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This editorial is in response to the article on deep learning 
application in oesophageal endoscopy by Nakagawa et al. (1). 
The role of deep learning in the classifying invasion depth 
of oesophageal carcinoma and the future aspect of deep 
learning in endoscopy are described.

Artificial intelligence (AI) has attracted attention in many 
fields, not only medicine. Deep learning with a convolutional 
neural network (CNN) has been a primary strategy in recent 
advances in AI. Conventional machine-learning requires 
advanced knowledge of specific imaging features, while 
CNN uses imaging features extracted via the convolutional 
process to learn automatically (2). Deep CNN has been 
developed to handle images for self-driving car technology, 
facial recognition, and other uses. In medicine, deep CNN 
has had major impacts on radiology and pathology that deal 
with images from early stage of AI researches (3,4). Deep 
CNN has also been used in gastrointestinal endoscopy, and 
studies have examined the detection of Helicobacter pylori 
gastritis (5) and gastric cancer (6), and the classification of 
polyps at colonoscopy (7,8). 

Oesophageal cancer is the sixth leading cause of 
cancer-related death (9). Although the main treatment of 
oesophageal cancer is oesophagectomy, the procedure is 
invasive, and the physical burden on patients is enormous 
(10,11). Endoscopic resection is effective for early 
oesophageal cancer, but it is crucial to determine the 
indications precisely because oesophageal wall extension 
of the lesion increases the likelihood of metastasis (11). 
Oesophageal cancer invading from the epithelium to 
200 μm into the submucosa (EP-SM1) has a low risk of 
metastasis, whereas deeper oesophageal cancer (SM2/3) 

has a higher risk (12,13). Therefore, the indication for 
oesophageal resection is up to SM1, and it is required to 
differentiate EP-SM1 from SM2/3. However, endoscopy 
is an operator-dependent examination and the diagnosis of 
oesophageal wall invasion by humans is not thought to be 
sufficient. 

To improve the diagnostic evaluation of oesophageal 
wall invasion using endoscopy, Nakagawa et al. applied a 
deep learning technique based on CNN (1). They acquired 
14,338 endoscopic images (8,660 non-magnified and 
5,678 magnified endoscopic images) from 804 superficial 
oesophageal squamous cell carcinomas with pathological 
proof of cancer invasion depth as a training dataset and 914 
endoscopic images (405 non-magnified and 509 magnified 
endoscopic images) from 155 patients as a validation dataset. 

The images were converted into joint photographic 
experts group (JPEG) format and resized to 300 × 300 
pixels. The training dataset was fed to the deep learning 
process using the Single Shot MultiBox Detector CNN 
architecture to create a model to differentiate EP-SM1 
and SM2/3. The trained deep CNN model was applied 
to the validation dataset and its diagnostic performance 
was assessed. The authors also compared the performance 
of their deep CNN model with that of 16 board-certified 
specialists. In this unique study, they found that the deep 
CNN model and experienced endoscopists had comparable 
diagnostic ability, with a sensitivity of 90.1% and 89.8%, 
specificity of 95.8% and 88.3%, and accuracy of 91.0% 
and 89.6%, respectively, in the validation dataset. The 
deep CNN model took 29 s to assess the validation dataset, 
whereas it took an average of 115 min for the endoscopists.
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In this retrospective study, a Single Shot MultiBox 
Detector was used to detect lesions in endoscopic images. 
Therefore, the lesion does not need to be cropped 
manually, which is an excellent way to avoid operator-
bias. The purpose of this study was to classify the wall 
invasion of oesophageal cancer; however, the detection of 
lesions during the examination is also a vital role for deep 
learning because endoscopy is performed within a limited 
time. Other researchers have assessed the ability of CNN 
to detect lesions in endoscopic images (14-16). It would 
of interest to determine whether the present method can 
detect lesions in a similar dataset.

Endoscopists diagnose oesophageal cancer wall invasion 
based on specific endoscopic findings, such as protrusion, 
depression, and hardness (1). CNN makes the diagnosis 
by extracting image features. In other hand, although 
some research has clarified which anatomical structures 
CNN uses for the diagnosis (17-19), it is difficult to define 
the imaging features that CNN focused on, such as the 
pattern of texture and heterogeneity in the lesion. CNN 
has the potential to surpass human diagnosis and may make 
diagnoses using imaging findings that humans may not 
consider (20). Therefore, it is important to clarify what 
imaging features CNN focuses on during the diagnostic 
process because this may contribute to the development of 
medical knowledge.

In recent years, radiomics research has been developed to 
evaluate image features, such as texture and heterogeneity, 
which are difficult to represent with general indicators such 
as size and signal value. Radiomics studies using computed 
tomography (CT) and positron emission tomography, 
and magnetic resonance imaging (MRI) have also been 
conducted in gastrointestinal tract, and are used to predict 
the prognosis and therapeutic response of lesions (21). 
Radiomics research has the potential to reveal which image 
features CNN focuses on; for now, however, the radiomics 
features that CNN focuses on are in a black box.

In this study, endoscopic images were converted to JPEG 
format and resized to 300 × 300 pixels; thus, images smaller 
than original were processed by deep CNN. Because the 
deep CNN algorithm consists of several layers and handles 
a lot of parameters during the training phase, it is necessary 
to reduce the data size of the input image. With advances 
in hardware and programming of the algorithm, CNN 
may extract diagnostically more useful imaging features 
from higher-quality original images, and its diagnostic 
performance may improve.

This study examined both magnified and non-magnified 

endoscopic images. The diagnosis of cancer invasion 
depth using non-magnified endoscopic images is based 
on subjective imaging findings, which cause interobserver 
variability. The deep CNN diagnostic performance of 
magnified endoscopic images was no better than that of 
non-magnified endoscopic images in this study, and the 
authors attributed this to the small training dataset. The 
size of the training dataset strongly correlates with the 
diagnostic performance of the AI model, and a larger 
dataset is desired. The use of publicly available datasets or 
collaborative collections of datasets at multiple facilities 
could increase the size of training datasets (22). Recently, 
a generative adversarial network (GAN) has been applied 
to increase the dataset (22). Given a training set, GAN 
learns to generate new data and creates fake images 
indistinguishable from real images. Using GAN may solve 
the problem of training dataset size.

In conclusion, Nakagawa et al. showed the usefulness 
AI in the diagnosis of cancer oesophageal wall invasion 
using endoscopic images. The problem of inter-observer 
variability, which often occurs with endoscopic diagnosis, 
was not seen with AI, and an accurate diagnosis was 
possible. In clinical endoscopy, it is necessary to make a 
diagnosis quickly, unlike with modalities such as CT and 
MRI. By overcoming this limitation, AI can play a more 
important role in endoscopic diagnosis.
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