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Lung cancer  screening with  low dose  computed 
tomography (CT) performed on multidetector helical 
CT scanners and the use of high-resolution chest CT 
scans to evaluate respiratory symptoms have resulted in 
an increase in the discovery of indeterminate pulmonary 
nodules. Conventional visual methods used by radiologists 
including shape, size, contour, density, and attenuation have 
a relatively high sensitivity (0.89) and moderate specificity 
(0.70) in differentiating benign from malignant nodules in a 
large meta-analysis (1). The use of [18F]-fluorodeoxyglucose 
positron emission tomography (FDG-PET) has further 
facilitated the differentiation of benign from malignant 
nodules by enabling metabolic assessment. However, FDG-
PET scans although felt to be highly sensitive in detecting 
malignancy in nodules over 8 mm have a high false positive 
rate particularly in benign inflammatory lesions such as 
granulomas (2). Furthermore, normal PET/CT scans 
are not found to be reliable indicators of the absence of 
malignancy in patients with a high probability of lung 
cancer (3). A confounding factor is the regional variation 
in fungal disease in the U.S. that gives rise to granulomas 
that can be indistinguishable from lung cancers on both 
chest CT scan and FDG-PET scan. Aggressive tissue 
acquisition is often required via bronchoscopy, navigational 
bronchoscopy, CT guided biopsy, or surgical excisional 
biopsy to confirm the diagnosis of malignancy especially in 
high risk individuals.

The use of computer learning or artificial intelligence (AI) 
for image analysis of chest CT scans has the potential to 

provide additional objective and discriminating information 
to support clinical decision making. The use of computer 
tools for automated pattern recognition and image analysis, 
particularly texture analysis, is not a new concept (4). It has 
been investigated in CT and magnetic resonance imaging 
(MRI) in the lung and other organs including brain, breast, 
prostate, kidney, bone, and liver (5-9). Texture features 
found on chest CT images for prediction of malignant 
pulmonary nodules has been reported (10). The sensitivity 
and specificity of texture analysis has been studied in the 
differentiation of primary lung cancer and granulomatous 
nodules as well (11). 

The article by Orooji and his colleagues is posing a 
different question as to whether texture and shape analysis 
can discriminate between a subset of non-small cell lung 
cancer namely adenocarcinoma and granuloma (12). Their 
approach is unique in that they incorporate both shape 
and texture features in their development of a training 
set of 139 pulmonary nodules (70 adenocarcinomas and  
69 granulomas). They then constructed machine learning 
classifiers using the shape and texture features that were 
robust in feature discriminability to distinguish the two 
pathologies. They also investigated the sensitivity of 
radiomic feature expression across different acquisition 
sites and scanners as well as variations in slice thickness. 
The most discriminating subset of features was culled by 
sequential forward feature selection. The top six features 
were used to train and lock down linear discriminant 
analysis (LDA), quadratic discriminant analysis (QDA), 
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as well as support vector machine (SVM) classifiers. 
These three classifiers were then used on the training 
set of 56 pulmonary nodules (34 adenocarcinomas 
and 22 granulomas) to assign a probability of being an 
adenocarcinoma. The performance of each of these 
classifiers was individually evaluated using the area under 
the receiver operating curve (AUC). The best AUC 
corresponded to the SMV classifier on the training set.

Texture features outperformed shape features in 
discriminating adenocarcinoma from granuloma due to 
informative heterogeneity in adenocarcinoma. Malignant 
lesions tend to demonstrate greater heterogeneity due to 
more chaotic microarchitecture likely related to abnormal 
tumor angiogenesis and cellular infiltration (13). However, 
shape features, particularly convexity, eccentricity, and 
extend features were still strongly discriminative of 
granulomas and adenocarcinoma in their study. The 
inclusion of shape along with texture features improved the 
predictive performance of the SVM classifier with an AUC 
of 92.9% on the training set and 77.8% on the validation 
set. Their model yielded a positive predictive value of 72% 
and a 0% false negative rate. 

