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Introduction

Mild cognitive impairment (MCI) constitutes a clinical 
entity differentiated from healthy control subjects and those 
with very mild Alzheimer’s disease (1). It is an intermediate 
stage between anticipated and normal age-related cognitive 
decline and the significant decline associated with dementia. 
MCI compromises memory, language, thinking and 
judgment in ways that are more significant than in normal 
aging (2). As with most diseases, early recognition of MCI 
and detecting subtle changes in the brain has the potential 
to improve the efficacy of therapeutics (3,4). The role of 
serious games combined with machine learning (ML) has 
the potential to become a technology-mediated assessment 
tool that is complementary to clinical early diagnosis and 
therapeutic assessment tools. 

Currently, over 35 M people worldwide live with 
dementia and that is expected to reach 115 M by 2050, 
fueled by an aging population (5). The negative impacts 
on the individual, family, and caregivers are significant. As 

disease-modifying treatments are discovered, early diagnosis 
will be essential to assist in introducing therapies that can 
slow the progression and maintain a longer quality of life (6).  
Aging, although inevitable, is the biggest risk factor for 
cognitive decline and dementia. 

Mental health apps are part of a much larger mobile 
health (mHealth) space, and the proposed research 
addresses mHealth apps as technology-mediated empirical 
measurement tools for cognitive assessment including 
memory, learning, problem-solving, and other executive 
processes. The importance and relevance of the serious games 
combined with ML is the early identification of cognitive 
decline, crucial for optimal pharmacological treatment and 
timely provision of (psycho)social care (4,7-11). The first 
symptoms of cognitive decline may be present several years 
before a clinical diagnosis of dementia can be made and thus 
computer aided tools that detect underlying patterns of brain 
dysfunction are of great importance. 

This work represents a perspective on the strong 
potential afforded by the intersection of serious games as 
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an example of mHealth, applied to MCI assessment and 
enhanced with ML. 

Presently, there are few new methods for assessing 
cognitive difficulties related to dementias such as 
Alzheimer’s, while the use of serious games is suggested 
as a promising approach (9,12-14). The most closely 
related method to that described here would be that of a 
computerized Wisconsin Card Sorting Task (15), albeit 
based on a computerized version of a traditional assessment 
method. This work goes beyond developing electronic/
mobile presentations or reproductions of existing MCI 
assessment instruments; rather, the work presents mobile 
games that inherently provide a cognitive assessment 
function via the analysis of an individual’s game-playing data. 
The work here is also differentiated from the gamification of 
engaging but unproven cognitive stimulation (“brain games” 
like Lumosity—www.lumosity.com).

Gamification of MCI assessment opens up opportunities 
to collect player metadata on large scales that allow 
for baseline establishment of cognitive abilities across 
demographic (age) profiles, longitudinal performance of 
individuals and of groups, and from there, the potential to 
detect subtle changes in an individual’s cognitive processes 
over time. It is the self-perception of losses of specific 
cognitive processes such as recognition and recall that can 
cause anxiety to individuals being assessed. The proposed 
tools have been designed to include the ability to objectively 
assess recognition of a game strategy, recall of the strategy, 
failure to maintain set (reverting to a different strategy or 
no strategy at all), and perseveration (reverting to an earlier 
strategy). By the stochastic nature of the prototype game on 
this work, there is opportunity for distraction, facilitating 
temporary lapses of concentration or memory (16-18), which 
the metadata can track and be applied for analysis via ML. 

Methods

Our intersection of serious games as an example of 
mHealth, applied to MCI assessment and enhanced with 
ML is grounded in a working prototype of a serious 
game on an Android mobile platform named WarCAT 
(War Cognitive Assessment Tool). WarCAT represents 
a prototypical game that is mobile, concurrent, and 
competitive; further, short duration social games represent 
a relatively new genre of online mobile cognitive assessment 
games. 

