences, exome sequences, genomes, genes DNA-seq, NGS

GEO, Expression Atlas Gene expression levels, microRNA levels, transcripts Microarray, RNA-seq, Fluorescent 
in situhybridization, RT-PCR

GPMdb, PRIDE, Human Protein 
Atlas

Protein concentration, phosphorylation MS, iTRAQ

HMDB, GMD Metabolite levels LC-MS, GC-MS, NMR

GEO, TRANSFAC, JASPAR,  
ENCODE, modENCODE

Protein-DNA interactions, transcript factor binding sites ChIP-chip, ChIP-seq

StarBase, miRTarbase MicroRNA-mRNA regulations CLIP-seq, PAR-CLIP, iCLIP

HPRD, BioGRID, DIP, IntAct  
and MINT, CCSB interactome  
database, STRING

Protein-protein interactions Y2H, AP/MS, MaMTH, maPPIT

RegPhos, PhosphoPOINT Kinase-substrate interactions Protein microarray

HPRD, BioGRID Genetic interactions SGA, E-MAP, RNAi, CRISPR-Cas9

GWAS Catalog, GWASdb,  
GTEx, dbGAP, dbSNP, HGMD

GWAS lod, eQTL, aberrant SNPs, Genome-wide association studies 
typically conducted on individuals who have had a serious ADR,  
or who have serious ADRs withing their family’

SNP genotyping array, CNV, 
Whole exome sequencing,  
Whole genome sequencing

KEGG, ConsensusPathDB, 
BioCart, Pathway Commons, 
MsigDB, Reactome, BiGG

Signalling pathways, metabolic pathways, molecular signatures LUMIER, data integration

DrugBank, STITCH, Chembl, 
Matador, PDSP

Drug-target interaction Affinity chromatography with 
mass spectrometry, SPR

Gene overexpression cDNA/ORFs

Drug efficacy HTS, MTT assay

EMR/HER Digitalization

Drug_ADR DB 

Offsides Database of significant drug-effect associations –

SIDER Drug side effect reference with ADR information extracted from  
public information and product labels

–

CTD Comparative Toxicogenomics Database –

ATC Anatomical Therapeutic Chemical (ATC) –

Chemical structure DB

PubChem compound Repository of validated chemical information –

ZINC Database of commercially available compounds for virtual screening –

Connectivity map Collection of transcriptional expression data from drug-treated  
cultured human cells

–

Drug-drug interaction (DDI) DB

Two sides Database of significant drug-drug effect associations –

INDI Inferring drug interactions –

Drugs.com Database of DDIs –

Gene function DB

Table 1 (continued)
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Table 1 (continued)

Representative databases Experimental data Biotechnologies

GO Gene ontology –

GeneCards Comprehensive database in genes and gene function –

OMIM Reference for human genes and genetic disorders (Mendelian and 
non-Mendelian diseases

–

Protein structure/sequence

PDB Protein Data Bank –

Uniprot UniProtKB/Swiss-Prot –

Protein-ADR DB

DART Developmental and reproductive toxicology –

DITOP Drug-induced toxicology-related proteins –

Protein-gene interaction DBs

TRED TRED Transcriptional Regulatory Element Database –

ChEA Chip Enrichment Analysis Database –

Postmarket reporting systems 
(PMRS)

FAERS Registry of adverse event and medication error reports sent to the 
FDA and Centres for Disease Prevention Control l(CDC)

–

VAERS Registry of vaccine-related adverse events sent to the FDA and CDC –

MedEffect Canada Registry of adverse event and medication error reports from Canada –

Disease terminologies

ICD International Classification for Disease, a hierarchical disease classifi-
cation for billing purposes

–

MedDRA Specialized medical terminology designed for the pharmaceutical 
industry

–

UMLS Unified Medical Language System, and integrated terminology system –

MeSH Medical Subject Heading vocabulary –

SNOMED Systemized Nomenclature for Medicine, an ontology for medical 
terms

–

Clinical trials Registry and results repository for clinical trials –

Electronic health records (EHRs)

Billing data Medical information collected at the point-of-care by healthcare 
providers. Data collected primary for insurance and billing purposes. 
Data can be reused for pharmacovigilance

–

Clinica narratives Clinical notes taken at the point-of-care by clinicians and healthcare 
providers. Data can be reused for pharmacovigilance.

