
Page 1 of 14

© AME Publishing Company. J Med Artif Intell 2020;3:2 | http://dx.doi.org/10.21037/jmai.2019.09.01

Original Article

Understanding stroke with Bayesian networks

Robert O’Shea

Institute of Health Informatics, University College London, London, UK

Correspondence to: Robert O’Shea. Institute of Health Informatics, University College London, Floor 2, 222 Euston Rd, NW1 2DA, London, UK. 

Email: rmharj4@ucl.ac.uk.

Background: Stroke is a major source of morbidity worldwide, causing 5.78 million deaths per annum as 
per WHO global health estimates. An international effort is underway to improve outcomes in stroke by 
means of secondary and tertiary preventative measures. To maximise the efficacy of such interventions, we 
must fully understand the processes which lead to stroke-related morbidity and mortality. We propose to 
reframe stroke as a component of a network system, with multiple interacting causes and consequences. In 
real-world epidemiology, interactive systems are known to exist between social, behavioural and biological 
risk factors. The network paradigm accommodates such complexity well, and has demonstrated value in 
genetics, pathology and therapeutics. We propose Bayesian network inference as a hypothesis-free method of 
characterising the causal processes of stroke outcomes.
Methods: We examine data recorded during the International Stroke trial, a multi-centre interventional 
trial evaluating the efficacy of anticoagulation and antiplatelet agents as secondary preventative agents 
in 19,000 cases of stroke. We extract 38 relevant variables, pertaining to patient demographics, stroke 
presentation, clinical features, diagnosis, management and outcomes. A discrete Bayesian network inferred 
by optimisation of network score. The performance of several network scores and search algorithms were 
compared using cross validation. This process identified TABU with K2 score as the optimal network search 
protocol. Bayesian Network bootstrapping was used to provide an estimate of network structural confidence.
Results: Bayesian network inference detected 119 significant conditional dependencies in the International 
Stroke Trial dataset. These conditional dependencies were consistent with known clinical associations. 14-day  
mortality was found to be conditionally dependent on age at presentation (Mutual Info: P value <2e-16) and 
major non-cerebral haemorrhage (Mutual Info: P value <2e-16). 6-month outcome was affected by age (Mutual 
Info: P value <2e-16), conscious level at presentation (Mutual Info: P value <2e-16), presence of a lower limb 
deficit (Mutual Info: P value <2e-16) and hemianopia on examination (Mutual Info: P value <2e-16). 6-month 
outcomes were affected by recurrence of ischaemic stroke (Mutual Info: P value <2e-16), haemorrhagic stroke 
(Mutual Info: P value <2e-16), and stroke of unknown origin (Mutual Info: P value <2e-16). 6-month 
outcomes were also conditionally dependent on discharge within 14 days (Mutual Info: P value <2e-16).
Conclusions: We organise the pathogenesis, management and sequelae as a single functional system, 
in which clinical phenomena are understood to influence one another. We demonstrate the utility of the 
method to form and test multiple hypotheses in an objective fashion. This methodology is general and may 
theoretically be applied to various observational datasets across the health sciences.

Keywords: Cerebral stroke; cerebrovascular accident (CVA); epidemiology; stroke

Received: 27 August 2019; Accepted: 14 September 2019; Published: 25 March 2020.

doi: 10.21037/jmai.2019.09.01

View this article at: http://dx.doi.org/10.21037/jmai.2019.09.01

https://crossmark.crossref.org/dialog/?doi=10.21037/jmai.2019.09.01


Journal of Medical Artificial Intelligence, 2020Page 2 of 14

© AME Publishing Company. J Med Artif Intell 2020;3:2 | http://dx.doi.org/10.21037/jmai.2019.09.01

Introduction

Stroke is a major source of morbidity worldwide, causing 
5.78 million deaths per annum as per WHO global health 
estimates (1). An international effort is underway to improve 
outcomes in stroke by means of secondary and tertiary 
preventative measures. To maximise the efficacy of such 
interventions, we must fully understand the processes which 
lead to stroke-related morbidity and mortality. We propose 
to reframe stroke as a component of a network system, 
with multiple interacting causes and consequences. In real-
world epidemiology, interactive systems are known to exist 
between social, behavioural and biological risk factors. The 
network paradigm accommodates such complexity well, and 
has demonstrated value in genetics (2), pathology (3-5) and 
therapeutics (6-8). We propose Bayesian network inference 
as a hypothesis-free method of characterising the causal 
processes of stroke outcomes.

