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Introduction

Diabetic retinopathy (DR) is an important complication of 
both type 1 and type 2 diabetes mellitus (1) and the leading 
cause of preventable blindness in working age population 
worldwide (2). DR affects about one-third of diabetic 
population and 10% has sight-threatening complications 
such as diabetic macular edema (DME) and proliferative 
DR (PDR) (3). The International Clinical Diabetic Retinopathy 
Disease Severity Scale divides DR in five different stages 
based on clinical signs of vascular impairment detectable on 
fundus examination: no apparent DR, mild, moderate and 
severe non proliferative DR (NPDR), and PDR, as defined 
by the presence of retinal neovascularization or vitreous 
and/or preretinal hemorrhage (4). DR could remain silent 
for a long period of time and, by the time symptoms 
become manifest, disease may have already progressed to 

advanced stages. Functional changes in eyes of diabetic 
patients can be detected even before the appearance of 
initial signs of DR, as demonstrated by means of multifocal 
electroretinogram (mfERG) and visual evoked potentials 
(VEPs) (5,6). This suggests that damage in neuroretinal 
function in DR begins before clinically visible vascular 
changes occur (7-9), as confirmed by recent studies 
performed with spectral domain (SD)-optical coherence 
tomography (OCT) and OCT-angiography (10-18). 
Therefore, there is a need for evaluation and validation of 
(possibly) non-invasive biomarkers that can be used for early 
detection of subclinical signs of DR. Even if many previous 
studies focused on the role of vascular dysfunction in DR 
pathogenesis, diabetic microvasculopathy cannot completely 
explain early neuroretinal damage and thus DR could 
not simply be considered a pure vasculopathy. Functional 
alterations were demonstrated in the earliest stages of 
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disease before the development of vascular dysfunction (5,6). 
Even if the exact mechanisms initiating neuroretinal damage 
in DR are not fully understood, actual evidence focuses on 
the role of chronic hyper-glycaemia-induced inflammation 
as critical contributing factor in DR pathogenesis (19,20) 
and several studies described the association between high 
levels of systemic and local inflammatory molecules and the 
development and progression of DR (21-26).

In this review we will first discuss current literature 
focused on the role of inflammation in the pathogenesis and 
progression of DR and then we will describe retinal features 
that may be used as non-invasive clinical inflammatory 
biomarkers in the everyday clinical practice that may be 
useful to choose the most appropriate treatment option.

Molecular basis of inflammation in DR

DR has a complex multifactorial etiology and all retinal 
cellular elements (vascular, neural and glial elements 
forming the so-called retinal neurovascular unit) are 
involved in the pathological process (27), even before the 
onset of clinical signs of DR (28-33). DR is nowadays 
considered a chronic low-grade inflammatory disorder 
involving a cascade of inflammatory mediators and adhesion 
molecules (19,20,34-36). Subclinical chronic inflammation 
contributes to diabetes occurrence and to the development 
of its long-term complications, including DR (37). Knowing 
inflammatory pathways could be helpful to create strategies 
to prevent and control diabetes and its complications before 
they cause irreversible organ damage (37).

The major factor determining retinal dysfunction in DR 
is represented by chronic hyper-glycaemia (19,20). Hyper-
glycaemia causes the elevation of intracellular glucose 
and, consequently, the activation of four different cellular 
glucose metabolic pathways: the diacylglycerol (DAG)-
protein kinase C (PKC), advanced glycation end products 
(AGE)/AGE receptors (RAGE), sorbitol and hexosamine 
pathways (38-40). This leads to cellular damage in terms 
of micro-vascular dysfunction, neuronal apoptosis, glial 
reactivity and component deposition (38-40). All these 
interconnected aspects are linked to upregulation of 
angiogenic and inflammatory mediators and to altered 
growth factor signaling, with recruitment and infiltration of 
macrophages, monocytes and neutrophils and consequent 
aberrant inflammatory response (28,31,32,41-43). 

Endothelial dysfunction associated with inflammation 
determines increased vascular permeability, alteration of 
blood flow, oxidative stress and angiogenesis and has been 

related to increased expression of inflammatory adhesion 
molecules (ICAM-1, VCAM-1 and E-selectin) in the 
endothelium (44,45). Elevated levels of these molecules lead 
to adhesion and accumulation of leukocytes within retinal 
vessels, one of the very early events that occur in diabetic 
retina inflammation (within one week in experimental 
diabetes) (46-48). This results in loss of pericytes, formation 
of acellular capillaries and consequent break-down of the 
blood-retinal barrier (28,49-51) that progresses toward 
increased retinal vascular permeability, development of 
DME, and neovascularization (PDR) (41). 

