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Introduction

Cancer care delivery generally, and radiotherapy specifically, 
is highly dependent on integrating data from multiple 
sources. The detail provided by a single datum can radically 
change a cancer patient’s management strategy; for 
example, tumor genetic constitution (1), immunohistologic  
markers (2), a patient’s demographic profile (3), or 
radiographic attributes (4) can each radically alter a patient’s 
treatment course and/or prognosis. Radiation oncology 
embraces this complex treatment calculus and has long 
sought to deliver proven and precise radiotherapy courses 
(5,6). The data-diverse, technology-intensive nature of 
radiation oncology places it in a unique position among 
medical specialties to be revolutionized by the “fourth 
industrial revolution,” artificial intelligence (AI) (7,8). The 
goal of this review is to give a brief overview on the role of 
AI in radiation treatment planning and related applications. 
Figure 1 organizes steps in the radiotherapy treatment 

process and provides example AI use cases for each of them, 
and augments similar extant literature on this topic, towards 
which the interested reader is heartily referred (8-13). 

Terminology of AI, machine learning, and deep 
learning

At base, it is initially of utility to clarify the oft-conflated 
terms “artificial intelligence,” “machine learning (ML)”, 
and “deep learning (DL)”. AI is the practice and theory of 
developing “machines that can think and act as intelligently 
as humans” (14). Early AI pioneers primarily built it by 
programming logic rules into machines; however, rule-
based AI has largely been subsumed by ML AI, especially 
in healthcare (15,16). Rather than manually programmed 
logic rules, ML relies on manually curated data inputs to 
“learn” patterns, often patterns that humans cannot discern 
and therefore cannot explicitly program as a logic rule. ML 
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Figure 1 Applications of artificial intelligence to steps in radiotherapy planning and delivery. Selected examples of AI-driven contributions 
to radiotherapy planning have potential for reducing time, reducing inter-observer variability, and increasing accuracy in delivering 
radiation. These heavily scrutinized steps are data-rich and quantitative and thus naturally suited inputs to artificial intelligence algorithms. 
Not pictured in this figure nor deeply discussed in this paper are the considerable applications of artificial intelligence to cancer diagnosis, 
clinical trial patient recruitment, and post-treatment analysis of patient outcomes. 
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methods are based on advanced statistics and mathematics [a 
prominent ML book refers to it as statistical learning (17)]  
and there are many algorithms, each with strengths and 
limitations depending on the types and dimensionality 
of the input data. In turn, DL is a unique kind of ML 
that has yielded spectacular solutions to AI problems. 
DL architectures are inspired by the brain and facilitated 
by recent advances in computing speed and power and 
immense data stores for training the neural network 
architectures (16). DL differs from other ML approaches 
in that it can learn from “raw” data inputs rather than 
manually curated ones. The current hype surrounding AI 
is largely catalyzed by DL, which exploded into the public 
attention in 2012 (18). For further discussion of DL we 
refer the reader to reviews on the topic and to two JAMA 
viewpoints regarding its place in healthcare (15,16,19-22).

Auto segmentation

Manual segmentation (contouring) of target and normal 

structures is one of the most time-consuming aspects 
of radiation therapy and subject to significant intra and 
inter-observer variability. Therefore, autosegmentation 
algorithms have been developed to increase staff efficiency 
and improve consistency. Historically, the most commonly 
employed method for structure autosegmentation has 
been propagation of contours from an “atlas” or library 
of previously segmented images onto a new image by 
deformable registration (23,24). However, the accuracy 
of atlas-based methods suffers significantly whenever it 
encounters patients with unusual anatomy compared to 
their reference atlases (25), or by any contributor to tissue 
contrast variation. To circumvent this, more images can be 
added to the atlas to make it more robust, but additional 
images increase the computational load and decrease the 
method’s speed. 

