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Introduction

There are an estimated 93 million people with diabetic 
retinopathy (DR) and 17 million with proliferative 
diabetic retinopathy (PDR) worldwide (1). Duration of 
type 1 diabetes (T1D) and type 2 diabetes (T2D) and 
hyperglycemia, as measured by hemoglobin A1c (HbA1c), 
are strongly associated risk factors for retinopathy (2,3). 
However, as little as approximately 11% of variation in 
retinopathy risk is attributed to HbA1c and duration 
of disease (4). Transient hyperglycemia, hypertension, 
hyperlipidemia, and other environmental and genetic 
factors have been proposed as additional determinants of 
the development of DR (4-6). Genetic susceptibility may 
explain much of the heterogeneity in DR among patients 
with similar glycemic exposure.

Linkage disequilibrium (LD) studies, candidate gene 
association studies, admixture analysis, and genome wide 
association studies have been conducted to try to elucidate 
the genetic factors that influence progression of DR. These 
studies have been limited by insufficient sample size, lack 
of replication, and variation in how case/control groups 
are defined (7,8). Mitochondrial DNA and epigenetic 
changes, including miRNA, in DR have also begun to be 
examined (9-12). This review will summarize the current 
understanding of the genetics of DR, highlighting key 
findings and future directions of investigation.

Heritability and LD

Studies of twins and families first established a genetic basis 
for DR. In the 1970’s and 80’s, studies of monozygotic 
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twins showed high rates of concordance for severity of DR 
in T1D and T2D (13,14). Relatives of patients with DR 
have a 2–4 times higher risk of developing DR compared to 
relatives of diabetic patients without retinopathy (15-21). 
This familial clustering has been shown in South Indian, 
Mexican American, Chinese, and multi-ethnic populations 
(15-21). Heritabilities of PDR and DR are estimated at 
25–52% and 18–27% respectively (16,17). More extreme 
phenotypes—advanced PDR despite relatively low glycemic 
exposure, or absence of DR after decades of uncontrolled 
diabetes—likely have stronger genetic underpinnings than 
more common phenotypes. However, finding sufficient 
numbers of these patients with rarer phenotypes is 
challenging.

Linkage analyses identified possible loci with DR genes in 
the 1990’s and 2000’s. A significant logarithm of odds (LOD) 
score depends in part on the density of the genome sampled, 
and a score of 3.3 is the threshold for significance in the 
least strict definition of genome-wide significance (22).  
A genome-wide linkage analysis in the Pima Indian 
population showed evidence of linkage on chromosome 
1p (LOD 3.1) (17). Unconditional linkage analysis found 
suggestive linkage at chromosomes 3 and 12 in a Mexican 
American population (23). Linkage analyses have not led 
to the identification of definitive DR genes, however, 
as linkage studies classically identify loci for monogenic 
diseases that exhibit Mendelian inheritance in large 
multigenerational pedigrees, and DR is likely a complex 
polygenic disease with environmental components (8,24).

Candidate gene association studies

Population-based studies that seek to identify common 
genetic variants are more promising for polygenic diseases 
like DR. Candidate gene association studies investigate 
whether a variant of a gene with a hypothesized role in 
the disease is significantly more common in a group of 
cases vs. controls. The ideal association study for DR has 
several characteristics. First, the presence of DR should 
be determined with fundus photographs and grading with 
a standard scale such as the Early Treatment Diabetic 
Retinopathy Study (ETDRS) criteria. Cases should be 
advanced (PDR or diabetic macular edema) because these 
are likely the more heritable forms of the disease. Control 
groups consisting of patients without diabetes can result 
in the identification of genes that contribute to diabetes in 
general rather than DR specifically. Controls should ideally 
be patients who have had diabetes but no or minimal DR. It 

is best if the controls also have a long duration of diabetes, 
at least 10–15 years. This minimizes misclassification of 
cases as controls, as some patients with no DR and short 
duration of diabetes will go on to develop severe DR with 
longer diabetes duration. It is not yet clear if DR risk 
variants will differ between patients with T2D and T1D. 
DR has more similarities than differences clinically between 
T1D and T2D patients, so it is likely that there are some 
shared variants. However, to limit heterogeneity, many 
genetic studies restrict the discovery phase to one of the 
diabetes types. Finally, large sample sizes and independent 
replication cohorts are key to reliably identifying the 
common variants of modest effect that we hypothesize are 
involved in DR.

