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Introduction

Idiopathic intracranial hypertension (IIH) is a condition in 
which there is high cerebral spinal fluid (CSF) pressure in 
the subarachnoid space that surrounds the brain and spinal 
cord [intracranial pressure (ICP)] due to an unknown cause. 
It affects 1:100,000 individuals annually with a 20 fold 
higher incidence in young, obese females (1,2). Symptoms 
of this condition include headache, pulsatile tinnitus, and 
vision loss, among others. Visual impairment can manifest 
as enlarged physiologic blind spots in the visual field due 
to optic nerve head (ONH) enlargement, peripheral vision 

loss progressing to central vision loss due to optic nerve 
dysfunction, double vision due to 6th nerve palsy, and/or 
transient visual obscurations thought to be due to ONH 
ischemia (this represents a major morbidity of IIH). Optic 
nerve dysfunction occurs in association with papilledema, 
which refers to ONH swelling resulting from exposure of 
ONH axons and their vascular supply to increased CSF 
pressure in the optic nerve sheath, which is contiguous with 
the intracranial subarachnoid space (3,4). 

Currently, physicians must rely on detecting downstream 
outcomes of high ICP, such as ONH appearance or visual 
impairment, to monitor IIH. The Frisén scale describes 
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stages of ONH swelling on ophthalmoscopy, using blurring 
of the optic disc margins and vascular obstructions by 
swollen retinal ganglion cell (RGC) axons to classify 
papilledema (5). A limitation of this qualitative scale is 
poor inter-rater reliability (6). In addition, changes in 
papilledema and changes in visual function can take days to 
manifest after changes in ICP (7), which introduces delays 
in assessing therapeutic efficacy with risk of unnecessary 
escalation of therapy. While intracranial opening pressure 
can be directly measured with lumbar puncture (LP), the 
morbidity of this procedure precludes routine use for 
monitoring IIH after the initial diagnosis has been secured. 
There is a need for better biomarkers of IIH that are 
reliable and accurately assess current disease state. 

Optical coherence tomography (OCT) is a non-invasive 
imaging method widely used in ophthalmology to provide 
high-resolution cross-sectional images of the retina. Two-
dimensional OCT images are comprised of a series of linear 
‘A’ scans, each based on the backreflected light energy from 
the device laser by structures with different optical properties, 
assembled next to each other to create a cross sectional image, 
or ‘B’ scan. Adjacent B-scans can in turn be used to generate 
volumetric images. OCT depth resolution ranges from 1 to 
15 µm (8), depending on the wavelength and imaging strategy 
employed. It is used clinically to monitor glaucoma (9) and age 
related macular degeneration (10) among other conditions. 
Changes in neurological conditions including multiple 
sclerosis (11) and Parkinson’s Disease (12) are also well 
described. 

OCT has also shown promise for diagnosis and monitoring 
of IIH as it captures ONH swelling that characterizes 
papilledema, retinal nerve fiber layer (RNFL) and retinal 
pigment epithelium/Bruch’s Membrane (RPE/BM) changes 
that are associated with acute and chronic changes in ICP 
(13,14). The objective of this review is to describe ICP 
related changes visible on OCT’s, how these might be 
applied to diagnosis and monitoring of IIH and directions 
for further studies. 

Peripapillary RNFL

The RNFL is comprised of retinal ganglion cell axons 
extending radially from the optic nerve and is visible on 
OCT as the superficial retinal layer located just beneath 
the inner limiting membrane. Peripapillary RNFL is 
assessed on most commercial OCT devices using the ‘circle 
scan’ which is a cross-sectional image taken along the 
circumference of an approximately 3mm diameter centered 