DL, which to date has achieved broad success in image 
analysis and computer vision, appears to resolve the time 
and computation constraints inherent in traditional atlas-
based methods. DL algorithms have been trained to segment 
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cancer and organ-at-risk (OAR) structures in the head and 
neck (26-31), brain (32-34), abdomen (35,36), thorax (37-42),  
spinal cord (43), breast (44-46), and pelvis (47-50) at 
accuracies indistinguishable from human experts and with 
clinical workflow implementation and validation in some 
cases. Several studies have concluded that DL is more 
accurate than other algorithms with respect to the Dice 
Similarity Coefficient (DSC) (28,37,47,51,52), a standard 
volume-overlap evaluation metric used in segmentation 
literature (53). Segmentation methods based in deep learning 
are extraordinarily computationally demanding to instantiate, 
but once the model’s hyperparameters and tensor weights 
are optimized, running it is computationally trivial and faster 
than atlas-based methods (26,54). For example, in the setting 
of lung cancer treatment Zhu et al. (55) directly compared 
DL and atlas-based OAR segmentations and found DL to 
output non-inferior or superior results for every OAR at 
faster intervals. This time advantage may be particularly 
significant in the setting of adapting the radiation plan while 
the patient is on the treatment table.

Nikolov et al. (27) is an innovative illustration of rapid, 
accurate DL-based target and OAR segmentation. The 
authors trained a 3D U-Net architecture end-to-end with 
663 CT datasets acquired from their home institution and 
tested it independently on 24 multi-institutional datasets 
available from The Cancer Imaging Archive. In a novel step, 
the authors departed from the DSC evaluation metric in favor 
of an altered, “surface” DSC that more effectively penalizes 
segmentations that would require extra time to manually re-
contour because of their surface area. The model segmented 
19 of 21 OARs as well as expert English radiographers. The 
two exception OARs were the lens and brainstem. Lens 
segmentation has also been a challenge in other published 
work, but the performance of the algorithm on segmenting 
brainstem was explained by discordance in ground-truth 
segmentation labels regarding the definition of where the 
brainstem begins, leading to poor model segmentation at the 
brain-brainstem interface. This limitation notwithstanding, 
the model has potential to markedly hasten workflow with no 
compromise in segmentation quality.

Treatment planning and optimization

Our literature search suggests that radiotherapy treatment 
planning and optimization may be the single most popular 
ML/DL application in radiotherapy currently, suggesting 
physicists’ faith in its potential for improving this task. In 19 
of 45 Medline search results addressing radiation oncology 

and AI from January 2017 through January 2019, automated 
radiotherapy plan creation and optimization is the primary 
or secondary aim.

Radiotherapy plan optimization attempts to find the 
most satisfying solution to competing objectives: deliver 
the highest radiation dose to the target while delivering 
the least radiation to surrounding OARs, which are usually 
assigned a numeric weight to quantify their importance in 
the optimization calculus. This task requires physicists to 
iteratively fine-tune parameters that determine radiation 
dose deposition (usually modeled by Dose-volume 
histograms or DVHs) until a plan that meets the minimum 
acceptable threshold for each objective is generated. 
However, there is no guarantee that the first clinically 
acceptable plan is the most optimal one, and continued 
fine-tuning can continue indefinitely until time resources 
are exhausted and the planner is forced to settle on the best 
plan he or she could achieve.

Knowledge-based automated planning (KBP) methods 
have generated considerable attention in recent literature. 
KBP assists physicians and planners in obtaining the optimal 
OAR DVHs by employing ML methods that learn from 
databases of clinically acceptable plans. KBP uses geometric 
and dosimetric features from plans in the treatment library 
to predict a range of achievable DVHs for new patients. 
Obtaining this information early in the treatment process 
can assist in achieving the optimal treatment plan by forward 
planning. Alternatively, KBP model dose predictions can be 
used to directly generate plans by inverse optimization (56).  
KBP has been used to predict normal tissue DVHs in a 
variety of disease sites (57-61) and recently to predict which 
patients may benefit from proton radiation (62).