Previous reviews have summarized findings for a number 
of candidate DR genes (7,8,12,25,26). Genes in the renin-
angiotensin system as well as vascular endothelial growth 
factor (VEGF), erythropoietin (EPO), transcription factor 
7-like 2 (TCF7L2), aldose reductase (AKR1B1), receptor 
for advanced glycation end products (RAGE), nitrous oxide 
synthase (NOS3), methylenetetrahydrofolate reductase 
(MTHFR), solute carrier family 19 member 3 (SLC19A3), 
nuclear factor erythroid 2-like 2 (NFE2L2), CDK5 
regulatory subunit associated protein 1 like 1 (CDKAL1), 
and complement pathway genes have been investigated 
(7,8,12,25-31). No consistent, rigorously replicated gene has 
emerged for DR (12,32), likely due to insufficient sample 
size, lack of comprehensive coverage of genetic variants, or 
incorrect hypotheses of the candidate genes involved.

The Candidate Gene Association Resource (CARe) 
conducted one of the best powered candidate gene studies 
for DR with a large sample size (n=8,040) including 
discovery and replication cohorts (33). This study was 
performed with comprehensive coverage of 2,000 genes in 
inflammatory, metabolic and cardiovascular pathways, with 
correction for multiple hypothesis testing. This strategy 
increased the likelihood that the correct variant would be 
chosen by choosing multiple genes in relevant pathways and 
maximizing coverage of all the variants in these genes (33). 
P selectin (SELP) and iduronidase (IDUA) were associated 
with DR in the discovery sample, but not in replication 
cohorts. An EPO association was consistent with initial 
report (34), but was not significant when corrected for 
multiple hypothesis testing (33).

The P selectin association was further followed up 
in a study of DR in the Jackson Heart Study (JHS). 
Among 629 African Americans with T2D in the JHS, 
Penman et al. showed that higher plasma P selectin levels 
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were associated with DR [odds ratio (OR) =1.11, 95% 
confidence interval (CI) =1.02‒1.21, P=0.02] and PDR 
(OR =1.23, 95% CI =0.03–1.46, P=0.02) (35). Subjects 
with T2D without retinopathy were more likely to be 
minor allele homozygotes (TT) for the single nucleotide 
polymorphism (SNP) rs6128 in the P selectin gene than 
those with retinopathy (P=0.03) (35). This same variant in P 
selectin was one of those found to be associated with DR in 
Caucasians with the same direction of effect as in the CARe 
discovery sample (33,35).

Recently, Porta et al. found that variants of SLC19A3, 
which encodes a thiamine transporter, were associated 
with a decreased risk of severe DR. Thiamine regulates 
intracellular glucose metabolism, supporting an a priori 
hypothesis for involvement in DR. The study population 
was comprised of T1D patients from the FinnDiane Study: 
1,566 cases of severe DR (defined as ETDRS score ≥53 or 
any retinal laser treatment) and 218 control subjects with 
no/mild DR (ETDRS score <35, no laser treatment, and 
diabetes duration >20 years). Two SNPs in SLC19A3 in LD 
with each other (FinnDiane r2=0.93) were associated with 
a reduced risk of severe DR and the combined phenotype 
of end-stage renal disease and severe DR: rs12694743 
[P=3.81×10−6, OR 0.51 (95% CI: 0.38–0.68)] and rs6713116 
[P=3.15×10−6, OR 0.41 (0.28–0.60)]. However, the negative 
association of these two SNPs with DR could not be 
replicated in two independent cohorts (28), the Diabetes 
Control and Complications Trial (DCCT)/Epidemiology 
of Diabetes Interventions and Complications (EDIC) (3)  
and the Wisconsin Epidemiologic Study of Diabetic 
Retinopathy (WESDR) (36). However, rs12694743 was 
found to be associated with a decreased risk of the combined 
phenotype of severe DR and end-stage renal disease in 
the study’s meta-analysis of the FinnDiane and WESDR 
cohorts, even after adjustment for body mass index and 
HbA1c (P=2.30×10−8) (28).