Causal networks in medicine

The sequence of events which follows an episode of 
stroke is a variable and complex process. Factors such as 
aetiology, time-to-treatment, comorbidities, and therapy 
vary between individual patients and presentations. The 
occult interplay of such phenomena greatly complicates 
the procedure of hypothesis testing on the true underlying 
pathological process. In each domain of clinical research 
problems may arise due to multidimensional confounding. 
Analyses such as multivariate regression and naïve Bayes 
assume independent sampling of all observed variables 
(9,10). In the medical field, where biological, clinical 
and social factors have multiple consequences, such 
broad assumptions of variable independence are often 
inappropriate. Unobserved interactions in the causal chain 
between predictor and outcome variables may subsequently 
influence the observed significance of their relationship (10). 
Several epidemiological studies have concluded that such 
confounding may be minimised with appropriate network 
modelling techniques (11-13). Ultimately, phenomena which 
are observed in the clinical setting may be better considered 
as a functional system, where disease states, treatments and 
clinical events each have causes and consequences. The 
“network” approach to causality modelling has proved 
insightful in genetics (2), pathology (3-5) and therapy (6-8). 
Graphical modelling methods make few assumptions about 
the dependence structure of the observed variables, allowing 
for the eventuality of dependent predictor variables. 

Bayesian networks overview

Bayesian network inference has multifaceted value in 
the interpretation of clinical data interpretation. The 
method was developed specifically to learn dependence 
structures from observational data (14,15). Generated 
graphs are intuitive and visually appealing, facilitating the 
comprehension of such outputs by non-statisticians. The 
structure of the inferred network may be used to infer 
causality, under some strong assumptions (16-18). Firstly, 
it is assumed that the observed data is representative 
of the true distribution. In a large random sample, this 
may be a reasonable assumption. Secondly, it is assumed 
that no unobserved factors influence the system. This is 
an inappropriate assumption in the medical field, as no 
hypothetical dataset of potential causative factors could 
ever be deemed exhaustive. It is assumed that each variable 
maintains independence of all other variables given, its 
direct causes and effects. This is analogous to the global 
Markov property (19). Finally, it is assumed that the true 
dependence structure of the studied variables may be 
represented by a directed acyclic graph. Some biological 
phenomena potentially violate this assumption. Feedback 
mechanisms, such as those found in metabolic and 
cardiovascular regulation are examples of graph cycles (20). 
Accordingly, we accept that the causal structure estimation 
we seek will provide a good approximation rather than a 
definitive result. Using cross-validation (21) and bootstrap 
approaches (22), a measure of confidence may be assigned 
to the reported network structure and parameters.

Bayesian network inference

A Bayesian network is a directed acyclic graphical 
representation of the joint probability distribution of a set 
of p random variables X (22). Therefore, a Bayesian network 
B may be denoted by the tuple G(V, Θ), in which G is a 
graph of V vertices and Θ parameters. A vertex Vi exists for 
each variable in X. Θ encodes the network parameters, such 
that:

( ) ( )( ) { }
:, :, :, :,| | 1, ,
i i B i iX pa X P X pa X i pΘ = ∀ ∈ …  [1]

Where pa(X:,i) are the parent vertices of X:,i in G (22). B 
encodes the probability distribution of X such that:

( ) ( )( ):,1 :, :, :,
1

, , |
p

B p B i i
i

P X X P X pa X
=

… =∏  [2]

A graphical simplification of the Bayesian network is a 
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representation as a graph G(V, E) of V vertices and V edges, 
such that an edge exists between Vi and Vj if and only if 
they are dependent. The task of Bayesian network learning 
is to isolate the most likely probability distribution which 
may have generated a matrix of values X. There are two 
primary subtasks associated with this problem, those of 
structure learning and parameter learning. Heuristic 
methods are employed to avoid the high computational 
complexity of exhaustive parameter search. Score-based 
models aim to maximise an objective based on a network 
score. We employ the Bayesian Information Criterion 
(BIC) and the Akaike Information Criterion (AIC) as 
network scoring methods. 

In this paper, we apply Bayesian network inference to 
identify causative factors for several clinical phenomena 
associated with stroke. We examine data from the 
International Stroke Trial, detailing the clinical course 
of 19,000 episodes of stroke. We describe the feature-
engineering, model assumptions and validation methods 
deployed to achieve and test our results.

Methods

Data preparation and cleaning

Data was mined from the repository of the International 
Stroke Trial 1 (IST-1) Database, hosted by the University 
of Edinburgh (23). IST-1 was a multicentre randomised 
trial of the efficacy of antithrombotic therapy in stroke. 
Patients were prescribed aspirin and/or unfractionated 
heparin according to a factorial design. The project was 
carried out at 437 centres in 36 countries. Detailed clinical 
documentation was performed during the trial, including 
specific features of the presentation, clinical examination, 
medication history and outcomes.

Feature exclusion

Recorded information was screened for clinical relevance. 
Variables relating to the specific time and hospital of 
presentation were excluded. Non-specific variables such 
as “other side effect of anticoagulation” were excluded. 
Free-text comments and dates of secondary diagnoses were 
excluded.

Feature modification

Categorical Features were extracted from the dataset. 