KBP methods have been commercialized in treatment 
planning systems (63-68). For example, RapidPlan™ (Varian 
Medical Systems, Palo Alto, CA) trains on past clinically 
acceptable plan DICOM files with beam geometry and the 
structure set on which the planner wishes to create objectives 
(per-structure minimum of 20 examples) to output an 
automatic plan with predicted DVHs for all objective OARs. 
RapidPlan™ can generate plans comparable to expert-
generated plans (64,65) and superior to beginner and junior-
generated plans (66). The RapidPlan™ ML algorithm details 
are proprietary but are inspired by Yuan et al. (69), who used 
stepwise multiple regression to learn anatomic and spatial 
image features that are germane to radiotherapy planning 
and then used principal component analysis to determine 
which of those features accounted for the greatest variance in 
OAR dose deposition.
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As is the case for other applications of knowledge 
database-based automation, the cost of computation 
increases and speed decreases with increasing database 
size. The problem of computational inefficiency with 
large data inputs was intriguingly evaded by Liu et al. (70),  
who greatly downsampled the number of planning 
optimization ML algorithm inputs by first grouping voxels 
that were isodosimetric and spatially related using a K 
means clustering algorithm. Computational efficiency was 
markedly increased without sacrificing plan quality. 

In aggregate, the literature to date strongly supports the 
feasibility of KBP automation and outlines possible next 
steps. Some have suggested that automation methods be 
trained with true patient outcome data rather than DVH 
tissue damage proxies (11). Wall et al. (71) hypothesized that 
if KBP knowledge databases for prostate cancer planning 
consisted of Pareto-optimized plans rather than merely 
clinically passable plans, the quality of the DVH predictions 
would significantly improve. A plan is Pareto-optimized 
if its competing objectives have been set such that an 
attempt to improve one objective compromises a hard stop 
for any other objective. Pareto-trained KBP generated 
plans showed significant improvement compared to plans 
generated by KBP alone. When past plans were re-planned 
using the Pareto-trained KBP the average decreases in dose 
to the rectum and bladder were respectively 9.4 and 7.8 Gy, 
while maintaining target dose. 

In addition to KBP, DL has been investigated as a 
mechanism for automated plan generation (72-75). Fan 
et al. (73) and Chen et al. (74) independently undertook 
the similar task to predict dose distribution with a ResNet 
DL architecture. Although they trained their models on 
input data of different types and quantities, both groups 
demonstrated feasible DL-based automated plans that were 
similar to expert plans. Cardenas et al. trained a DL auto-
encoder to delineate CTV contours that needed little or 
no manual correction (72). To capture CTV information, 
they used computed distances between tumor volumes and 
surrounding OARs as inputs rather than images. This work 
contributed the first automated clinically usable CTVs and 
a novel probability threshold function based on the DSC. 

To our knowledge, no study has yet compared plan 
quality between DL and KBP or other automated methods.

Tumor control probability and normal tissue 
complication probability

Radiomics is an emerging field that extracts textural, 

morphologic, and intensity quantitative features from images 
when may then be used as feature inputs to ML algorithms. 
Radiomics features are a promising additional data type 
for oncologic outcome prediction and tumor control 
probability models (76). Multiple manuscripts have been 
published using radiomics to predict radiation response, in 
some cases with prediction power outperforming standard 
clinical variables (77-82), though not in all (83). Radiomics-
based statistical approaches can predict various radiation 
normal tissue complication probabilities including radiation 
pneumonitis, xerostomia, and rectal wall toxicity (84-89). 
Radiomics data, coupled with genomic data and increasingly 
computable clinical record data, may escort radiation 
oncology into a new epoch of truly personalized radiation 
plans based on patient-specific knowledge. 

H o w e v e r,  i m p o r t a n t  c h a l l e n g e s  s u r r o u n d i n g 
standardization and reproducibility of radiomics-based 
predictors exist. For example, radiomics studies suffer 
from lack of standardization at multiple stages of image 
acquisition and processing. There is currently no way to 
reliably compare between MRI radiomics studies, because 
variations exist among all of them in MRI scanner sequence, 
scanner vendor, and scan acquisition parameters (90). We 
refer the interested reader to comprehensive reviews on the 
use of radiomics in the field of radiation oncology (90-93).