–

Surveys Questionnaires sent to providers regarding medications, given that 
result in ADBs, and other comorbities that patients were on

–

Metabolic data Metabolic studies that find specific metabolic profiles associated with 
serious ADR’s and ADR outcomes

–

The first layer, stated as “Cause”, shows the different levels of modifications used by scientists to explore and develop precision medicine 
for cancer through systems biological approaches. The second layer shows the “Effect” of such explorations by the scientists leading 
to the deluge of data and techniques. The third layer delineates the tools used by the scientists to explore and generate the concepts  
underlying precision medicine. This is reflected as the “Link”.
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simultaneously (24). The underlying concept in utilizing 
such natural products is the essence of polypharmacy 
which is being mostly used for elderly patients (25,26). 
However, there can be risk factors associated with side-
effects of multiple drugs as reported by Finkelstein et al. 
for all patients put on a drug regimen of 17–26 drugs at a 
time (27). Despite being studied in a completely different 
scenario, with patients having concurrent chronic heart 
and lung diseases, this showed a complicated drug-drug 
and drug-gene interactions, thereby exemplifying the 
risks (26). Furthermore, the condition of polypharmacy 
necessitates the study of precision medicines for identifying 
the adverse reactions of several small molecules as drugs. 
Commonly referred to as ADRs (adverse drug reactions), 
many small molecules cause unintended side-effects which 
vary widely in their mechanism of actions and severity of 
the reactions affecting a diverse range of populations (27).  
The assessment of such ADRs largely depends on the 
reports generated from size-limiting clinical trials and 
biased post market survey which predisposes the patients 
towards insufficient knowledge-based risks (27). In an 
attempt to overcome such risks associated in unravelling the 
ADRs, systems pharmacology has been used by researchers 
for some time now. This entails a detailed network based 
analysis incorporating the interactions between the chemical 
and biochemical entities like the drugs and food molecules 
of the diet and biological entities encompassing the genes 
and proteins. In their comprehensive review, Boland et al. 
has elucidated information from a bipartite graph indicating 
the connections between all of these components as used by 
researchers of systems pharmacology (27).

With the advent of time, treatment of cancer has 
undergone several changes tailored to the need of catering 
to the mass, precisely and effectively. This encompassed 
the identification of specific gene mutations and presence 
or absence of specific gene functions causing uncontrolled 
proliferation at the site of origin and/or gross chromosomal 
rearrangements. However, despite such efforts, the 
intratumoral heterogeneity and ongoing genomic evolution 
make a complication for the identification of patients which 
may benefit from specific cancer treatment/s (28). Epigenetic 
modifiers which play crucial role in the maintenance 
of chromosome structure and function, have also been 
started to be targeted by emerging technologies (28).  
Such strategies attempt to integrate the concept of 
malignant transformation being modulated by interactions 
evident from genetic and epigenetic modifications (28). 
Identification of genetic and epigenetic mechanisms of 

malignant transformation has accelerated the process of 
discovering the genetic variants responsible for the disease 
and development of drugs targeting them. However, a large 
number of genetic variants, including rare mutations (minor 
allele frequency, MAF <1%) besides polymorphisms (MAF 
>1%), ca modulates the truly personalized prediction of 
drug responses (29). Encompassing such somatic variants 
besides the germline polymorphisms in the tumor genome 
as directives for pharmacogenetics-informed prescription 
have started to be utilised for certain drug/gene pairs (29). 
Revisiting them from a Brazilian perspective (29), Suarez-
Kurtz reviewed and substantiated the beneficial effects of 
such drug/gene pairs of irinotecan/UGT1A1, tamoxifen/
CYP2D6, thiopurines/TPMT and fluoropyrimidines/
UGT1A1 as directed by the Clinical Pharmacogenetics 
Implementa t ion  Consor t ium and/or  the  Dutch 
Pharmacogenetic Working Group (30). 