Two-class features such as “sex” were converted to binary 
variables. Features indicating clinical examination findings 
were assigned labels of class {“yes”, “no”, “cannot assess”}. 
These features were subsequently converted to binary 
features, such that positive labels were assigned in the 
case of “yes” or “cannot assess” and negative labels were 
assigned in the case of “no”. The etiological classification 
of the diagnosis was described by 4 mutually exclusive 
binary variables “ischaemic stroke”, “haemorrhagic stroke”, 
“unknown type”, “not stroke”. These features were encoded 
as a single categorical feature. 3-class categorical features 
were generated from numerical variables. Breakpoints 
between discrete factor levels were arbitrarily assigned to 
convenient intervals. Systolic blood pressure was converted 
to a 3-class categorical feature {“(0,140]”, “(140,220], “(220, 
295]”}. A categorical feature was generated to describe 
mortality as follows:

( )
3, 6
2, 14 6
1, 14

period x alive at month follow up
f x period x death days AND death months

period x death days of randomisation

=
= = ≥ <
 = <

 
[3]

A categorical variable was available indicating the 
Bamford Classification (24) of the stroke {“PACS”, “TACS”, 
“POCS”, “LACS”, “OTH”}. This was encoded as a five-
class categorical feature without modification. Table 1 lists 
descriptions of all included variables. 

Restriction

Thrombolysis was performed in 13 cases of the cohort 
(0.066%). All patients who underwent thrombolysis were 
excluded from analysis and this feature was removed from 
the dataset. All observations from the pilot study were 
excluded due to a change in the set of observed variables in 
the full study.

Missing values

One hundred and ninety-six observations (0.84%) contained 
at least one missing or unknown value. To determine 
whether the distribution of data absence was Missing at 
Random, 6-month mortality outcomes were modelled 
directly from data absence. This follows the approach of the 
dataset was converted according to the following function:

( ) 1, /
0,

x missing unknown
f x

x documented
=

=  =

 
[4]
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Table 1 Variable names, variable descriptions and timepoints of measured variables

Variable name Description Timepoint

Sex M = male; F = female Sex

Age Age in years Age

rasp3 Aspirin within 3 days prior to randomisation Recent_premorbid

rhep24 Heparin within 24 hours prior to randomisation Recent_premorbid

ratrial Atrial fibrillation Recent_premorbid

Aetiology Aetiological classification of stroke Aetiology

rsleep Symptoms noted on waking Symptom

rdelay Delay between stroke and randomisation in hours Prehospital

rvisinf Infarct visible on CT Presentation

rconsc Conscious state at randomisation Presentation

rsbp Systolic blood pressure at randomisation Presentation

rdef1 Face deficit Examination

rdef2 Arm/hand deficit Examination

rdef3 Leg/foot deficit Examination

rdef4 Dysphasia Examination

rdef5 Hemianopia Examination

rdef6 Visuospatial disorder Examination

rdef7 Brainstem/cerebellar signs Examination

bamford Bamford classification of stroke syndrome_diagnosis

rxasp Trial aspirin allocated randomisation

rxhep Trial heparin allocated randomisation

doac Other anticoagulants clinical_course

dgorm Glycerol or manitol clinical_course

dster Steroids clinical_course

dcaa Calcium antagonists clinical_course

dhaemd Haemodilution clinical_course

dcarend Carotid surgery within 14 days clinical_course

dmajnch Major non-cerebral haemorrhage within 14 days clinical_course

drsisc Recurrent stroke of ischaemic aetiology within 14 days clinical_course

drsh Recurrent stroke of haemorrhagic aetiology within 14 days clinical_course

drsunk Recurrent stroke of unknown aetiology within 14 days clinical_course

dpe Pulmonary embolism within 14 days clinical_course

dhep14 Prescribed heparin for 14 days or until discharge or death Day_14

dasp14 Aspirin given for 14 days or till death or discharge Day_14

dc14 Discharged within 14 days Day_14

mortality_14 Deceased within 14 days Day_14

outcome_6m Condition at 6-month follow up Follow_up_6 m
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A generalised linear model was subsequently trained to 
predict death by 6-month follow up. The model failed to 
learn a significant association between missing data and 
death at 6 months (Accuracy =0.78, AccuracySD =0.00056, 
Kappa =0.0018, KappaSD =0.0028). Accordingly, missing 
values were assumed to be randomly distributed and all 
observations with missing values were excluded. 

Temporal information

Temporal reasoning is a fundamental component of 
medical diagnosis and causal deduction (25), such that it 
is a criterion of the Bradford Hill criteria (26). Natural 
temporal relationships exist between many of the variables 
measured in the dataset. Each variable was assigned a 
clinical timepoint as appropriate. Using blacklisting (27), 
the model was prevented from learning arcs directed from 
latter timepoints to an earlier timepoints. Table 1 lists the 
timepoints of all included variables. 