Retinal glial cells including astrocytes, Müller cells (MCs) 
and microglia play a central structural role and contribute 
to maintain homeostasis in the retina. Their activation is 
considered another critical feature involved in the initiation 
and amplification of inflammation in diabetic neuroretinal 
dysfunction (52-54). Microglia cells are thought to be 
the first responders to hyperglycemic stress undergoing 
a shift in their phenotype from “surveying microglia” to 
“activated microglia” (55) and migrating from the inner 
to the outer retinal layers (56-58). Activated microglia 
cells start to produce pro-inflammatory mediators such as 
TNF-alpha, IL-6, MCP-1 and VEGF (52,59) amplifying 
the inflammatory response that triggers MCs reactive 
gliosis (60), a process consisting of hypertrophy, cellular 
proliferation and increase in intermediate filament proteins 
such as glial fibrillary acidic protein (GFAP) (33). Glial 
activation occurs early in DR pathogenesis, as demonstrated 
by the upregulation of GFAP and aquaporin 4 (AQP4) 
produced by MCs both in the retinas of animal and human 
models of DM and in vivo in human ocular fluids and 
specifically in the aqueous humor of patients with DM 
but no DR or with early signs of DR compared to healthy 
controls (33,61-64). 

Even if VEGF is the most studied factor involved in DR 
pathogenesis and the main target of available therapeutic 
strategies, its role cannot explain alone all the events 
taking place in DR onset and progression. VEGF selective 
inhibition is not sufficient to stop the inflammatory cascade 
in DR and anti-VEGF therapies are frequently of transient 
benefit, especially in DME treatment, needing repeated 
injections over time (65,66) and suggesting the involvement 
of other molecular pathways. It has been demonstrated that 
a wide range of systemic and local inflammatory biomarkers 
are involved and act together in DR: vascular adhesion 
molecules (VCAM-1, ICAM-1, E-selectin, sVAP), pro-
inflammatory cytokines (TNF-alpha, IL-1alpha, 1beta, 
6, 8, HMGB1), anti-inflammatory cytokines (IL-10), 
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pro-inflammatory/angiogenic chemokines (CP-1, MIF, 
SDF-1, fractalkine), anti-inflammatory/antiangiogenic 
chemokines (IP10, MIG), transcription factors (HIF-1,  
NF-κB), pro-inflammatory/angiogenic growth factors 
(VEGF, PGF, IGF1, CTGF, stem cell factor), anti-
inflammatory/antiangiogenic growth factors (PEDF), anti-
inflammatory/proangiogenic growth factors (EPO), and 
innate immune response cells (retinal endothelial cells with 
toll-like receptors) (67). In addition, there is some evidence 
suggesting that pro-inflammatory molecules’ levels increase 
with DR progression: in particular, serum concentration 
of circulating cytokines such as TNF-alpha, VEGF, IL-
1beta and IL-6 seem to be associated with DR severity and 
not only with the presence of DR (68-73). Also elevated 
systemic neutrophil count was found to be associated 
with the presence and severity of DR, indicating that 
neutrophil-mediated inflammation may play a role in DR  
pathogenesis (74). In the eye, increased expression of 
vitreous IL-8 seems to correlate with worse visual acuity 
in diabetic patients in one study (75), while another study 
found an increased aqueous concentration of IL-8 in severe 
NPDR, suggesting that inflammation may contribute 
to the development of neovascularization (76). IL-6 
aqueous concentration has a positive correlation with 
macular thickness, indicating that IL-6 may play a role 
in the development of DME (77). On the contrary, both 
circulating and aqueous levels of IL-10, a cytokine able to 
down-regulate T lymphocytes helper 1 response and VEGF, 
are decreased in DR and DME (78,79) and one recent study 
demonstrated a correlation between low circulating IL-10 
concentration and a cystoid pattern of DME (80) (Table 1). 

Therefore, there are many systemic and local (vitreous/
aqueous) inflammatory molecules upregulated at any stage 
of DR. All of them interact to create a pro-inflammatory 
environment that contributes to occurrence, maintenance 
and progression of retinopathy.