The above discussion, thus, takes us to the juncture to 
understand that the integration of data science and analytics 
onto pharmacogenetics and/or pharmacogenomics is 
imperative to pave the way for precision cancer medicine. 
This, in turn, would shape up the society having proper 
research background developed with optimized tools and 
information to provide help and care for improved cancer 
patient outcomes. This can even lead to the development of 
new economic policy and agenda both locally and globally 
until such new paradigm of health care is adopted (8).

The direct linkage between human genetics and drug 
response, in terms of their co-variation, have been put 
together in the largest manually curated database called the 
Pharmacogenomics Knowledge Base (PharmGKB) (31). 
However, due to the vastness, dynamicity and complexity 
of the biomedical terms and knowledge, an extraction of 
such published facts, to transform into meaningful and 
translatable information, is a mammoth task (32). Thus, to 
aim towards precision medicine, the earliest of the methods, 
adopted a concept of connecting the genes with the drugs 
relying on machine learning, besides statistics (33). In fact, 
statistical methods to determine co-occurrence along with a 
typical machine learning method, namely Natural Language 
Processing (NLP) have been used by Chang and Altman (34) 
to classify the drug-gene pairs extracted from literature. 
Later, Garten and Altman extracted the relationships 
between the specific concepts of Phramacogenomics (PGx) 
through a text-mining tool named Pharmspresso (35). 
Moreover, based on the earlier reported co-occurrence 
statistics, Theobald et al. created conditional probability 
tables to transform them into n-way Bayesian networks to 



Precision Cancer Medicine, 2019Page 6 of 12

© Precision Cancer Medicine. All rights reserved. Precis Cancer Med 2019;2:33 | http://dx.doi.org/10.21037/pcm.2019.09.01

analyze the relationship between the biological entities (36). 
Nevertheless, development of the NLP system continued 
to be in practice to uncover the drug-gene relationships 
from co-occurrence in MEDLINE citations and abstracts 
through Enhanced SemRep, Syntactic Dependency 
Structure and other conditional approaches (37-39). 

With a detailed focus towards precision cancer medicine, 
efforts have also been made to rank the genes of PGx 
importance in order of their potential drug-specific 
relevance (40,41). In fact, a semi-supervised iterative 
searching and ranking (bootstrapping) algorithm has been 
reported with an aim to prioritize the PGx genes (32,42). 
Using 20 million MEDLINE abstracts and PGx specific 
genes, the algorithm reached a precision of 0.219 after 
two iterations which increased to 0.561 in the end, for top 
ranked pairs. This was way above in terms of precision, 
recall or F1 (precision: 0.251 vs. 0.152, recall: 0.396 vs. 
0.856 and F1: 0.292 vs. 0.254) when compared to non-
PGx-specific seeds or even co-occurrence of MEDLINE 
terms (32,42). One might like to revisit the terms called 
precision, recall and F1. The first of these refers to the 
ratios of true positives over total positives including false, 
while the second refers to the true positives over actual 
positives including false negatives. Finally, the last one 
stands for a weighted average of precision over recall. A 
strong correlation was achieved when the predicted drug-
gene pairs were compared with the drug adverse events (42).

While drug-gene relationships are being investigated to 
rank them in order of their relevance in treatment, efforts 
have been taken to have a detailed mapping of the cancer 
cell evolution, commonly referred to as clonal evolution, 
incorporating the tumour DNA purity and cancer cell 
ploidy (43). However, considering the tumour heterogeneity, 
which might develop owing to either progression 
or treatment, global optimization methods (44-47)  
might fail to measure the complexity of the underlying 
cellular population as they ignore the genomic diversity (43).  
Thus, a consideration of the three types of cell populations 
namely, non-tumour and tumour with and without deletions, 
contributing to the allelic frequency values of informative 
SNPs with a somatic deletion, helped researchers 
to come up with a local optimization method (43).  
Termed as CLONET (CLONality Estimate in Tumors), 
Prandi et al. developed the model using the probability 
distribution of the observed AFs, to compute the local 
admixture values for all deletions across the genome and 
uncover the selected lesions utilizing the whole genome 
sequencing (WGS) data of tumour samples comprising 21 

lung adenocarcinomas (48), 24 metastatic melanomas (49) 
and 55 primary prostate cancers (50). 