( )

14
6

sex
age

aetiology
symptom

prehospital
presentation

timepoint var
examination

randomisation
syndromediagnosis

clinical course
day

month follow up









∈










 [5]

Graph inference

A discrete Bayesian network structure was chosen to 
represent the data. The model was generated using the R 
package “bnlearn” (27). Both the Hill-Climbing and Tabu 
algorithms were employed to perform score-based network 
inference. Each search algorithm was implemented using 
each of four network score functions – Bayesian Information 
Criterion, Akaike Information Criterion, Bayesian Dirichlet 
equivalent and K2. Each model was evaluated using 10 runs 
of 10-fold cross-validation. The optimal was selected as that 
achieving the highest cross validation likelihood. 

Arc confidence was assessed using the non-parametric 
bootstrap technique described by Friedman et al. (22), 

in which a set of models is learned on bootstrap samples 
of the data. Equivalent networks are identified as graphs 
which contain the same set of conditional independence 
statements (22,28,29). 

The non-parametric bootstrap procedure is carried out 
on a dataset D as follows (22,30):

Let G0(V, E0) be a Bayesian network representing the 
true dependence structure of X, composed of vertices V and 
edges E such that E ={e1,...ek}.

FOR b in {1,...m}:
(I) Db sampled using non-parametric bootstrap 

from X.
(II) A graphical model ( )ˆ ,b bG V E  is estimated from Db.
(III) END FOR

FOR EACH edge ei,j:
(I) Estimate the probability that each ei is present 

in the network structure by the frequency of its 
occurrence in the bootstrap sample graphs. Let 
1{a} be the indicator function that condition α 
is true. 

(II) ( ) { }
1

1

 1ˆ
i b

m

i e E
b

P e m−
∈

=

= ∑  [6]

(III) END FOR EACH
Empirical probabilities of each edge, ( )ˆ

iP e  are known 
as arc strengths (30). They quantify confidence that ei,j is 
present in G0. Scutari presents a method to estimate the 
threshold of arc strength which optimally separates true 

edges from spurious ones (30). Let ( ) ( )01
i

i e E
P e

∈
= . Therefore 

( )P E  is an indicator of each edge’s presence in G0.

Let:

( ) ( ) ( ){ }
1

 
1

ˆ ˆ1
i

m

P E P e x
b

F x m−
<

=

= ∑  [7]

and

( ) ( )
( )
[ )
[ )

0, ,0

, 0,1

1, 1,
P E

x

F x t x

x

 ∈ −∞


= ∈
 ∈ ∞


 [8]

Therefore, t corresponds to the frequency of non-
significant edges. Furthermore, t is the threshold above 
which an edge is present in Gtrue, such that:

( ) ( ) ( )
1

0
ˆ i i P Ee E P e F t−∈ ⇔ > 

 
[9]

Estimation of t is performed by minimisation of the 
following L1 normalised expression. 

( )( ) ( ) ( ) ( ) ( )ˆ1 ; ;ˆ
P EP EL t P E F x F x t dx= ∫ −  

[10]
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A set of 1,001 bootstrap network models were learned. 
A network average model was generated from this set, 
including arcs which were present in more than t of the 
generated models. This process was implemented with the 
“bnlearn” package (27).

Conditional independence testing

Mutual information, I, is a quantification of the co-
dependence of two variables (31), such that:

( ) ( ) ( )
( ) ( ),

,
, , log

i j

i j
i j i j

X X i j

p X X
I X X p X X

p X p X
= ∑  [11]

Mutual Information may be considered as the reduction 
of the uncertainty in Xi achieved by observation of Xj. It is 
symmetrical, such that I (Xi, Xj) = I (Xj, Xi). Given a vertex Xi 
with a single parent Xj in a Bayesian network B, The mutual 
information between Xi and Xj describes Xi’s influence of on 
Xj and vice versa.

Let Ω(Xi) be the state space of Xi and ppr(Xi=a) be the 
prior probability of Xi to be in state a. The arc weight of 

,i jX XΘ  is calculated as follows (31):

( )
( )

( )
( ) ( )

( ),
Ω Ω

|
| log

i j

i j

j i
X X pr i j i

a X b X pr j

p X b X a
p X a p X b X a

p X b∈ ∈

= =
Θ = = = =

=∑ ∑

( )
( )

( )
( ) ( )

( ), ?
Ω Ω

|
| log

i j

i j

j i
X X pr i j i

a X b X pr j

p X b X a
p X a p X b X a

p X b∈ ∈

= =
Θ = = = =

=∑ ∑
 [12]

In the case that Xi has multiple parents {Xj, Xk:n} (31)

 

( )
( ) ( )

( )
:

:
Ω :

| ,
| , log

|
j

j i k n
j i k n

b X pr j k n

p X b X a X c
p X b X a X c

p X b X c∈

= = =
= = =

= =∑

( )
( )

( )
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Ω Ω
i j

i i

X X pr k n pr i
c X a X

p X c p X a
∈ ∈

Θ = = =∑ ∑

 [13]

Inference testing was performed on the average-network 
graph using the asymptotic chi-squared test of mutual 
information.