on the ONH. The average thickness of the top retinal 
layer in this scan pattern is reported as the average RNFL 
thickness. In normal anatomy, RNFL thickness varies in 
the quadrants surrounding the optic nerve, decreasing 
in height from the inferior, superior, nasal, and temporal 
quadrants (the ISNT rule) (15). In IIH with papilledema, 
the RNFL layer has been shown to increase in thickness 
with papilledema compared to controls (16-18), related to 
axoplasmic stasis causing thickening of the RNFL layer 
that contains the axons of the swollen RGCs (Figure 1). 
This increase is often not symmetric, with increase in 
thickness favoring superior to inferotemporal sites via 
nasal zone (17). As with the Frisén scale, temporal RNFL 
thickening is a finding occurring in association with more 
severe papilledema. On this basis, it has been proposed that 
RNFL thickness can be used as an indicator of papilledema 
in IIH. However, there are limitations. Vardanian Vartin 
et al. found that there was no difference in RNFL height 
between controls and patients with mild papilledema found 
on ophthalmoscopy (18). Other studies have found that 
RNFL thickness can be difficult to measure in patients with 
a Frisén grade equal to or above 3 (19,20). A possible reason 
for this phenomenon is that with increased thickness of 
the RNFL layer in papilledema, there is increased scatter 
and absorption compared to reflected light on the OCT, 
making it more difficult to detect the posterior border of 
the RNFL (21). In these situations, total retinal thickness, 
also measured using the peripapillary circle scan can be used 
to assess papilledema.

Clinical applications of RNFL thickening associated 
with papilledema include detection and monitoring of 
papilledema. RNFL thickness normalizes both in the 
short and long term with treatment in patients with acute  
IIH (22). In addition, OCT imaging of the RNFL is 
correlated with treatment outcomes of IIH. Numerous 
studies have found that RNFL thickness decreases after 
treatment to be associated with improvements in visual 
field mean deviation (21,23). Caution must be taken 
when attributing RNFL decrease over time to improving 
papilledema as evolving optic atrophy from RGC injury can 
cause a similar OCT pattern.

RNFL may be useful for differentiating true ONH 
edema, including papilledema, from pseudopapilledema 
due to ONH drusen, as RNFL is thicker in people with 
papilledema (17,24). Certain regions around the ONH 
are more effective in differentiating true edema from 
pseudopapilledema: a few studies found that the nasal 
sector is most sensitive (24,25), while Carta et al. found 
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Figure 1 Panel of images demonstrates comparison between papilledema and normal optic disc by fundus photography and SD-OCT of 
RNFL. (A) fundus photography shows marked swelling of optic disc with obscuration of peripapillary major retinal vessels in papilledema 
compares to (B) normal optic disc with sharp margin. Also depicting in fundus photography are (white dashed line in A, B) plane of cross-
sectional tomogram of RNFL and (green circular dashed line in A, B) plane of circular tomogram of peripapillary RNFL. (C) Cross-
sectional and (E) circular tomogram of swelling optic disc by SD-OCT demonstrates marked thickening of RNFL, area between red and 
purple line, compares to (D,F) tomograms from normal optic disc. (G,H) Comparison of RNFL thickness to normal range for patient age 
(green area). (H) Measurement of RNFL is within normal range for age. On the contrary, (G) swelling optic disc RNFL thickness is well 
above normal range. However, validity of RNFL thickness measurement can be limited by poor automated segmentation in marked swelling 
optic disc. RNFL, retinal nerve fiber layer; SD-OCT, spectral-domain optical coherence tomography.
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that the average and inferior peripapillary quadrants had 
maximal sensitivity and specificity with a positive predictive 
value greater than 80% at certain cutoff values (26). Fard 
et al. found RNFL was thicker in true papilledema vs. 
pseudopapilledema with 73% sensitivity and specificity. 
They also compared total retinal volume in concentric rings 
centered on the optic nerve between the two groups. Their 
results showed that pseudopapilledema only affects the 
inner peripapillary ring, while true edema affects the outer 
ring as well (27). 

