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Introduction

Optical coherence tomography (OCT) has revolutionized 
the clinical management of retinal and optic nerve 
disease. The strict anatomical structure of the retina and 
maintenance of retinotopic organization within the afferent 
visual pathway means that OCT is also relevant to central 
nervous system disease. 

OCT allows objective segmental analysis of the retinal 
layers at the macula. The retinal ganglion cell (RGC) 
layer can be measured at the macula and the RGC axons 
can be measured as the retinal nerve fiber layer (RNFL) 
at the optic nerve. These RGC axons form into the optic 
nerve, traverse the optic chiasm and synapse at the lateral 
geniculate ganglion whilst strictly conforming to retinotopic 
organization. Compression of these axons anterior to the 
geniculate synapses can cause retrograde changes to the 
RGCs which can be quantified with OCT. As axons are 

more compact in the anterior visual pathway than the visual 
cortex, lesions affecting the anterior regions can cause 
substantial loss of visual function. 

Compression of the anterior visual pathway most 
commonly occurs at the level of the optic chiasm. Mass 
lesions affecting this area include pituitary macroadenomas, 
craniopharyngiomas, Rathke’s cysts and aneurysms of 
the internal carotid and ophthalmic arteries. However, 
compression can also occur from other lesions including 
meningiomas of the tuberculum sella (and contiguous 
structures) and metastases. Within the orbit, compression 
can occur from infiltrative neoplastic lesions, optic nerve 
sheath meningiomas, systemic inflammatory conditions (i.e., 
ANCA positive disease or sarcoid), or the enlarged muscles 
of thyroid eye disease.

The anatomical changes on OCT and their relationship 
to visual function in patients with anterior visual pathway 
compression is explored in this review. The role of OCT as 
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a prognosticator for visual recovery after treatment of these 
compressive lesions, is also detailed. 

OCT as an ocular imaging technique

OCT is a non-invasive method of structurally assessing 
microscopic damage to RGCs and their axons by 
performing high-resolution cross-sectional imaging of 
macula and peripapillary retinal tissue. Low-coherence 
near-infrared light is transmitted to the retina and the 
magnitude and echo time delay of backscattered light from 
the retina is measured to construct a cross-sectional, three-
dimensional, real-time tomographic retinal image. Time 
domain OCT has axial resolution up to 10 μm and scanning 
speeds of 400 A-scans per second. Spectral domain OCT 
is a more current technology with digital axial resolution 
of 4–6 μm and scan speeds of 50,000–85,000 A-scans per 
second. The techniques of OCT are explored in more detail 
in the ‘Overview of OCT’ in this focused issue.

OCT measurements are compared to a normative 
database but these comparisons do not necessarily consider 
age, sex, or race variables as Caucasian middle-aged subjects 
make up the bulk of the normative population. Ocular 
variables such as long or short axial length and optic disc 
area also alter RNFL measurements. Intraocular disease 
can hinder the accuracy of OCT such as media opacities, 
coexistent retinal disease, and other optic disc abnormalities 
like drusen. Machine factors such as segmentation 
inaccuracies and scan quality need to be scrutinized to 
minimize measurement error. Different OCT machines 
such as Spectralis (Heidelberg, Germany), Cirrus (Zeiss, 
Germany) and RS-3000 (Nidek, Japan) have different 
measurement protocols, so patients need to be reviewed 
on the same machine using the same scanning protocol for 
accurate comparisons over time.

OCT patterns of change with compressive 
lesions of the anterior visual pathway

Based on the specific anatomical course of RGC axons, 
compressive lesions along the anterior visual pathway can 
create certain predictable patterns on OCT. These patterns 
can sometimes detect visual pathway compression that may 
not be initially apparent on neuroimaging, or by standard 
ophthalmic assessments.