In its present state, each game consists of five rounds 
of the card game WAR, each game played is measured in 

seconds, and feedback is near instantaneous. Presently, 
three levels of a minimum of 100 games each have been 
implemented in the prototype, and the human player plays 
against a bot. The bot maintains a consistent strategy for 
100 games, and only after a player has demonstrated that 
they have beaten the bot by a non-chance margin can the 
player ‘level up’. WarCAT tracks real-time player behaviour 
(metadata) during play including start time of play and end 
time of play (from which frequency and duration of play 
can be inferred), as well as each move made by the player 
within the game, timestamped to also analyze how quickly 
or slowly a player played. 

The basic gaming framework has also been further 
developed during the summer of 2017 to optionally include 
more traditional cognitive assessments such as a paired 
associates learning test as an in-app feature which the player 
completes to proceed. This feature has not proven to be too 
useful in initial attempts to engage volunteer participation 
and as such, the following will be more specifically oriented 
to the game itself. 

Figure 1 shows an icon for the game and registration 
including basic demographic information requested 
which is essential for the types of ML considered here 
(i.e., supervised learning). Figure 2 shows a screenshot of 
the proof of concept. In Figure 2, the players cards are 
displayed face-up and the player can play them in any order 
they choose. The objective is for the player to develop, 
retain, and apply strategy consistently beat a bot that is 
playing a time invariant strategy. For example, the bot may 
be repeatedly playing a strategy of low to high cards. A 
winning and learned strategy would be then playing your 
second lowest card first, consecutively playing high value 
cards and playing one’s lowest card last. 

During play, the game provides the user with immediate 
feedback as to having won or lost the game (Figure 3). 
Initial feedback from users is that even when losing a hand, 

Figure 1 The WarCAT Icon and registration page on Android.
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courteous feedback like “nice try” or “please try again” 
would encourage further engagement. This is particularly so 
because by virtue of the fact the cards are dealt in a random 
or stochastic fashion, there is opportunity to lose even when 
one is playing correctly. This provides an opportunity for a 
player to forget their strategy in a moment of distraction. 

A critical research element is to determine optimal 
analytical approaches to interpreting time-series confusion 
matrices, receiver operating characteristic (ROC) curves, 
and classification of play on a sufficiently large set of 
longitudinal player data through ML. Once sufficient data 

are collected, a neural network can be trained with the 
data to classify the degree to which a person experiences 
cognitive difficulties during play. Figure 4 illustrates a 
fingerprint of a person’s play against a bot, which will be 
used with ML algorithms. With this groundwork laid, the 
following ML classification approach has been identified for 
the initial ML classification investigation.

The inputs for ML techniques are formed by the 
“fingerprint” of one’s cognitive processes as well as meta-
data associated with timing variations of play. The ML 
methods for initial exploration are those associated with the 

Figure 2 An example play of WarCAT (rudimentary but functional).

Figure 3 An example of feedback per round (reinforcement 
learning).

Figure 4 An example of completing a level and illustration of the type of available data.
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high-level API accessible through TensorFlow, as these have 
been successfully used to classify a wide variety of images as 
well as acoustic signals. Figure 5 illustrates a more complete 
classification model. 

Preliminary results using a relatively simple dense 
neural network will be the focus as it clearly illustrates 
the point without undue complexity. In partial summary, 
sufficient aspects of the research have been undertaken 
to lend credibility to the conjecture that serous mobile 
games combined with ML may be capable of assessing 
various cognitive states of health. The scale of participants 
that a mobile gaming framework facilitates (i.e., measured 
in tens-of-thousands of players, as opposed to more 
traditional cognitive health assessment methods which are 
administered to a single individual at a time) can generate 
baseline of normal age related cognitive decline, against 
which an assessment of a person suffering early signs of 

mild cognitive impairment can be made. An example of the 
game being played can be found at https://www.youtube.
com/watch?v=CN-_zz-oIpU&t=30s.