ONH volume

The ONH is the focus of many studies in IIH, as its 
appearance and volume are affected by IIH and increased 
intracranial pressure. The Frisén scale is a qualitative 
tool used to grade swelling on ONH photographs and 
exam. While this scale has been shown to have inter-rater 
reliability to assess papilledema from lack of papilledema, 
a study by Sinclair et al. demonstrated that it is not as 
consistent in IIH patients, with only 36% reproducibility 
amongst raters (6). It is important, then, to develop reliable 
methods to assess the ONH. Studies support that OCT 
is a reliable measure to assess the protrusion height and 
volume of the ONH (28,29). ONH volume, extracted from 
volumetric OCT scans is correlated with Frisén grade by 
expert graders. ONH volume measured by OCT has been 
shown to be increased in patients with IIH and associated 
with ICP (30), even in those who have a normal RNFL 
thickness (31). OCT derived measures of ONH volume may 
be more sensitive to papilledema improvement than the Frisén 
scale for purposes of monitoring treatment of IIH. Some 
studies have found that while ONH volume and Frisén scale 
grading correlated at baseline in patients with IIH, they were 
not consistent after 6 months of treatment with acetazolamide 
and weight loss (32,33). Auinger et al. suggested that the lack 
of correlation with treatment may be due to a floor effect and 
ordinal scale of Frisén grading compared to the continuous 
nature of ONH volume measures. 

A limitation in utilizing ONH volume in routine 
clinical practice is that most commercial devices do not 
automatically provide this measure. One technique to 
overcome this is to center the macula scan protocol on 
the ONH in order to leverage the automatic volume 
calculations associated with these protocols. However, 
difficulties in segmenting the outer retinal boundary can 
lead to errors. As with RNFL thickening, caution must 
be taken when attributing ONH decrease over time to 

improving papilledema as evolving optic atrophy from RGC 
injury is independently associated with ONH volume (30).

Peripapillary Bruch’s membrane configuration 

The retinal pigment epithelium/Bruch’s Membrane (RPE/
BM) layer is the most clearly defined outer retinal layer on 
OCT, located above the choroid. In control patients, the 
RPE/BM around the optic nerve is V-shaped and angled 
away from the vitreous as it approaches the neural canal 
opening, but in patients with papilledema due to IIH, it has 
been shown on OCT to have an inverted U shape toward 
the vitreous (34,35) (Figure 2). While inward RPE/BM 
angulation with elevated intracranial pressure is evident on 
cross sectional ONH images, its shape is not uniform across 
radial scan angles, suggesting asymmetric changes in RPE/
BM shape with IIH (36). A variety of strategies have been 
used to assess this shape including measures of angle (35),  
volume (30), and geometric morphometrics. This latter 
technique applied principal component analysis to compare 
shape, which is a geometric feature independent from 
scale, position, and rotation (34). RPE/BM shape has also 
been shown to correlate with quantitative ICP (37) and to 
differentiate papilledema from high ICP (e.g., IIH) from 
optic disk edema due to other optic nerve injury (e.g., 
non-arteritic anterior ischemic optic neuropathy) which 
have RPE/BM angulation away from the vitreous similar 
to people without ONH edema (34,35,38). Sibony et al. 
hypothesized that RPE/BM angulation in IIH is due to the 
translaminar pressure gradient between cerebral spinal fluid 
(CSF) and intraocular pressure combined with properties of 
the peripapillary sclera similar to globe flattening (38). 

Peripapillary RPE/BM shape changes can be detected 
following both acute and chronic IIH treatment, as 
quickly as 1 hour after LP (37,38), and are correlated 
with decreased RNFL thickness after CSF shunt and 
medical treatment of IIH (39). However, in patients with 
prolonged intracranial hypertension and subsequent optic 
nerve atrophy, improvements in RPE/BM shape were not 
associated with normalized changes in RNFL. In such 
cases RPE/BM shape may better serve as a biomarker of 
increased intracranial pressure as it is independent of optic 
disc edema (39). In the OCT sub-study of the Idiopathic 
Intracranial Hypertension Treatment Trial (IIHTT), 
RPE/BM shape normalized in patients randomized to 
acetazolamide plus weight management, but did not change 
in patients randomized to placebo plus weight management 
alone despite improvements in papilledema in this group. 
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This provides further evidence that RPE/BM shape and 
ONH edema are independent of one another (13). 