Axons at the level of the RNFL do not cross the 
horizontal meridian. The nerve fibers originating in the 
nasal hemiretina directly enter the nasal optic nerve. The 

macula, which lies temporal to the optic disc, has the 
highest density of RGCs which direct their axons through 
the “papillomacular bundle”. The remaining axons of the 
temporal retina approach the optic disc by curving around 
the papillomacular bundle and thus are compressed into 
the superotemporal and inferotemporal sectors of the optic 
nerve. Within the optic nerve, the papillomacular fibers 
travel centrally, therefore external compression will typically 
cause a loss of peripheral vision. At the optic chiasm 
the nasal fibers, which supply the temporal visual field, 
decussate to join the temporal fibers of the contralateral 
optic nerve to form the optic tract. The optic tract fibers 
carry visual information from the contralateral hemifield of 
each eye.

As the RGC axons are unmyelinated anterior to the 
lamina cribrosa, reduction in RNFL thickness can be 
attributed to axonal loss (1). The pathophysiological basis 
of retrograde RGC degeneration and axonal damage from 
anterior visual pathway compression is not well known. 
Mechanical axonal destruction, ischemia and metabolic 
mechanisms have all been suggested (2-4). Damage to 
the axons may occur through axon loss, axoplasmic stasis, 
blockage of conduction and/or demyelination.

OCT assessment of lesions involving the optic chiasm

The chiasm is a common site for compression. Lesions 
abutting the optic chiasm superiorly or inferiorly will 
predominantly compress the decussating nasal fibers 
which results in retrograde RNFL loss on the nasal and 
temporal sides of the optic disc, clinically identified as bow 
tie or band atrophy of the optic disc (5,6). As a clinical 
sign, band atrophy can often be difficult to detect with 
ophthalmoscopy, whereas OCT segmentation techniques 
can quantify patterns of axonal loss objectively based on 
RNFL thinning.

Multiple studies have confirmed that patients with band 
atrophy tend to have RNFL loss in all quadrants around 
the optic disc, not just along the horizontal band (6-11). 
Monteiro et al. did not detect more RNFL thinning in 
the temporal and nasal regions compared to the vertical 
quadrants (12). However, ROC area under the curve 
analysis by Moura et al. showed preferential nasal and 
temporal RNFL loss in patients with band atrophy (13). 
Danesh-Meyer et al. also showed greater proportional 
thinning nasally and temporally in patients with bitemporal 
hemianopia from chiasmal compression (8).

Global macular ganglion cell layer (GCL) thickness 
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is also reduced in patients with anterior visual pathway 
compression, especially nasally (13-15). Some have 
compared the sensitivity of peripapillary RNFL versus 
macular GCL thickness in detecting visual pathway 
damage from chiasmal compression. Moura et al. found 
no difference in the degree of thinning between different 
sectors of the macular GCL and peripapillary RNFL (13).  
However, some studies have found macular RGC thinning 
to be more sensitive than RNFL loss in detecting chiasmal 
compression (16,17). Tieger et al. identified that the 

nasal RNFL and GCC thinning in patients with chiasm 
compression were both statistically significant, yet the 
effect size was much greater for GCC thinning (16). 
This discrepancy between RNFL and macular GCL 
thinning may reflect RNFL measurement variability in the 
peripapillary region due to variables such as optic disc area. 
Figure 1 demonstrates macular GCL thinning with normal 
RNFL in a case of left optic nerve compression. 

Macular microcystic changes in the inner nuclear layer 
may also be seen in anterior visual pathway compression 

Figure 1 OCT for a patient with left optic nerve compression from an aneurysm (Cirrus HD-OCT 5000, Carl Zeiss Meditec Inc., 
Germany). This patient had normal visual acuity (6/6 and N5 in both eyes), color vision and visual fields. The RNFL was of normal 
thickness in both eyes (A,B). However, the macular GCL is thinner in the left eye (D) compared to the right eye (C) due to compression 
from an intracranial aneurysm. OCT, optical coherence tomography; RNFL, retinal nerve fiber layer; GCL, ganglion cell layer. 
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(18,19). Inner nuclear layer thickening has also been 
reported (18). Figure 2 shows inner nuclear layer microcysts 
in a case of craniopharyngioma and giant prolactinoma 
where severe anterograde RNFL/RGC loss developed. 
Microcysts have also been found in optic neuritis (multiple 
sclerosis and neuromyelitis optica), glaucoma, Lebers 
hereditary optic neuropathy, dominant optic atrophy, and 
optic disc drusen (20-23). This finding has not been shown 
to be a disease specific biomarker but may rather reflect the 
severity of RGC loss and retinal thinning (24). 