Preliminary ML results

As with all ML and artificial neural network methods in 
general, a premium is placed on data and having lots of 
it. As an illustration of the type of data collected from 
WarCAT, two rounds of play are illustrated in Figure 6. 
For simplicity, only four entries extracted from each hand’s 
confusion matrix are displayed. These values correspond to 
a win when a person should win, lose when person should 
lose, win when a person should lose and lose when a person 
should win. These are plotted here simply for visualization 
purposes. As input to a neural network, only a numeric 
representation of the confusion matrix entries is required.

Figure 6 is included to demonstrate the difference 
between two players. Further, Figure 6 demonstrates that it 
would be extremely difficult or impossible to infer anything 
regarding normal age-related cognitive decline or MCI 
from only two people’s trajectories of play. However, with 
massive amounts of data, there is the potential to detect 
outliers that may point to potential issues with memory or 
higher level executive function that would otherwise go 
undetected. 

Our compelling argument for this comes from recent 
results using synthetic data of bots playing against bots, 
generated in large volumes. One bot will play the game 
using a predetermined strategy as they would against a 
person, while other bots emulate the play of a human 
player with varying degrees of impairment. Impaired bots 
play probabilistic versions of a perfect strategy. Figure 7 
illustrates confusion matrix entries per hand for a sequence 

Figure 5 An overview of a proposed and more complete classification 
scheme.
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of 100 hands of play for a bot that plays a totally random 
strategy, 50% impaired, and a perfect strategy.

For preliminary ML training and testing purposes, we 
used a densely connected neural network with 103 inputs 
which included the features generated from confusion 
matrix (e.g., Figure 7), as well as aggregate wins, losses and 
ties. These were normalized to all be in similar ranges. The 
confusion matrix entries are slightly more complicated to 
those discussed above to include the possibility of ties. As 
such, the confusion matrix for each hand is best illustrated 
by a 3×3 as shown in Table 1. 

Within this configuration, 110,000 games were played 
by bots, with five classification labels. The labels were 
random play, 75% impairment, 50% impairment, 25% 
impairment, and perfect play. As such, the neural network 
had five output neurons, and internally two hidden layers 
of 150 neurons each. The training used stochastic gradient 
descent, trained on 100,000 training patterns, and tested 
using 10,000 patterns. As mentioned, the TensorFlow 
framework and high-level API were used. 

Table 2 summarizes the training and testing accuracy of 
the neural network. These are very respectable values for 
accuracy and do not provide any evidence for overfitting or 

biases. It should also be noted that that all the classification 
errors were of the closest match. For example, if the 
classification was random play, the error if made was a 
prediction of 75% impaired. These are errors of the best 
kind in that they are close to the correct classification. 

While the previous model was run using hand-by-hand 
data, a similar model was run just using aggregate win/loss/
tie data (number of wins, losses and ties) as a sanity check. 
Aggregate data is typically descriptive and easily interpreted 
by people, however the subtleties of the actual data are lost. 
Figure 8 illustrates histograms of play over 2,000 games of 
play (100 hands each) for each level of impairment. These 
are aggregate wins per game or cumulative scores which 
mask the subtleties of hand-by-hand play.

As demonstrated in Figure 8, there is considerable 
overlap among the classifications, and an expectation is 
that any ML technique would have considerable difficulty 
in discerning anything other than random play and perfect 
play. To illustrate this more convincingly, a similar DNN 
was trained and tested with the aggregates of the data 
used previously. The results of that test are convincingly 
illustrated in Table 3. It should be noted that there is also 
considerable dependence between wins and losses and as 
such they tend to be somewhat redundant features. Figure 9  
illustrates the clustering of data in feature space of Wins 
and Losses. It is apparent that there is considerable overlap 
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Figure 7 Three visualizations of a bot playing randomly, 50% perfect, and a perfect strategy.