Admixture mapping

Admixed individuals inherit chromosomal segments 
from two distinct continental populations that mixed 
relatively recently in evolutionary history, within the last 20 
generations (37). African Americans are an example of an 
admixed population with European and African ancestry. 
Admixed individuals allow for detection of a variant 
associated with a disease if the variant differs in frequency 
between the ancestral populations.

Tandon et al. studied participants who self-identified as 

African American with T2D: 305 DR cases (ETDRS score 
>60) and 1,135 controls (ETDRS score <60) (38). The 
proportion of African ancestry was not associated with PDR 
after adjustment for clinical (duration of diabetes, HbA1c, 
systolic blood pressure), demographic, and socioeconomic 
(income, education) factors. Admixture analysis failed 
to identify a genome-wide significant locus (38). Larger 
sample sizes may be needed for admixture analysis to reveal 
potential loci for DR genes.

Genome-wide association studies

Rather than investigate hypothesized candidate genes, 
genome-wide association studies (GWAS) agnostically 
analyze SNPs across the genome that commonly vary 
between humans. A higher threshold of significance 
P<5×10−8 is the accepted standard in the field, and 
associations should be replicated in independent cohorts (8). 
In many complex diseases, including age-related macular 
degeneration (AMD), GWAS have successfully identified 
genes, providing novel opportunities for understanding 
pathogenesis and treatment (39-42).

GWAS for DR are summarized in Table 1. The results 
from these GWAS have been well-summarized in previous 
reviews (8,12). Two of these GWAS studies found variants 
that achieved genome-wide significance of P<5×10−8 in 
their discovery samples, but neither study corrected for 
the multiple genetic models tested or had independent 
replication of their results (12,47). One GWAS has found 
a genome-wide significant finding including replication in 
independent cohorts. Burdon et al. found an association of 
genome-wide significance between rs9896052 and sight-
threatening DR (P=4.15×10−8) in a meta-analysis of three 
cohorts in the study: Caucasian patients with T2D, Indian 
patients with T2D, and Caucasian patients with T1D (50). 
The growth factor receptor bound protein 2 (GRB2) gene 
downstream of this locus binds phosphorylated insulin 
receptor substrate 1 to activate the MAPK pathway via Ras 
in response to insulin (51,52). This gene is also involved 
in VEGF signaling (52). Burdon et al. showed expression 
of GRB2 in the human retina and increased expression 
in a mouse model of retinopathy, supporting a possible 
association between this locus and DR (50).

Four studies have attempted to replicate reported loci 
associations with DR in independent cohorts (32,53-55). 
Grassi et al. first attempted replication of 389 putatively 
associated SNPs identified in the Genetics of Kidneys in 
Diabetes (GoKinD) and EDIC discovery cohort (44) in the 
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WESDR cohort in 2012. The study compared 208 cases 
(prior laser treatment for either PDR or diabetic macular 
edema) and 261 controls (all other patients in WESDR). 
No associations reached genome-wide significance (53).

In 2014, McAuley et al. examined 24 of the most significant 
SNPs previously reported by Grassi et al. (44) and Huang  
et al. (45) in a predominantly Caucasian population with T1D 
and T2D in Australia: 163 cases with severe non-proliferative 
diabetic retinopathy (NPDR) or PDR and 300 controls with 
T2D for 5 years or more with no or mild DR (54). McAuley 
et al. found that rs1073203 was associated in a dominant 
model (P=0.005). The SNP rs1073203 was first reported to 
be associated with severe DR (diabetic macular edema or 
PDR) in the GoKinD and EDIC T1D cohort (P=8.5×10−6) 
(44). McAuley et al. also found rs4838605 to be significant 
in an additive model (P=0.047). A Taiwanese GWAS for 
T2D had reported an association for rs4838605 with DR 

(P=1.87×10−9) (45), raising the possibility that this locus 
may affect DR in different ethnicities (12,47,54). The 
multiple models tested for these variants make it difficult to 
determine if they truly are significant after correction for 
multiple hypothesis testing.