Quality assurance (QA)

Intensity modulation radiation therapy (IMRT) QA is 
labor-intensive and ML may improve the process efficiency. 
ML has been used to predict IMRT QA passing rates (94), 
error detection in radiation plans and delivery (95,96), 
and error prediction in image guidance systems (97). ML 
also has the potential to streamline the peer review QA 
process, which requires meticulous attention to detail and 
is time consuming for clinicians. It has been used for QA of 
both target/normal tissue contours and the final radiation 
treatment plan (98-100). ML has also been leveraged 
experimentally to correlate real-time dose deposition in 
proton therapy (101).

Two successive papers led by the University of California 
at San Francisco speak to the prodigious potential of DL 
for QA. In the first (94), the group led a multi-institutional 
effort to validate an ML algorithm for predicting 3%/3 mm  
gamma passing rates in IMRT plans. As previously 
mentioned, ML models learn from manually curated 
feature inputs, which in this circumstance were 78 features 
purposefully selected by expert physicists. Their ML model 
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predicted passing rates within 3.5% accuracy for 618/637 
IMRT plans, illustrating the potential for automation. 
Subsequently (102), they pitted their ML model against 
a repurposed DL neural network (AlexNet) that was 
originally trained on unrelated data and minimally retrained 
to predict gamma passing rates from raw radiotherapy 
fluence maps by altering about 4,000 of its network 
parameters. Despite that the model was not instantiated to 
interpret fluence maps and despite that the maps contained 
no curated features, the reconfigured AlexNet performed as 
well as the physicist-crafted ML algorithm.

Adaptive treatment planning support

Adaptive radiation therapy can be described as changing 
the radiation treatment plan during a treatment course in 
response to changes in anatomy (e.g., tumor shrinkage/
progression, weight loss) or tumor biology (e.g., biomarkers). 
ML algorithms have been developed to identify patients that 
may benefit from adaptive re-planning for head and neck 
cancer and prostate cancer (103-105). ML algorithms for 
online adaptive magnetic resonance guided radiotherapy have 
been developed for patients with gastrointestinal cancers 
in which a daily optimized plan is generated before each 
treatment based on changes in anatomy seen on the magnetic 
resonance imaging scan (35,106). Interested readers are 
referred to a detailed review on the role of machine learning 
in adaptive radiotherapy (107). 

A report by Fu et al. (35) illustrates the advantage 
afforded by DL for adaptive treatment. Radiation 
oncologists using an MRIdian MRI-linear accelerator 
(ViewRay Inc. Oakwood Village, OH, USA) at Washington 
University in St. Louis found that manual OAR contouring 
during adaptive online RT was onerous and had to be done 
manually. Therefore, a DL convolutional neural network 
(CNN) was developed to automatically segment liver, 
kidneys, stomach, bowel, and duodenum. To improve its 
accuracy, two additional CNN correction networks were 
integrated in the DL architecture and provided feedback 
that helped it learn anatomic constraints. The point of these 
correction CNNs was to learn spatial continuity information 
by sampling relatively large kernels (3×3×3 voxels)  
and use that to improve the output CNN contours. The 
CNN showed excellent DSC and HD results for the liver 
and kidney (immobile organs) but only fair results for the 
stomach, bowel and duodenum (mobile, spatially variable 
organs). Despite this limitation, the automated contours cut 
manual segmentation time by 75%.

Obstacles

Although AI technologies have proven to surmount many 
technical obstacles, significant political, legal, and ethical 
considerations remain to be resolved before widespread 
clinical implementation occurs.