Results

Model selection

The tabu algorithm, using the k2 score demonstrated the 
optimal cross validation loglikelihood (tabu_k2: Mean = 
1.52e+01, SD = 7.23e-04, CI.lower = 1.52e+01, CI.upper 
= 1.52e+01). Hill Climbing and Tabu search algorithms 
exhibited similar performance (Figure 1, Table 2). Scutari’s 

L1 normal approximation method (30) selected an arc 
strength significance cut-off of 0.5. Accordingly, 50.3% of 
all potential arcs were included in one or more network 
bootstraps (Figure 2). The final bayesian network estimate is 
illustrated in Figure 3. 

Demography

Sex was found to influence age at presentation (Mutual 
Info: P value <2e-16), prescription of aspirin in the 72 hrs 
prior to presentation (Mutual Info: P value <2e-16), atrial 
fibrillation on presentation (Mutual Info: P value <2e-16) 
and systolic blood pressure at randomisation (Mutual Info: 
P value <2e-16). Age at presentation influenced prescription 
of aspirin in the 72hrs prior to presentation (Mutual Info: 
P value <2e-16), atrial fibrillation on presentation (Mutual 
Info: P value <2e-16), stroke aetiology (Mutual Info: P 
value <2e-16), conscious level at presentation (Mutual Info: 
P value <2e-16), 14-day mortality (Mutual Info: P value 
<2e-16) and outcome at 6-month follow up (Mutual Info: 
P value <2e-16). Age at presentation was found to influence 
systolic blood pressure at randomisation (Mutual Info: P 
value <2e-16), visuospatial disorder risk (Mutual Info: P 
value <2e-16), prescription of other anticoagulants (Mutual 
Info: P value <2e-16) and discharge within 14 days (Mutual 
Info: P value <2e-16).

Recent history

Prescription of aspirin in the 72 hours prior to presentation 
influenced delay prior to randomisation (Mutual Info: P 
value <2e-16), prescription of glycerol or mannitol (Mutual 
Info: P value <2e-16) and haemodilution (Mutual Info: 
P value <2e-16). Prescription of heparin in the 24 hrs  
prior to presentation was found to influence atrial 
fibrillation on presentation (Mutual Info: P value 
=0 .0022) ,  de lay  pr ior  to  randomisat ion (Mutual 
Info: P value <2e-16) and prescription of glycerol 
or mannitol (Mutual Info: P value <2e-16). Atrial 
fibrillation on presentation influenced delay prior to 
randomisation (Mutual Info: P value <2e-16), conscious 
level at presentation (Mutual Info: P value <2e-16),  
dysphasia risk (Mutual Info: P value <2e-16) and hemianopia 
risk (Mutual Info: P value <2e-16). Atrial fibrillation on 
presentation affected visuospatial disorder risk (Mutual Info: 
P value <2e-16) and prescription of other anticoagulants 
(Mutual Info: P value <2e-16).
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Figure 1 Model cross validation performance. Repeated cross validation was performed with 10 repeats of 10-fold cross validation. 
Evaluated model scores were Bayesian Information Criterion (bic), Akaike Information Criterion (aic), Bayesian Dirichlet equivalent (bde) 
and K2. Each model score function was evaluated in with Hill-climbing (hc) and TABU search algorithms. The optimal method was selected 
as that producing the highest validation loglikelihood. 
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Event

Stroke aetiology was found to influence onset of symptoms 
on waking (Mutual Info: P value <2e-16), delay prior 
to randomisation (Mutual Info: P value <2e-16), infarct 
visibility (Mutual Info: P value <2e-16), upper limb 
deficit risk (Mutual Info: P value <2e-16), completion of 
aspirin prescription (Mutual Info: P value <2e-16) and 
discharge within 14 days (Mutual Info: P value <2e-16). 
Stroke aetiology affected prescription of corticosteroids 
(Mutual Info: P value <2e-16), haemorrhagic recurrence/

transformation of stroke within 14 days (Mutual Info:  
P value <2e-16), recurrence of stroke of unknown aetiology 
within 14 days (Mutual Info: P value <2e-16) and cheparin 
prescription completion (Mutual Info: P value <2e-16).