OCT angiography has been increasingly used to study 
perfusion of the macula and peripapillary retina at the level 
of the capillary microvasculature. A recent study found 
reduced circumpapillary and macular vessel density in eyes 
with band atrophy which correlated with RNFL thinning, 
GCL thinning and visual field loss (25). A smaller study of 
four patients with chiasmal compression also found reduced 
vessel density in peripapillary areas which correlated 
with visual field defects (26). The true benefit of OCT 
angiography as a biomarker in Neuro-Ophthalmological 
testing requires further research. 

OCT and compressive lesions of the pre-chiasmatic optic 
nerves

Pre-chiasmal compression can also cause distinctive 
OCT changes. In unilateral optic nerve compression, 
asymmetry in RNFL and GCL thickness between the eyes 
is a major clue to the location of compression. RNFL may 
be increased from optic disc swelling or reduced in optic 
atrophy (27). Loo et al. looked at optic nerve compression 
by anterior visual pathway meningiomas (28). These 
eyes had significantly thinned peripapillary RNFL in all 
quadrants except temporally. However, RNFL can be 
normal in prechiasmal/chiasmal compression as exemplified 
in more than half the meningioma patients in another 
study (29). Also, Sibony et al. used OCT to identify an 
inward deformation of the retinal pigmented epithelial 
layer in patients with optic nerve sheath meningioma which 
worsened with larger tumors closer to the globe (27). 

Apart from the aforementioned studies, mainly case 
reports document specific OCT changes in anterior optic 
nerve compression within the orbit. Convex retinal bowing 
and chorioretinal folds have been reported in retrobulbar 
cavernous hemangiomas and these OCT changes can persist 
even post tumor resection (30-32). 

Figure 3 demonstrates a case of unilateral optic nerve 
sheath meningioma which presented with optic disc 

swelling. Whilst the OCT RNFL was thickened, GCL 
analysis showed thinning. In this case, OCT pointed 
towards a chronic pathogenic process of the anterior optic 
nerve.

Use of OCT to differentiate compressive optic 
neuropathies from glaucoma 

In an Ophthalmology clinic setting, OCT can be an 
important diagnostic tool in distinguishing patients with 
compressive lesions from normotensive glaucoma which 
can both present with an enlarged cup to disc ratio. As 
band atrophy can be difficult to identify clinically, the 
predominantly horizontal peripapillary RNFL thinning is 
an important clue in compressive lesions which contrasts 
to the vertical RNFL thinning in glaucomatous optic  
neuropathy (33). Similarly, GCL loss in the nasal and 
temporal areas of the macula in chiasmal compressive 
lesions differs from the GCL thinning seen in glaucoma 
which tends to respect the horizontal meridian (14). 
Asymmetry in RNFL and GCL thinning between the eyes 
is also useful in distinguishing optic nerve compression 
from glaucoma. Figure 4 highlights two cases where OCT 
was used to identify optic nerve compression in patients 
who were mistakenly referred for glaucomatous optic disc 
cupping.

Relationship between OCT and visual function

Sellar masses can lead to visual dysfunction by causing 
progressive and often painless deterioration of visual acuity, 
color vision, and visual field. OCT augments the analysis 
of visual field testing in anterior compressive lesions by 
providing a structural-functional comparison. This is 
particularly important given the high test-retest variability 
and poor reliability of perimetry. 

RNFL loss has shown to correlate with the severity of 
visual field loss from chiasmal compression (8). Sectoral 
analysis has shown strongest correlation between visual 
field mean deviation and temporal RNFL thinning (34,35). 
However, it is unwise to rely on RNFL alone as there are 
reports of severe visual field loss with intact peripapillary 
RNFL. This may occur in cases with more acute 
compression as axonal dysfunction may precede structural 
loss of axons as detected by OCT. 