Table 1 Confusion matrix entries inclusive of ties

Win/win

Lose/win

Tie/win

Win/lose

Lose/lose

Tie/lose

Win/tie

Lose/tie

Tie/tie

Table 2 Training and test accuracy after learning using the “cognitive 
fingerprint” data

Epoch Training accuracy % Testing accuracy %

500 85.6 82.8

1000 92.0 87.8

1500 94.6 93.1

2000 97.5 94.2

2500 98.4 96.2
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which makes it difficult for people or machines to make an 
accurate classification.

Figure 10 illustrates the histograms associated with 
classification errors. When the neural network was trained 
and tested with confusion entries, the number of errors was 
384/10,000, and the misclassification was overwhelmingly 

by an adjacent category. However, when using aggregate 
Win/Loss/Tie data, the total number of errors was 
3971/10,000, with approximately 8% misclassifications 
greater than an adjacent category.

Discussion

In this perspective paper, we argue that serious games 
on mobile platforms combined with ML may be a viable 
technique to help detect pre-symptomatic MCI. To recap, 
our game WarCAT collects detailed player data and player 
moves during their game-play, which we have denoted a 
“cognitive fingerprint” associated with combined executive 
function, strategy detection, learning, retention, and recall 
processes that took place during play. The basic data is a 
3×3 confusion matrix for each hand played. These data 
combined with event timing is amenable to ML analytics. 
To demonstrate this conjecture, we generated synthetic data 
from bots emulating human players with various degrees of 
impairment ranging from random play (100% impaired), 
through 75% impaired, 50% impaired, 25% impaired, 
through to perfect play. 

These data were then presented to a relatively simple 
Dense Neural Network within TensorFlow. After training, 
the network was able to correctly classify 96.2% of the test 
data, with any error being those of the closest classification. 
To demonstrate that the hand-by-hand entries from the 
confusion matrix were necessary for classification, the 
player data were similarly subjected to classification using 
only aggregate descriptive statistics. Although the network 
trained reasonably well, the classification of the aggregate 
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Table 3 Training and test accuracy after learning using aggregate 
win/loss/tie data

Epoch Training accuracy % Testing accuracy %

500 59.9 60.3

1000 59.9 60.4
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test dataset was only 35% (a random guess would be 20%).
As these data were collected from bots, we did not 

have the opportunity to record hesitation or any timing-
related data which would surely strengthen the inferencing. 
Further, the bots were stateless, whereas when one 
experiences a “loss of set,” the effect would have some time 
correlation to subsequent play as one attempts to get back 
on their winning strategy. 

A critical consideration in using ML methods is the 
volume of synthetic data needed. We generated 100,000 
records for training and 10,000 for test purposes. These 
numbers are often typical for ANNs but more problematic 
if real data are to come from the general population. There 
is an opportunity for serious mobile games to overcome 
data collection difficulties due to their wide penetration into 
the user population, but they are more easily addressed by 
commercial gaming companies. Another possibility is to 
generate additional features for training that may reduce the 
volume of data required, such as derivatives of the “cognitive 
fingerprints”.

Although this discussion centered on fairly conventional 
neural networks, we are also investigating the use of more 
powerful ML techniques such as convolutional neural 
networks and deep reinforcement learning. Reinforcement 
learning more closely resembles how people actually learn, 
and as such various degrees of impairment could more 
easily and accurately be modeled as compared to the simple 
approach demonstrated here.

Conclusions

The perspective has presented a simple mobile serious game 
with the capability to track a person’s play, their strategy and 
ability to recall their strategy, over a brief period of time. 
The data collected were then demonstrated through ML 

to be of utility in providing a useful “cognitive fingerprint” 
of play for classification. Results included guidance for 
the volume of data required as well as the features deemed 
effective for classifying various degrees of bot or artificial 
impairment. The work illustrates several of the more 
important considerations when combining simple serious 
games and the data that they provide with ML. ML was 
demonstrated to be effective in accurately classifying various 
degrees of bot impairment when using data generated 
during the course of play as opposed to attempting to 
classify using aggregate scoring. Data collected during play 
is amenable to ML and necessary for accurate classification.
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