The major advantage of this study is the incorporation 
of both shape and texture features in the classifier and 
radiomic analysis. This is perhaps the only report of using 
both parameters. The authors acknowledge that including 
data from only two institutions raises that question of 
whether their classifier is as robust when utilized in 
multiple different sites. They controlled very nicely for 
the variable of manual segmentation across the region of 
interest (RoI). Two experienced thoracic radiologists re-
segmented the same RoI in a randomly picked subset of 10 
adenocarcinomas and 10 granulomas and were blinded to 
results of the segmentation of each reader. It is questionable 
whether this process can be reproduced and would be as 
robust at multiple different sites. I also found it curious that 
when the authors swapped the training and testing sets the 
QDA classifier became the top ranked classifier compared 
to the LDA and SVM classifiers with an AUC of 82.5% on 
the validation set. I would suspect that this may be a result 
of the tyranny of small numbers with the testing set. 

One of the radiographic appearances of an adenocarcinoma 
discovered on chest CT scan is as a part solid and part 
ground glass opacity or GGO nodule. As this study only 
evaluated solid pulmonary nodules it does not address this 
particular presentation of adenocarcinoma of the lung. 
These part solid nodules are less likely to be confused with 
granulomatous disease, however.

The major flaw in this study was the original design 
that included only adenocarcinomas and granulomas in 
their study cohort. Other pulmonary malignancies such as 
squamous cell, large cell, and small cell carcinomas as well 
as carcinoid tumors not to mention other benign conditions 
can present as indeterminate pulmonary nodules and would 
be in the clinician’s differential. The study by Dennie et al. 
included other lung cancers besides adenocarcinoma and 
found an 88% sensitivity and 92% specificity for detection 
of lung cancer using quantitative CT texture analysis (11).

This is a retrospective study and would also need to be 
validated across multiple centers in a prospective fashion 
to be of clinical usefulness. It is interesting to note that 
when comparing the performance of the classifier with an 
experienced thoracic radiologist as well as a pulmonary 
fellow the classifier only marginally outperformed the two 
readers. 

I commend Orooji and his colleagues for the technical 
and scientific rigor with which their study was performed. 
It undoubtedly refines our understanding of pattern 
recognition and image analysis particularly with respect to 
texture and shape features of pulmonary nodules found on 
chest CT scans. 

For AI to be clinically useful in informing our decision 
making in managing indeterminate pulmonary nodules 
it would need to accurately refine our current risk 
stratification models. It would have to better define those 
nodules that require aggressive invasive tissue diagnosis 
that are suspicious for lung cancer and those that merit 
further image monitoring. Published and validated clinical 
lung cancer prediction models include the Mayo Clinic, 
Veterans Affairs (VA), solitary pulmonary nodule (SPN), 
and Thoracic Research Evaluation and Treatment (TREAT) 
models. Existing predictive models for lung cancer 
incorporate demographic, clinical, and radiologic features 
to better inform clinicians regarding referral for invasive 
biopsy (14-18). The TREAT model in particular had an 
AUC 0.89 (95% CI: 0.79–0.92) in a validation dataset and 
appears to have better diagnostic accuracy than the Mayo 
Clinic model (18). 

The use of AI for preoperative diagnosis of pulmonary 
nodules has been studied in surgical patients undergoing 
resection for suspected pulmonary malignancy. Using 
preoperative clinical and radiographic parameters, 100 
consecutive patients were prospectively evaluated with a 
diagnostic model that predicted whether the lesion was 
benign or malignant. The computer prediction agreed 
with the final tissue diagnosis in 95 of 100 patients 
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and demonstrated a sensitivity of 96% and specificity  
of 89% (19). These were patients being operated on for 
suspected cancer and over half had tumors greater than  
3 cm. This is not representative of the typical patient 
with an indeterminate pulmonary nodule. Computer 
learning and the application of artificial intelligence can 
be incorporated into lung cancer prediction models by 
providing more refined automated pattern recognition and 
image analysis of chest CT scans. Gene profiling via nasal 
swabs as well as proteomics are currently being evaluated 
and could also be combined with robust image analysis 
using AI to refine clinical decision making and be even 
more selective in recommending invasive tissue sampling 
(20-22). 
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