Further consideration of a combined effect of ‘omics’ 
data driven analyses, coupled with systems biology and 
mathematical modelling approaches, have been made in 
shifting the theranostic paradigm. Known as OncoTrack, 
the program aims to record the responses of individual 
samples of primary tumor, metastases and paired healthy 
tissue to drugs besides maintaining 3D cell cultures of 
tumors and mouse xenograft models (51). This is aided by 
the pre- and post-treatment analyses of the corresponding 
omics data comprising the whole genome, exome, 
transcriptome, methylome, and global proteomes of colon 
cancer patients (51). The whole concerted effect helps to 
predict the responses of the patients giving an idea of the 
drug resistance development in case of failures of such 
responses (51). Similar massive integration of genomic data 
driven initiatives like IGNITE have come into play to help 
build the network of multiple Electronic Health Records 
(52,53). Being established in 2013, the National Institutes 
of Health-funded initiative, IGNITE (Implementing 
GeNomics In pracTicE; www.ignite-genomics.org) 
Network, has a coordinating center which manages six 
projects for developing, investigating and disseminating 
genomic medicine practice models with clinical decision 
support (CDS). Some centres of IGNITE network (e.g., 
Vanderbilt University) maintain external link for the CDS 
(e.g., MyCancerGenome.org) (52).

Furthermore, cancer specific large scale big biomedical 
data integration has been in practice to analyze and provide 
a multifaceted user platform for learning and care decision 
making. One such is G-DOC Plus which incorporates 
more than 10,000 patients’ data from different public and 
private resources including the Gene Expression Omnibus 
(GEO), The Cancer Genome Atlas (TCGA), REpository 
for Molecular BRAin Neoplasia DaTa (REMBRANDT), 
caArray studies of lung and colon cancer, ImmPort and 
the 1000 genomes data sets (54). The tools incorporated 
in G-DOC Plus have been extensively used for generating 
hypothesis and validating them for cancer and non-cancer 
studies by exploring the somatic mutations and cancer MRI 
images through multi-omics analysis to aid into biomarker 
discovery besides providing knowledge based training in 
the related fields of bioinformatics, computational and 
sciences (54). Provision of web-based tool is also made 
available through IDICAP used for Integrating Drug 
Intervention based on Cancer Panel (55). Essentially, the 
tool links breast, ovarian and general cancer genes with 
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drugs and clinical trials information from ClinicalTrials.
gov and DrugBank besides integrating facts and figures 
related to drugs under trial and their locations, drugs with 
known targets of the queried genes, any known single 
nucleotide polymorphism (SNP) effects and other disease 
conditions (55,56). IDICAP has been claimed to be precise 
enough for indicating clinical trials and drugs compared 
to similar results from Drug Gene Interaction Database 
(DGIdb) or even ClinicalTrials.gov (55,57). All such large 
data integration tools take the whole initiative of precision 
cancer medicine, a step forward.