In 2015, Hosseini et al. (32) attempted replication for 90 
SNPs at 34 independent loci for DR. Top reported signals 
(P<10−5, 54 SNPs in 11 loci) came from four previous 
GWAS studies (43-46) and two large candidate gene 
association studies with broad coverage (33,56). Hosseini 
et al. also used top reported signals (P<10−5, 22 SNPs in 11 
loci) (32) from a GWAS of retinopathy in subjects without 
diabetes (57). SNPs with evidence of association with DR 
(P<0.05, 18 SNPs in 16 loci) from previous candidate gene 
association studies were also included (25,58-74). Of these, 
87 SNPs (32 loci) were genotyped or imputed in Hosseini 
et al.’s data and suitable proxies (r2>0.9) were identified for 

Table 1 Published GWAS in diabetic retinopathy

Study
Diabetes 
type

Number of cases, 
case definition

Number of controls, 
control definition

Top findings OR 95% CI P value

Fu et al.  
2010 (43)

2 103; severe 
NPDR, PDR

183; no DR or early 
NPDR

CAMK4 2.6 1.6–4.3 6.0×10−5

FMN1 0.3 0.2–0.5 6.2×10−5

Grassi et al. 
2011 (44)

1 973; laser 
treatment

1,856; no laser 
treatment

rs476141 1.3 NR 1.2×10−7

CCDC101 0.6 NR 3.4×10−6

No loci replicated

Huang et al. 
2011 (45)

2 174; 
NPDR, PDR

575; no DR and 
non-diabetics

ARHGAP22 1.6 1.0–2.5 1.9×10−9

PLXDC2 1.7 1.1–2.7 3.5×10−7

Sheu et al. 
2013 (46)

2 437; PDR 570; no DR,  
≥8 years of T2D

TBC1D4 1.7 NR 1.3×10−7

LRP2-BBS5 1.5 NR 2.0×10−6

Lin et al.  
2013 (47)

2 174; NPDR and 
PDR

574; no DR rs10499299 1.7 1.0–1.3 8.5×10−21

rs17827966 1.7 1.0–3.0 8.7×10−21

Awata et al. 
2014 (48,49)

2 837; any DR 1,149; no DR rs9362054 1.6 NR 1.4×10−7

Burdon et al. 
2015* (50)

1 and 2 336; sight-
threatening DR

508; no DR rs3805931 0.5 0.4–0.7 2.7×10−7

Did not replicate

GRB2 1.7 1.3–2.2 6.6×10−5

With replication 1.5 1.1–2.0 4.2×10−8

*, study pursued replication. NR, not reported; CAMK4, calcium/calmodulin dependent protein kinase IV; FMN1, formin 1; CCDC101, 
coiled-coil domain-containing protein 101; ARHGAP22, rho GTPase activating protein 22; PLXDC2, plexin domain containing 2; TBC1D4, 
TBC1 domain family member 4; LRP2-BBS5, LDL receptor related protein 2-Bardet-Biedl syndrome 5; DR, diabetic retinopathy; GWAS, 
genome-wide association studies; NPDR, non-proliferative diabetic retinopathy; PDR, proliferative diabetic retinopathy; GRB2, growth 
factor receptor bound protein 2; T2D, type 2 diabetes.
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three more SNPs. Hosseini et al. did not find any genome-
wide significant associations among the 90 tested SNPs at 
34 independent loci after accounting for multiple hypothesis 
testing (32). Peng et al. similarly did not find any genome-
wide significant associations for 40 SNPs previously 
reported in three GWAS [Mexican-Americans (43),  
GoKinD and EDIC (44), and WESDR (43,44,53)] in a 
large study of Chinese patients with T2D (819 with DR and 
1,153 without) (55).

Repl icat ion of  associat ions  with genome-wide 
significance has been challenging for DR. One contributing 
factor is that variants for DR likely have small effects, 
requiring larger sample sizes for detection. In many 
other complex diseases, sample sizes upwards of 20,000 
participants have been necessary to identify replicable 
variants (75). Thus far, sample sizes this large have not yet 
been collected for DR. With larger collaborative efforts, 
GWAS with larger sample sizes for DR will be possible. To 
increase the likelihood of success of such efforts, precise 
phenotyping and strict definitions for cases and controls are 
needed.