Clinical biomarkers of inflammation in DR

A circulating molecule has to be highly specific to the 
retina to be a reliable biomarker of retinal diabetic disease 
rather than a marker of systemic disease (64). Aqueous or 
vitreous biomarkers are more specific but also more difficult 
to obtain needing an invasive procedure (in particular to 
collect a sample of vitreous fluid). Therefore, thanks to the 
great advances in retinal imaging technologies of the last 
years, a new concept of non-invasive “imaging biomarker” 
of retinal inflammation has emerged and has made its way 
to the study of patients with diabetes (64). Clinical research 
has consequently developed great interest in finding 
specific retinal parameters of the retinal inflammatory 
condition in DR and DME and there is a growing body 
of scientific evidence on the importance of this topic. 
Nowadays, proposed imaging biomarkers of inflammation 
in DR include subfoveal neuroretinal detachment (SND) 
and hyperreflective retinal spots/foci (HRS) visible on 
SD-OCT and increased foveal autofluorescence (iFAF) 
visible on fundus autofluorescence imaging (56,58,82-86)  
(Figure 1). In addition, an increase in thickness of the 
inner nuclear layer was described on SD-OCT in patients 
with NPDR and this may represent a clinical sign of 
MCs activation due to hypertrophy of these cells (11). 

Table 1 Inflammatory ocular biochemical biomarkers in diabetic retinopathy

Biochemical biomarkers Associated features References

Cellular 

VCAM-1, ICAM-1, selectins Leukocyte adhesion (44,45)

TNF-alpha, IL-1, 6 and 10, MCP-1 and 2, VEGF,  
IFN-gamma, IP-10

Microglia activation (32,52,59,64,81)

GFAP, AQP4 MCs activation (33,61-64)

Clinical

TNF-alpha, VEGF, IL-1beta, IL-6 DR progression (68-73)

IL-8 Worse functional outcome* (75,76)

IL-6, IL-10 DME and SND onset (77-80)

*, worse visual acuity after vitrectomy performed for PDR. MCs, Müller cells; DME, diabetic macular edema; SND, serous neuroretinal 
detachment, PDR, proliferative diabetic retinopathy.
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Hyperreflective foci were described on SD-OCT also in 
the vitreous of patients with diabetes, with the number 
increasing as the stage of DR progresses (87,88). Previous 
studies had demonstrated in patients undergoing vitrectomy 
for complicated PDR that there was an increased number of 
lymphocytes that was correlated to disease severity (89,90). 
Thus, hyperreflective foci detected with SD-OCT in the 
vitreous of these patients were interpreted as inflammatory 
cells infiltrating the vitreoretinal interface and vitreous  
gel (87) (Table 2).

SND

SND is detected on OCT as a hyporeflective area beneath 
the neuroretina (extracellular fluid accumulation between 
the outer segments of photoreceptors and the retinal 
pigment epithelium) in approximately 15-30% of eyes 

with DME (85,101-104). The presence of SND has 
been associated with higher levels of local inflammatory 
molecules, in particular IL-6 (85) and in the past it was 
considered to correlate with a poorer visual outcome (91,92). 
SND is more likely to develop in the presence of increased 
choroidal thickness (increased choriocapillaris permeability 
and outer BRB impairment) (93,94), disrupted external 
limiting membrane (ELM) (94,101) and in association with 
a significantly increased number of HRS, another clinical 
sign of local inflammation (83,94). 

Hyper-reflective retinal spots 

HRS are not a specific sign of DR and have been described 
in other chorioretinal diseases, such as age-related macular 
degeneration (AMD), retinal vein occlusion and recently 
uveitis (56,95,96,105-110). In all these conditions HRS are 