Taking the precision cancer medicine initiative from a 
multi-forked analytical approach to streamlined cases of 
network based analyses coupled with relevant bioinformatics 
pipelines, helped researchers to identify multi-target drug 
therapies and differentially prioritize them in triple negative 
breast cancer (TNBC) models and otherwise (58-61). 
Effectively starting with certain tumor type/subtype, Vitali  
et al. graph theoretically analysed the disease-specific 
Protein-Protein Interaction (PPI) network derived by 
combining different databases and knowledge repositories 
to identify a set of potentially interesting combinations of 
drug targets (58). Applying an approach based on matrix tri-
factorization coupled with the available knowledge about 
the mechanisms of action of selected drugs, a number of in 
vitro experiments upon TNBC validated the method (58). In 
another study on TNBC models, a computational platform, 
entitled GenEx-TNBC, has been deployed through 
network-based approach to prioritize thousands of approved 
and experimental drugs for therapeutic potential against 
each molecular subtype of TNBC (59). Essentially, networks 
were constructed from patient-based and cell-line-based 
gene expression data and analysed for statistical coincidence 
with drug action networks stemming from known drug-
protein targets (59). The approach via GenEx-TNBC 
successfully defined drugs and classified them for further in 
vitro testing so as to establish this platform as the first of its 
kind to associate drugs to diseases (59). Utilization of such 
known and predicted protein-protein interaction databases 
like STRING (62) and protein-drug interactions from 
STITCH (63), have enabled the construction of evidence 
networks based upon a statistical test to detect differential 
statistical dependencies namely Evaluation of Differential 
DependencY (EDDY) (60). EDDY has been represented in 
the form of a public portal EDDY-CTRP where the Cancer 
Therapeutics Response Portal (CTRP), a dataset with drug-
response measurements for more than 400 small molecules, 
and RNAseq data of cell lines in the Cancer Cell Line 

Encyclopedia (CCLE) have been integrated (60). Tran et al. 
believes that their method of building evidence networks 
to find ~70% of drug-mediator pairs have the potential 
to provide important insights to drug sensitivity (60).  
In fact, utilization of several such molecular networks with 
proteins, drugs, and/or genes have enabled the researchers 
in the last decade to aid into identify potential targets 
and pathways through network topological analysis and 
other graph theoretical measures (61). One such work, 
reported by Ashraf et al., is a recent description where 
different centrality measures have been utilized to compare 
and contrast among them and identify targets without 
potential side-effects (14). Essentially, they have shown 
the effectiveness of eigenvector centrality (C) along with 
other network parameters like k-core (K) and functional 
modularity (F) to bring forth the KFC criterion as crucial 
to determine side-effects of marketed drugs reflected 
in Drugbank (14,56). Table 2 records several such gene-
drug interactions as found from different specific tumor  
types.

When researchers worldwide are highly active to 
use several statistical and mathematical parameters and 
measures to analyse huge biological data for developing 
precision cancer medicine, bioinformatics programmers 
were not far behind to aid to their needs. As genomic 
aberrations, accompanying clinical and phenotypic 
features, are effectively identified through NGS, potential 
workflows and pipelines have started pouring in to identify 
potential gene targets and their corresponding drugs (64).  
Additionally, the R/Bioconductor package rDGIdb have 
enabled the R-users to have ready-made packages, with 
resources and tools, for dealing such NGS pipelines 
along with DGIdb, having drug-gene interaction from 
15 different resources (57,64). Furthermore, another R 
package, namely the Cancer Variant Explorer (CVE), 
leverages the Oncotator and DGIdb, to provide variants 
within multiple or single tumour exomes so as to identify 
the driver mutations in a variant population along with 
their resistance mechanisms and in essence, assess the 
druggability of the targets (65,66). As per Mock et al, CVE 
enables the researcher to an explorative analysis of tissue 
specific networks for translational research studies (65). 
Last, but not the least, in an ongoing attempt to predict 
the drugs along with their targets, a new methodology of 
predicting them in a pairwise manner, has been adopted. 
This method is a Kernel-based machine learning approach 
and the multiple kernel learning (MKL) approach known as 
pairwiseMKL (67). In this method, Cichonska et al. showed 
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Table 2 Different gene-drug associations from specific tumour types

Gene symbol Gene name Effect of alteration
Major associations with 
specific tumor types

Implicated therapy

Protooncogenes and oncogenes

BCR-ABL Breakpoint cluster region, Abelson 
murine leukemia viral oncogene 
homolog fusion protein

Compromises fidelity of DNA repair, 
deregulates proliferation, impairs 
apoptosis and differentiation