A foremost concern is that the hidden neuronal 
architectures that afford DL such astounding predictive 
power are also its principle liability: DL is a “black 
box” in which predictions are made without human 
understanding of what features the network elects to use 
nor the exact statistical calculus by which it elected those 
features. This is a challenge to ensuring patient safety 
and clinician acceptance. Although the use of “saliency 
maps” (e.g., identifying the area of a chest X-ray which 
most contributes to the prediction) (108) are of benefit, 
this issue is not satisfactorily resolved (109). Other efforts 
have attempted to teach DL “common sense” (110). In 
reality, various automated clinical decision support systems 
(CDSS) that accomplish specific tasks as well as physicians 
have existed for 40 years, but clinical adoption has met 
skepticism (111). Physicians are distrustful of delegating 
consequential diagnostic and therapeutic decisions to 
CDSS that they do not understand. For this reason, 
clinician education in AI is highly salient to AI integration 
in clinical workflows. Incorporation of the concepts of AI 
into medical education, radiation oncology residency, and 
continuing education may accelerate the future of AI in 
healthcare (112). 

As previously discussed, the accuracy of ML outputs 
depends directly on the quality and quantity of input 
data. Indeed, it is usually the training data, rather than 
the nuances of algorithm selection or mathematical 
parameters, that most profoundly influences the algorithm’s 
generalizability and accuracy. Consider Google’s highly 
accurate algorithm for detecting diabetic retinopathy, which 
was trained on a data set of 128,175 retinal images (98). 
This is a significant challenge in radiation oncology, where 
institutions are siloed and where institutional datasets are 
small. The best ML and DL algorithms will likely emerge 
from multi-institutional cooperatives. Nevertheless, multi-
institutional data sharing will require standardized datasets 
and stringent privacy regulations. To obviate the need for 
securely sending and receiving HIPPA-sensitive datasets 
between institutions, an approach called distributed learning 
has emerged, in which data from multiple institutions 
are remotely and securely accessed without the data ever 
leaving the cybersecurity confines of its own institution 
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(113,114). Another possible approach (for DL only) is 
transfer learning, in which neural architectures are trained 
on very large datasets of unrelated data, and then retrained 
using a much smaller database of interest (transfer learning 
was exemplified in the discussion of repurposing AlexNet) 
(115,116). Additionally, the American College of Radiology 
has opened the Data Science Institute, which is hub for 
radiology professionals, industry leaders, government 
agencies, patients, and other stakeholders to collaborate and 
resolve obstacles to the development and implementation 
of AI. One of its express goals is to set standards for AI 
interoperability. This will help create an open source 
standard framework for AI use case development (117). 
Within radiation oncology, following a standardized 
nomenclature for radiotherapy planning structures ensures 
that data is FAIR (Findable, Accessible, Interoperable, 
and Reusable) (118) and easily computable. The American 
Association of Physicists in Medicine Task Group 263 
report provides a framework for this nomenclature (119).

Finally, we echo a caution against possible unintended 
ethical consequences of ML, including the introduction 
of bias which could worsen health disparities (120). Since 
ML is only as good as the data we train it with—even data 
replete with our biases—we risk creating machines that are 
far more efficient and consistent at implementing our biases 
than we are. Furthermore, consideration must be taken to 
avoid introducing technologies that divide physician-patient 
relationships. The top-down, government-subsidized 
implementation of healthcare information technologies 
since the 2009 HITECH act has resulted in unanticipated 
and unintended consequences for physician burnout and 
patient “e-iatrogenesis” (121-124). Prudent AI use cases 
should be identified, and these should be modest, simple, 
and fluid with existing physician workflows. 

Summary

We believe the literature evidence discussed above soundly 
supports our introductory assertion that radiotherapy 
treatment planning is primed to be revolutionized by AI. 
We have focused particularly on ML and DL AI use cases 
for hastening, increasing the quality, and decreasing the 
interobserver variability of image segmentation, treatment 
plan creation, QA, and patient-customized adaptive re-
planning and treatment course personalization. AI has 
tested potential for advancing radiation oncology treatment 
planning, but significant challenges remain before its 
widespread implementation in the clinical setting. 
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