Figure 1 Left eye of a 54-year-old male with diabetic macular edema. (A) Color fundus photography covering approximately 60 central 
degrees obtained with a true color confocal scanning ophthalmoscope (Eidon; CenterVue, Padova, Italy) showing the presence of 
retinal hemorrhages and hard exudates at posterior pole, perifoveal microaneurysms and previous retinal laser treatment. (B) Fundus 
autofluorescence (FAF) obtained with a confocal light-emitting diode (LED) 450 nm blue-light FAF system (Eidon; CenterVue, Padova, 
Italy) showing a pattern of foveal single-spot increased FAF and multiple areas of hypo-FAF corresponding to laser scars or retinal 
hemorrhages. (C) Swept-source optical coherence tomography (SS-OCT) (single horizontal high-definition B-scan) obtained with DRI 
OCT-A Triton plus (Topcon Medical Systems Europe, Milano, Italy) showing cystoid macular edema, subfoveal neuroretinal detachment 
and multiple hyperreflective retinal spots (some of them highlighted with yellow arrows indicating activated microglial cells). (D,E) SS-OCT 
angiography of the superficial (D) and deep (E) capillary plexuses (SCP and DCP) in reverse mode obtained with the same instrument as SS-
OCT showing more prominent microvascular changes in DCP as well as multiple retinal cysts.

A
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visible in both inner and outer retina and also near, in the 
walls or inside the lumen of retinal cysts (56,95,96,105-109). 
Histologic evidence from human donor eyes with AMD 
and acquired vitelliform lesions demonstrated that HRS 
visualized on SD-OCT may originate from both anteriorly 
migrated retinal pigment epithelium cells and lipid-
filled cells (thought to correspond to activated microglia) 
(97,111,112). HRS are increased in number in patients 
with diabetes (in both preclinical and early clinical DR) 
versus normal subjects and they are thought to represent 
aggregates of activated microglial cells that progressively 
migrate from the inner to the outer retina, confirming their 
role as inflammatory biomarkers (56). Further evidence 
supporting this hypothesis came from a recent study 
demonstrating a positive correlation between aqueous 
concentration of soluble CD14 (a cytokine associated with 
immune response, expressed in microglia, monocytes and 
macrophages) and the number of HRS in DME (98). In 
particular, HRS related to microglia activation seem to have 
specific characteristics, such as small dimension (<30 μm), 
reflectivity similar to nerve fiber layer, absence of back-
shadowing, and location in both inner and outer retina; 
additionally, they do not correspond to any specific lesion 
on fundus examination (56,58).

Increased fundus autofluorescence in the fovea

iFAF was described in a large proportion of eyes with DME 
(82,84,99) and is correlated to reduced retinal sensitivity 
determined with microperimetry, indicating an impaired 
neurosensory retina function in that area (82). In DME, it 
is thought that areas of iFAF are caused by accumulation 
of oxidative products induced by activated microglial cells 
(100,113), thus suggesting that also iFAF may be considered 
as an imaging biomarker of microglial activation in DME (82).

Conclusions

Even if not all mechanisms are still fully elucidated, actual 
evidence highlights the important role of inflammation in 
DR pathogenesis and progression, and DR is considered 
a chronic, low-grade inflammatory disease. In particular 
leukocyte recruitment and adhesion to retinal vessels and 
glial cell activation are recognized as early events occurring 
in diabetic retina dysfunction, even before the onset of 
clinically evident signs of retinopathy. 

Current available treatment options for DR (intravitreal 
injections of anti-VEGF or corticosteroids,  laser 
photocoagulation, vitreoretinal surgery) are applicable 
only at advanced stages of disease (DME, severe NPDR, 
PDR) (64,114-117). In early stages the only therapeutic 
strategy that physicians can offer is the control of 
modifiable risk factors for DR such as glycaemia and 
systemic blood pressure (64,117). Therefore, there is an 
urgent need for non-invasive early-detection molecular 
and clinical biomarkers of subclinical and early DR that 
can help in DR management before irreversible damage 
occurs. 

Measur ing  loca l  and  sy s t emic  b iomarker s  o f 
inflammation may become a useful tool to differentiate 
patients with diabetes on the basis of their risk of disease 
progression, however, further validation is needed. In 
addition, the increasing understanding on inflammation 
involvement in DR is stimulating the interest in targeting 
specific inflammatory pathways to improve DR prevention 
and care, even if specific interventions are still not part of a 
routine clinical practice and further work is needed on this 
front. 
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Table 2 Proposed inflammatory clinical biomarkers in diabetic retinopathy

Clinical biomarkers Imaging technique References
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Hyper-reflective retinal spots/foci OCT (56,58,83,95-97)

Increased fundus autofluorescence FAF (82,84,98-100)

Vitreous hyper-reflective foci OCT (87,88)

Increased INL thickness OCT (11)

OCT, optical coherence tomography; FAF, fundus autoflurescence in the fovea; INL, inner nuclear layer.
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