Presentation

Delay prior to randomisation influenced infarct visibility 
(Mutual Info: P value <2e-16) and conscious level at 
presentation (Mutual Info: P value <2e-16). Infarct visibility 
was found to influence hemianopia risk (Mutual Info: P 
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value <2e-16) and visuospatial disorder risk (Mutual Info: P 
value <2e-16). Conscious level at presentation was found to 
influence infarct visibility (Mutual Info: P value <2e-16), facial 
deficit risk (Mutual Info: P value <2e-16), upper limb deficit 
risk (Mutual Info: P value <2e-16) and lower limb deficit risk 
(Mutual Info: P value <2e-16). Conscious level at presentation 
influenced dysphasia risk (Mutual Info: P value <2e-16), 
hemianopia risk (Mutual Info: P value <2e-16), visuospatial 
disorder risk (Mutual Info: P value <2e-16) and brainstem 
and cerebellar deficit risk (Mutual Info: P value <2e-16). 
Conscious level at presentation affected Bamford classification 
(Mutual Info: P value <2e-16), prescription of corticosteroids 
(Mutual Info: P value <2e-16), discharge within 14 days 
(Mutual Info: P value <2e-16) and outcome at 6-month 
follow up (Mutual Info: P value <2e-16). Systolic blood 
pressure at randomisation influenced prescription of calcium 
channel blockers (Mutual Info: P value <2e-16). Presence of 
a facial deficit on examination exerted influence on Bamford 
classification (Mutual Info: P value <2e-16), prescription 
of glycerol or mannitol (Mutual Info: P value <2e-16) and 
discharge within 14 days (Mutual Info: P value <2e-16).

Clinical examination

Presence of an upper limb deficit on examination exerted 
influence on facial deficit risk (Mutual Info: P value <2e-16),  
lower limb deficit risk (Mutual Info: P value <2e-16), dysphasia 
risk (Mutual Info: P value <2e-16) and brainstem and cerebellar 
deficit risk (Mutual Info: P value <2e-16). Presence of an upper 
limb deficit on examination influenced Bamford classification 

(Mutual Info: P value <2e-16) and discharge within 14 days 
(Mutual Info: P value =0.0496). Presence of a lower limb 
deficit on examination influenced facial deficit risk (Mutual 
Info: P value <2e-16), dysphasia risk (Mutual Info: P value <2e-
16), brainstem and cerebellar deficit risk (Mutual Info: P value 
<2e-16) and Bamford classification (Mutual Info: P value <2e-
16). Presence of a lower limb deficit on examination influenced 
likelihood of carotid endarterectomy within 14 days (Mutual 
Info: P value <2e-16), discharge within 14 days (Mutual Info: 
P value <2e-16) and outcome at 6-month follow up (Mutual 
Info: P value <2e-16). Dysphasia affected facial deficit risk 
(Mutual Info: P value <2e-16), brainstem and cerebellar deficit 
risk (Mutual Info: P value <2e-16) and Bamford classification 
(Mutual Info: P value <2e-16). Hemianopia exerted 
influence on facial deficit risk (Mutual Info: P value <2e-16),  
lower limb deficit risk (Mutual Info: P value <2e-16), 
dysphasia risk (Mutual Info: P value <2e-16) and brainstem 
and cerebellar deficit risk (Mutual Info: P value <2e-16). 
Hemianopia influenced Bamford classification (Mutual 
Info: P value <2e-16), pulmonary embolism within 14 days 
(Mutual Info: P value <2e-16) and outcome at 6-month follow 
up (Mutual Info: P value <2e-16). Presence of visuospatial 
disorders on examination exerted influence on upper limb 
deficit risk (Mutual Info: P value <2e-16), lower limb deficit 
risk (Mutual Info: P value <2e-16), dysphasia risk (Mutual Info: 
P value <2e-16) and hemianopia risk (Mutual Info: P value 
<2e-16). Presence of visuospatial disorders on examination was 
found to influence brainstem and cerebellar deficit risk (Mutual 
Info: P value <2e-16), Bamford classification (Mutual Info: P 
value <2e-16) and discharge within 14 days (Mutual Info: P 

Table 2 Cross-validation performance of Bayesian network estimates

Score Search algorithm CV Log likelihood SD CI. lower CI. upper

bic hc −15.406 0.002 −15.403 −15.407

bic tabu −15.405 0.001 −15.404 −15.407

aic hc −15.234 0.002 −15.231 −15.236

aic tabu −15.235 0.001 −15.234 −15.237

bde hc −15.238 0.003 −15.234 −15.242

bde tabu −15.236 0.002 −15.233 −15.239

k2 hc −15.2 0.001 −15.198 −15.201

k2 tabu −15.198 0.001 −15.197 −15.199

A likelihood is estimated for the hypothesis that the validation set is generated from the estimated distribution. The natural logarithm of the 
likelihood is shown. The optimal method is selected to maximise the cross-validation log likelihood. 10 repeats of 10-fold cross-validation 
were performed. “bic”: Bayesian Information Criterion; “aic”: Akaike Information Criterion; “bde”: Bayesian Dirichlet equivalent; “k2” K2 
score; “hc”: Hill Climbing algorithm; “tabu”: TABU search algorithm.
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Figure 2 Cumulative distribution of arc strength in network bootstraps. Arc strength is the frequency in which a conditional dependency is 
inferred between a given pair of variables in network bootstraps. The L1 norm approximation is a binary approximation of arc strength, such 
that all arcs with arc strength above the L1 norm threshold are considered significant and included in the network structure. 

value <2e-16). Presence of brainstem/cerebellar deficits on 
examination influenced facial deficit risk (Mutual Info: P value 
<2e-16) and Bamford classification (Mutual Info: P value <2e-
16). Allocation to the aspirin trial arm influenced completion 
of aspirin prescription (Mutual Info: P value <2e-16).