Mitochondrial DNA and epigenetics

Exploration of the role of mitochondrial DNA (mtDNA) and 
epigenetics in DR is beginning. Mishra et al. used extended-
length PCR to measure mtDNA damage in peripheral 
blood mtDNA in rat and mouse models of diabetes (9). 
Diabetic rats had a significantly reduced ratio of long to short 
amplicons of mtDNA and decreased mtDNA copy numbers, 
compared with age-matched normal rats, suggesting 
higher mtDNA damage in diabetes (P<0.05) (9). Lipoic 
acid, which prevents retinopathy in diabetic rats, decreased 
mtDNA damage in this study (P<0.05). Overexpression of 
superoxide dismutase 2 (SOD2) or suppression of matrix 
metallopeptidase 9 (MMP-9) prevented retinopathy in 
diabetic mice, and these populations of mice also did not 
show the increase in mtDNA seen in diabetic mice (9). 
Mishra et al. also measured mitochondrial DNA damage as 
significantly increased in diabetic patients with retinopathy 
(n=6) vs. without retinopathy (n=5) (P<0.05) (9).

Estopinal et al. showed that mitochondrial haplotypes 
are associated with severity of DR in Caucasian patients 
(153 with NPDR and 138 with PDR) (76). The study 
found that the frequency of PDR differed significantly 
by mitochondrial haplogroup (P=0.027). In the study, 
an independent cohort of Caucasian patients with DR  
(44 NPDR; 57 PDR) confirmed this association (P=0.0064) 

(76). In the combined cohort, patients from the common 
haplogroup H were more likely to have PDR [OR =2.0 
(95% CI =1.3–3.0), P=0.0012]. Patients from haplogroup 
UK had a decreased risk of having PDR [OR =0.5 (95% CI 
=0.3–0.8, P=0.0049)]. These associations with PDR were 
independent of HbA1c, diabetes duration, and hypertension 
in multivariate logistic regression analyses haplogroup H 
[OR =2.1 (95% CI =1.3–3.4)]; haplogroup UK [OR =0.41 
(95% CI =0.23–0.73)] (76).

Investigation into epigenetic mechanisms in DR has 
been underway (77). Diabetic eyes have been shown to 
have miRNA changes including upregulation of miR200b, 
a VEGF-regulating miRNA (10). An increase in miR-29b  
is thought to be protective against apoptosis of retinal 
ganglion cells in streptozotocin-induced diabetic rats (11). 
Agardh et al. analyzed DNA methylation genome-wide in 
485,577 sites in T1D patients. False discovery rate analysis 
was used to account for multiple hypothesis testing. Cases 
had PDR (n=28) and controls (n=30) were defined as having 
at least 10 years of diabetes with no or mild DR. The study 
identified differential DNA methylation at 349 CpG sites, 
representing 233 genes, the majority of which (79%) had 
decreased methylation in the PDR group. The Natural 
Killer cell-mediated cytotoxicity pathway was significantly 
(P=0.006) enriched among these differentially methylated 
genes (78).

Conclusions

Current understanding of the genetics of DR is incomplete. 
Linkage studies, candidate gene association studies, admixture 
analysis, and GWAS have not yet achieved consistent 
replication of many loci or genes associated with DR.

GWAS will require larger international collaborative 
efforts to assemble multi-ethnic cohorts and increase sample 
sizes. To maximize the chances of identifying true variants, 
cases should be defined as those with PDR or diabetic 
macular edema determined from a standard grading scale of 
imaging, while control groups should be defined rigorously 
as patients without DR despite a long duration of diabetes 
(15–20 years). Patients with mild DR are sometimes 
classified as cases (48) and sometimes as controls (43,79), 
biasing the field towards null findings. Future studies also 
need to correctly account for glycemic control, which is 
strongly correlated with DR. Replication in independent 
data sets will also be key to strengthening future GWAS 
findings (8,12). In addition, examination of rare variation 
and DR risk has not yet been attempted. Whole exome 
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sequencing may reveal associated rare variants, particularly 
if the extremes of phenotype are examined. Epigenetics 
and mitochondrial DNA also deserve further investigation. 
Ongoing research in these areas and large collaborations 
for GWAS have the potential to illuminate the genetic 
foundations of DR.
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