Macular GCL thickness has shown a greater relationship 
than RNFL thickness with visual field loss. Monteiro et al.  
found a stronger correlation (Rs 0.65–0.78) for macular 
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Figure 2 Inner nuclear layer microcysts in patients with chiasmal compression. (A-D) It shows OCT images of a 45-year-old man with 
a craniopharyngioma (RS-3000, Nidek Co. Ltd., Japan). (E-H) It shows OCT images of a 20-year-old female with a giant prolactinoma 
(Spectralis, Heidelberg Engineering Inc., Germany). (A) Right macula with microcysts; (B) left macula with microcysts; (C) right and left 
optic disc RNFL with severe thinning; (D) macula GCL thickness; (E) right macula with microcysts; (F) left macula with microcysts; (G) 
right optic disc RNFL with severe thinning; (H) left optic disc RNFL with severe thinning. OCT, optical coherence tomography; RNFL, 
retinal nerve fiber layer; GCL, ganglion cell layer. 
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Figure 3 OCT of a 59-year-old female with right optic nerve sheath meningioma (Cirrus HD-OCT 5000, Carl Zeiss Meditec Inc., 
Germany). Initially the right optic disc was swollen with a thickened RNFL (A) but the right macula had an atrophic RGC complex (C). 
One-year post radiotherapy, the right optic disc became atrophic with severe RNFL thinning especially superotemporally (E) and the 
macular GCL thinning worsened (G). The right visual field showed inferonasal changes corresponding to the OCT RNFL (I,J). The 
left eye remained unaffected with a normal RNFL and GCL thickness (B,D,F,H) and normal visual field (K,L). OCT, optical coherence 
tomography; RNFL, retinal nerve fiber layer; GCL, ganglion cell layer; RGC, retinal ganglion cell.
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Figure 4 OCT detection of optic nerve compression in two patients with disc cupping (Cirrus HD-OCT 5000, Carl Zeiss Meditec Inc., 
Germany). Asymmetry in the RNFL and GCL thickness between optic discs prompted investigations for optic nerve compression instead 
of glaucoma. Images A-D are from a patient with left optic nerve sheath meningioma. (A) Right eye normal RNFL; (B) left eye thin RNFL; 
(C) axial T1 MRI of the corresponding left optic nerve sheath meningioma; (D) coronal T1 MRI of the left optic nerve sheath meningioma. 
Images E-I are of patient with a right frontal meningioma invading the right optic canal. This patient was mistakenly referred for glaucoma 
management based on disc cupping and ocular hypertension. (E) right eye thin RNFL; (F) left eye normal RNFL; (G) right eye thin GCL; (H) 
left eye normal GCL; (I) T1 axial MRI of the corresponding right frontal meningioma. OCT, optical coherence tomography; RNFL, retinal 
nerve fiber layer; GCL, ganglion cell layer.
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thickness than RNFL thickness (Rs 0.60) with visual field 
loss (36). Moura et al. identified a correlation between nasal 
average macular thickness and visual field temporal mean 
deviation (R2=48%) (13). The stronger correlation with 
macular GCL thinning is plausible because it represents the 
central area of the visual field.

Different studies have shown RNFL and macular 
GCL thinning in patients with chronic mass lesions that 
radiologically appear to be compressing the anterior 
visual pathway despite no change in visual acuity or visual 
field (8,14,16,37). This suggests that the sensitivity of 
OCT supersedes perimetry testing. Thus, like in pre-
perimetric glaucoma, OCT may have a role in identifying 
visual pathway damage from compressive lesions prior to 
functional loss. 

Electrophysiological testing through visual evoked 
potentials (VEP), multifocal VEP (mfVEP) and pattern 
electroretinography (pERG) can quantify dysfunction 
along the visual pathway in compressive disease which can 
augment the interpretation of OCT structural analysis. 
VEP measures electrical signals received by the occipital 
cortex and the amplitude and velocity of these signals 
are diminished in lesions compressing any component 
of the visual pathway. In chiasmal compression, studies 
show reduced or delayed P100 during temporal hemifield 
stimulation which reflects dysfunction of the crossed RGC 
axons (crossed asymmetry distribution) (38). Topographical 
changes on mfVEP correspond to visual field defects in 
chiasmal compression (8,39,40). However, a relationship 
between VEP, mfVEP and OCT has not been shown, 
most likely because these electrophysiological tests reflect 
entire visual pathway function whereas OCT specifically 
focuses on RGC loss (41,42). PERG is thought to reflect 
RGC function in the central retinal area and in chiasmal 
compression, the N95 and b-wave can reduce (43). These 
changes have not shown correlation with OCT RNFL and 
GCL thinning (15,44), although multifocal pERG has (45).