Management

Allocation to the heparin trial arm affected risk of major 
non-cerebral haemorrhage within 14 days (Mutual Info: 
P value <2e-16), completion of heparin prescription 
(Mutual Info: P value <2e-16) and completion of aspirin 
prescription (Mutual Info: P value <2e-16). Prescription of 
other anticoagulants affected recurrence risk for ischaemic 
stroke within 14 days (Mutual Info: P value <2e-16), 
completion of heparin prescription (Mutual Info: P value 
<2e-16) and completion of aspirin prescription (Mutual 

Info: P value <2e-16). Prescription of glycerol or mannitol 
was found to influence prescription of corticosteroids 
(Mutual Info: P value <2e-16) and prescription of calcium 
channel blockers (Mutual Info: P value <2e-16). Prescription 
of calcium channel blockers was found to influence 
prescription of corticosteroids (Mutual Info: P value <2e-16).  
Haemodilution influenced prescription of calcium 
channel blockers (Mutual Info: P value <2e-16). Carotid 
endarterectomy within 14 days influenced prescription 
of other anticoagulants (Mutual Info: P value =0.0024), 
prescription of corticosteroids (Mutual Info: P value 
=0.0002) and recurrence of ischaemic stroke within  
14 days (Mutual Info: P value <2e-16).

Clinical course

Major non-cerebral haemorrhage within 14 days affected 
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likelihood of haemorrhagic recurrence/transformation 
of stroke within 14 days (Mutual Info: P value =0.0002), 
completion of heparin prescription (Mutual Info: P value 
<2e-16), completion of aspirin prescription (Mutual 
Info: P value <2e-16) and 14-day mortality (Mutual 
Info: P value <2e-16). Recurrence of ischaemic stroke 
within 14 days influenced prescription of corticosteroids 

(Mutual Info: P value <2e-16), discharge within 14 days 
(Mutual Info: P value <2e-16) and outcome at 6-month 
follow up (Mutual Info: P value <2e-16). Haemorrhagic 
recurrence/transformation of stroke within 14 days affected 
prescription of glycerol or mannitol (Mutual Info: P value 
=0.0066), prescription of corticosteroids (Mutual Info: P 
value =0.0002), completion of heparin prescription (Mutual 

Figure 3 Estimated conditional dependency structure of the causation network in stroke. Abbreviated variables are described in Table 1. 
Arrows represent causal relationships, such that arrows originate from the cause and point to the effect. 

Sex
Age
Recent_premorbid
Aetiology
Symptom
Prehospital
Presentation
Examination
Syndrome_diagnosis
Randomisation
Clinical_course
Day 14
Follow_up_6 m
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Info: P value <2e-16) and outcome at 6-month follow up 
(Mutual Info: P value <2e-16). Recurrence of stroke of 
unknown aetiology within 14 days was found to influence 
discharge within 14 days (Mutual Info: P value <2e-16) 
and outcome at 6-month follow up (Mutual Info: P value 
<2e-16). Pulmonary Embolism within 14 days was found 
to influence prescription of other anticoagulants (Mutual 
Info: P value <2e-16). Completion of heparin prescription 
affected completion of aspirin prescription (Mutual Info: P 
value <2e-16). Discharge within 14 days affected outcome 
at 6-month follow up (Mutual Info: P value <2e-16). 
Fourteen-day mortality affected outcome at 6-month follow 
up (Mutual Info: P value <2e-16).

Specific outcomes: morbidity and mortality

Fourteen-day mortality risk was highest in the (75,99] age 
bracket (RR =2.8806, ARI =0.0296, P value ≤2.22e-16), 
and lowest in under 55s (RR =0.272, ARI =-2.20e-02, P 
value =7.78e-143). Major non-cerebral haemorrhage also 
increased mortality risk (RR =6.44e+00, ARI =1.47e-01, 
P value <2.22e-16). Higher age at presentation adversely 
affected 6-month outcomes (Mutual information P value: 
<2.22e-16) independently of its effect on short term 
mortality. This effect included an increased risk of death 
prior to 6-month follow up in the 55–75 years group (RR 
=7.39e-01, ARI =-1.53e-01, P value <2.22e-16) and the 75–
99 years group (RR =1.999, ARI =0.256, P value <2.22e-16).  
Conscious level at presentation also adversely affected 
6-month mortality independent of 14-day mortality 
(Mutual information P value: <2.22e-16). Patients who were 
unconscious at presentation accepted an increased risk of 
dependence (RR =23.576, ARI =0.0201, P value <2.22e-16) 
and death (RR =11.809, ARI =0.0434, P value <2.22e-16) 
at follow up. Stroke recurrence was associated with poorer 
outcomes regardless of whether the aetiology was ischaemic 
(Mutual information P value <2.22e-16), haemorrhagic 
(Mutual information P value <2.22e-16) or unknown (Mutual 
information P value: <2.22e-16). Patients who were fit to 
be discharged within 14 days of presentation experienced 
favourable 6-month outcomes (Mutual information P value 
<2.22e-16), including a decreased risk of dependency (RR 
=0.387, ARI =-0.348, P value <2.22e-16) and death (RR 
=2.72e-01, ARI =−3.02e-01, P value <2.22e-16).