Chronic myelogenous 
leukemia

Imatinib, dasatinib,

HRAS/KRAS Harvey/Kristen rat sarcoma viral 
oncogene homolog

Constitutively activates MEK/ERK 
progrowth signalling

Non-small cell lung  
cancer

Salirasib

BRAF v-Raf murine sarcoma viral  
oncogene homolog B

Constitutively activates MEK/ERK 
progrowth signalling

Melanoma, V600E or 
V600K mutations

Vemurafenib, dab-
rafenib

BCL2 B-cell lymphoma/leukemia-2 Impairs apoptosis Leukemia, lymphoma, 
melanoma

Venetoclax

Tumor suppressor genes

IDH1/2 Isocitrate dehydrogenase DNA hypermethylation, disrupts 
differentiation

Acute myeloid  
Leukemia (AML)

AG120,AG221, AG881

EZH2 Enhancer of zeste 2 polycomb 
repressive complex 2 subunit

Inhibits apoptosis, silences by 
H3K27 trimethylation

Lymphoma Tazemetostat

DOTIL DOT1-like histone H3K79 methyl 
transferase

Inhibits differentiation and apopto-
sis 

Mixed-lineage  
leukemia

Pinometostat

DNMT DNA methyltransferase Disrupts normal patterns of DNA 
methylation

Breast and colon  
cancers, glioma, AML

Azacytidine,decitabine

HDAC Histone deacetylases Disrupts normal patterns of histone 
acetylation

Gastric, breast,  
colorectal cancers

Vorinostat, romidepsin

Other targets

ER Estrogen receptor Sustains proliferative growth signals Breast and Ovarian  
cancers

Tamoxifen

CD20 B-lymphocyte antigen, cluster of  
differentiation (CD) 20

Supports B-cell activation and cell 
cycle progression

B-cell lymphomas Rituximab

ERBB2  
(HER2/new)

Human epidermal growth factor 
receptor 2

Sustains proliferative growth signals Breast, ovarian, uterine 
and lung cancers

Trastuzumab

PD1 Programmed cell death protein 
1(CD279)

Prevents activation of T-cells Potentially targets all  
solid tumor

Nivolumab

CTLA4 Cytotoxic T-lymphocyte associated 
protein 4

Prevents activation of T-cells Potentially targets all  
solid tumor

Ipilimumab

AP-1 Activating protein 1 Regulates gene expression  
controlling differentiation,  
proliferation and apoptosis

Colorectal cancer case 
study

Irbesartan (angiotensin 
II receptor antagonist)

PML-RAR Promelocytic leukemia, retinoic  
acid receptor alpha fusion gene

Inhibits granulocytic differentiation Acute promyelocytic  
leukemia

Retinoic acid

Biomarkers for clinical agents

APAF1 Apoptotic protease activating  
factor 1

Prevents apoptosis Melanoma Doxorubicin

MGMT O6-methylguaniine-DNA  
methyltransferase

Reverses DNA damage Glioma Alkylating agents
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its performance in accurately predicting two related tasks of 
anticancer efficacy of drug compounds across a large panel 
of cancer cell lines along with target profiles of anticancer 
compounds across their kinome-wide target spaces, using 
up to 167,995 bioactivity measurements and 3120 pairwise 
kernels (67). 

In summary, the new technologies have emerged which 
allow evaluation of genetic, epigenetic and transcriptomic 
changes over whole genome (Figure 1). Moreover, with 
advances in bioinformatics, we can now integrate different 
types of data to identify genomic changes as well as 
underlying mutational processes in cancer (Figure 1). This 
has set the foundation for identification of better diagnostic/
prognostic markers and therapeutic targets for specific 
cancers as well as for subgroups of patients within a cancer 
(Figure 1). Application of these technologies at individual 
patient level can potentially help in choosing the right drug, 
combination and/or strategy for that individual. Although it 
is still needed to remove/minimize some of the limitations 
associated with these technologies, they provide the bases 

for personalized and precise healthcare. Days are not far 
when network biology based predictive measures would 
lead the world to a completely new era of precision cancer 
medicine, tailor-made to fit the individual needs of fighting 
the deadly disease. 
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Figure 1 The stepwise approach combining the cause, the effect and the link to connect the missing dots between genomic instability, clonal 
evolution and precision cancer medicine.
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