A limitation of utilizing peripapillary BM/RPE changes 
to guide clinical care is the lack of a commercially available 
algorithm. Research study of these changes has required 
intensive image processing often with manual components 
due to difficulty in identify the BM/RPE boundary beneath 
the swollen ONH (40). 

Retinal and choroidal folds

Patton’s (retinal) and choroidal folds can be appreciated 
on ophthalmoscopic examination of papilledema as 
concentric curved lines adjacent to the swollen ONH and 
radial lines extending from the ONH. OCT demonstrates 
the cross-sectional structure of these folds and is more 
sensitive to their detection than fundus photography. In 
the IIHTT, nearly half of subjects in the OCT sub-study 
had peripapillary superficial retinal wrinkles and/or inner 

retinal folds (Figure 3), while 10% had choroidal folds (41). 
The first two were associated with papilledema severity while 
choroidal folds were related to BM/RPE shape change. A 
subsequent analysis also characterized outer retinal folds/
creases thought to be distinct biomechanical responses 
to ICP and its effect on the optic nerve (42). OCT can 
detect peripapillary wrinkles in adduction in people with 
papilledema who lack them in primary gaze (43). These 
observations raise the possibility of a diagnostic role of these 
signs for differentiating papilledema from pseudopapilledema. 
In the IIHTT, some kinds of folds resolved following 
treatment, more so in acetazolamide treated subjects, but 
some persisted (44). These observations advance insights into 
the effects of ICP and ONH swelling on the eye, but their 
role in clinical management remains uncertain.

Macula changes

Because RNFL is thickened in association with papilledema 

Figure 2 Comparison of raster scans SD-OCT between papilledema optic disc and normal optic disc. (A) Basement membrane layer in 
papilledema is protruding up towards vitreous cavity (arrowheads), also described as inverted-U shape. (B) SD-OCT from normal eye shows 
the V-shape basement membrane layer, pointing away from vitreous cavity (arrowheads). SD-OCT, spectral-domain optical coherence 
tomography.

A

B
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it is often not useful to detect retinal ganglion cell atrophy. 
However, decreased macular ganglion cell complex average 
thickness or volume, measures of the superficial retinal 
layers containing the retinal ganglion cell bodies and other 
structures from OCT scans centered on the macula, are an 
indicator of early optic nerve atrophy in IIH (45). Atrophy 
detection can be reduced in severe papilledema when 
ganglion cell axon thickening extends into nasal portions 
of the macula scan. Macula ganglion cell complex measures 
correlate with future visual field measures (46), suggesting 
that they may play a role in predicting poor visual outcomes 
in IIH, and identifying patients at need for more aggressive 
therapy (47).

Cross sectional OCT scans centered on the macula are 
also useful for identification of non-retinal ganglion cell 
contributions to central vision loss such as subretinal fluid, 
often extending from the optic nerve (Figure 3), which can 
cause outer retinal injury, chorioretinal folds and choroidal 
neovascularization (47). 

OCT angiography

Algorithms that detect movement during OCT detection 
have been optimized to generate maps of blood flow on 
OCT images, known as OCT angiography (OCTA), which 
is now offered on multiple commercial OCT devices. 
In addition to qualitative patterns of perfused blood 
vessels, these images allow calculation of vascular density 
in different retinal layers. Limitations include lack of 
differentiation between venous and arterial vessels as well as 
shadowing of deeper vessels by superior vessels, leading to 
incomplete imaging of deeper vessels. 