Specific outcomes: recurrence

Stroke recurrence risk varied with aetiology. Presentation 

with haemorrhagic stroke greatly increased risk of 
recurrence haemorrhage (RR =8.05e+00, ARI =2.11e-01, 
P value <2.22e-16). Although presentation with ischaemic 
stroke increased risk of recurrence of stroke of unknown 
aetiology (RR =4.02e+00, ARI =1.19e-01, P value <2.22e-16)  
it was not found to independently influence ischaemic 
stroke recurrence. Patients who suffered major non cerebral 
haemorrhage undertook an increased risk of haemorrhagic 
stroke recurrence (RR =9.05, ARI =0.06, P value =1.54e-05). 

Discussion

Consistent arcs

The structure inference algorithm successfully learned a 
network which is largely consistent with clinical knowledge. 
Vertices representing clinical examination findings were 
densely interconnected, and clusters within this region 
reflected clinical syndromes.

For instance, the presence of brainstem or cerebellar 
deficits on clinical examination was found to depend on the 
presence of visuospatial disorders. Visuospatial disorders 
indicate occipital lobe pathology and therefore posterior 
circulation deficiency. The cerebellum is also supplied by the 
posterior circulatory system. Applying causal reasoning to 
this interaction, visuospatial disorders and cerebellar deficits 
share a common causative factor—posterior circulatory 
disruption. As this factor is unobserved, confounding occurs 
between the two child nodes. Consequently, an apparent 
causal relationship is observed from visuospatial disorders 
to cerebellar disorders. Nonetheless, detection of the 
association between these clinical features appropriately 
identifies their special relationship.

Each neurological deficit exerted some influence on 
the Bamford Classification. Bamford Classification is an 
objective clinical sign which is assigned by a clinician based 
on the cluster of neurological deficits found on exam. Thus, 
these dependencies are consistent with the true clinical 
process. Visibility of the infarct depended on delay prior 
to randomisation aetiology of the stroke, this is consistent 
with the increasing visibility of infarcts over time. Stroke 
aetiology also influenced the visibility of the stroke, this 
is likely due to the exclusion of all patients with visible 
intracranial haemorrhage at the time of recruitment.

Prescription of calcium antagonists was influenced 
by systolic blood pressure and concomitant prescription 
of glycerol or mannitol. As these features represent 
the indication and alternatives to calcium antagonist 
medications respectively, this association is clinically 
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consistent. Prescription of other anticoagulants depended 
on occurrence of pulmonary embolism.

Age at presentation depended on sex of the patient. This 
is a likely consequence of the known difference between 
the age profile of strokes in males and females, with males 
suffering earlier events (32). Delay prior to randomisation 
was lower in patients who received heparin within the 
previous 24 hours. As this relationship is independent of 
stroke aetiology, it may indicate earlier detection of stroke 
in patients previously interacting with health services.

Inconsistent arcs and latent features

Infarct visibility depended directly on conscious level at 
presentation. Although it is conceivable that these events are 
associated, it is probable that some other latent feature such 
as infarct size influenced both of these variables. Carotid 
endarterectomy was directly linked to the presence of a 
lower limb deficit. Carotid endarterectomy is indicated due 
to carotid stenosis, a cause of ischaemic stroke—therefore, 
it is likely that aetiology d-separates carotid endarterectomy 
and lower limb deficits in the true causality network.

Model selection and regularisation

Bayesian network inference detected 119 conditional 
dependencies in the International Stroke Trial dataset. In the 
majority cases, these associations were consistent with known 
clinical phenomena. Few associations were detected which were 
not clinically explicable. It is notable that the selection of the 
arc strength significance cut-off critically affected the resultant 
network structure, as several arcs had strengths near the 
threshold. Approximately half of all potential arcs were deemed 
significant in more than one bootstrap network estimate, 
indicating moderate variability of the network estimate.

Conclusions

We organise the pathogenesis, management and sequelae 
as a single functional system, in which clinical events are 
assumed to influence one another naturally. We have 
demonstrated the utility of the method to form and test 
multiple hypotheses in a highly objective fashion. 

This feature efficiently addresses the dual problems of 
hypothesis search and multiple hypothesis testing. Though 
true evidence of causality may only be attained through 
interventional research (17,18), complete observation of the 
causative process allow its improved approximation. In this 

analysis, we demonstrate the interdependent nature of many 
factors which are known to be associated with stroke risk. 
This methodology is general and may theoretically be applied 
to various observational datasets across the health sciences.
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