OCTA has been applied in cross-sectional studies of 
papilledema. Qualitative features detected using OCTA of 
the ONH include dilation and tortuosity of large vessels 
and tangling/curling of capillaries, as opposed to capillary 
drop out seen in anterior ischemic optic neuropathy (48). 
Quantitative analysis of vessel density around the optic 
nerve, including all vessels, found increases in papilledema 

Figure 3 Complications to adjacent retinal structures resulting from papilledema can be detected by spectral-domain optical coherence 
tomography (SD-OCT). (A) Raster scan of macula SD-OCT through fovea demonstrates subretinal fluid (star) extending from swelling 
optic disc and approaching parafoveal area which can cause significant visual loss in papilledema patient. (B) Oblique radial scan SD-
OCT through papillomacular bundle shows (arrows) retinal folds confines to superficial layer of retina. SD-OCT, spectral-domain optical 
coherence tomography.

A

B
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compared with ischemic and inflammatory causes of 
pathologic ONH edema (49), but decreases compared 
to controls (50,51). When large vessels were excluded 
from analysis peripapillary capillary density was similar to 
controls, suggesting that papilledema has differential effects 
on different levels of the vasculature. Macular OCTA 
densities were similar in papilledema eyes without GCC 
thinning compared to control eyes, which distinguished 
them from NAION eyes without GCC thinning in which 
OCTA densities were reduced (52). At this time the role 
for OCTA in diagnosing and monitoring IIH is unclear, 
though it shows promise in providing insight into the 
pathophysiology of diseases impacting the ONH.

Opportunities to advance clinical applications of 
OCT in IIH

While OCT metrics show promise as quantitative markers 
of optic nerve and other retinal changes in IIH, there are 
still challenges that must be overcome to optimize use of 
this imaging modality to diagnose and monitor patients 
in clinical settings. Image quality and segmentation is a 
significant challenge as ONH edema can lead to reduced 
distinction between peripapillary retinal layers necessary 
to analyze the RNFL, shadowing of RPE/BM layers, 
identification of which is necessary to analyze shape and 
shadowing of deeper retinal capillaries by superficial vessels 
and swollen tissue. Iverson et al. suggested that peripapillary 
Bruch’s mebrane (pBM) automatic segmentation programs 
may inaccurately identify the pBM end point when it is 
close to the cup border, when the border tissue of Bruch’s 
membrane extends past the RPE or when the signal 
intensity is diminished from shadows generated by overlying 
vasculature in non-swollen optic nerves (53). Although this 
can present limitations to using OCT in a clinical setting, 
there are promising studies that show that consensus review 
and creating a set of guidelines for segmentation improves 
agreement between raters (36,54). There are numerous 
commercial and research segmentation programs with 
varying levels of accuracy. One strategy is to exclude areas 
of uncertainty from image analysis (30). Strategies to improve 
image quality involve scan protocol (e.g., averaging, focus), 
device design and image processing, for example eliminating 
blood vessel shadows and increasing contrast between layers to 
make automatic segmentation programs more accurate (55). 

OCT is a relatively new clinical imaging technique, with 
the first commercial clinical instrument becoming available 
in 1996 with widespread clinical ophthalmic use by 2005. 

OCTA was not available commercially until 2014, with 
quantitative analysis lagging behind (56). Studies to date 
have illustrated many potential OCT derived metrics that 
have potential application to diagnosing and managing 
IIH. In the author’s experience it is widely used to compare 
optic nerve appearance using ONH scans and to detect 
ganglion cell injury using macular scans. Additional larger 
studies are needed to establish the role for imaging of folds 
and vasculature. Commercially available scan protocols 
and analysis algorithms are needed to facilitate broad  
adoption. 

Conclusions

OCT shows promise as an important imaging technique 
to supplement other clinical data in the diagnosis and 
monitoring of IIH. It is currently in use in conjunction with 
other imaging modalities and clinical features to identify 
early changes in the ONH and retina both before and 
after treatment of intracranial hypertension. It is also an 
important research tool with application to understanding 
the pathophysiology of papilledema. As more research 
is done to improve image quality and segmentation, and 
large human studies are completed, the role of OCT in the 
management of IIH will grow. 
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