OCT and compressive visual pathway lesions in 
pediatric patients

The use of OCT in children has been challenging. There is 
no normative data and data capture is dependent on patient 
age and cooperation. However, its role in monitoring optic 
nerve gliomas, the most common pediatric central nervous 
system tumor, has been increasingly studied. 

Anatomical studies have shown that there is a decline 
in RNFL thickness with an increase in total glioma  

volume (46). However, the relationship of RNFL thickness 
with visual function has been less clear. In a study of 
children and young adults aged from 6 to 21 years with 
optic nerve glioma, RNFL thickness did not correlate well 
with visual acuity or visual field damage (46). The same 
research group has previously found RNFL to be predictive 
of vision loss (47).

Children with optic nerve gliomas who have normal 
RNFL, have demonstrated normal visual acuity and visual 
fields which can help with prognostication but limits 
the use of OCT in monitoring for progression before 
functional deficits occur (48,49). Another study showed 
RNFL thinning in patients with glioma growth regardless 
of vision change, meaning that OCT may be able to detect 
subclinical changes (50).

There has been growing interest in the use of OCT 
to identify choroidal abnormalities in neurofibromatosis 
associated optic nerve gliomas. These abnormalities are 
detected with the use of infrared reflectance retinography 
on spectral domain OCT (51). 

OCT and visual prognostication after surgical 
intervention

RGC axonal structural and functional recovery post 
decompression surgery is not well understood. Visual 
field recovery likely reflects recovery of dysfunctioning 
axons. Many factors have been explored as predictors of 
visual acuity and visual field post-operative recovery such 
as symptom duration, age, optic disc appearance, severity 
of preoperative visual field loss, surgical technique, tumor 
size and volume and pattern electroretinography, however 
the results have been variable (28,52-56). Pre-operative 
OCT findings have proven to be the most consistent 
prognosticator.

Multiple studies, including a meta-analysis, have shown 
that preoperative RNFL thinning is a predictor of poor 
visual field recovery (8,29,35,57-59). The pooled odds 
ratio in the meta-analysis was 15.61 (95% CI: 4.09–59.61) 
for field recovery in eyes with normal RNFL compared 
to those with abnormal RNFL (57). In a large prospective 
study, visual field recovery was better in the patients with 
normal RNFL compared to those with abnormal RNFL 
(81% of eyes versus 37% respectively over one year  
postoperatively) (35). Garcia et al. showed that eyes with 
greater nasal, rather than global, RNFL thickness had more 
peripheral visual field recovery postoperatively (60). Jacob 
et al. demonstrated that temporal RNFL thinning below 
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the 5th percentile was associated with poorer visual field 
recovery (59). 

Multiple studies have also identified a strong association 
between preoperative GCL thinning and poorer visual field 
recovery (16,34,61). Tieger et al. found a greater correlation 
of visual field mean deviation with GCL than RNFL 
thickness (R2 0.25 vs. 0.15 respectively) (16).

In chiasmal decompression, eyes with normal RNFL 
have greater improvement in visual acuity as well (8). 
98% of the eyes with normal RNFL achieved acuities 
6/12 or better compared with 88% of the thin RNFL eyes 
postoperatively. Danesh-Meyer et al. suggested a presurgical 
threshold RNFL of 75 μm is associated with a worse post-
operative visual prognosis. Loo et al. suggested a RNFL 
threshold of 70 μm but the focus was on optic nerve more 
than chiasmal compression (28). 

RNFL and macular GCL thickness do not change 
significantly post-operatively despite visual acuity and field 
recovery over months to years (8). Thus, further thinning of 
these parameters can be useful in monitoring for recurrent 
compression of any residual tumor. However, the direct 
effect of surgery on OCT measurements needs to be 
considered when monitoring.

Conclusions

OCT has an emerging role in the management of patients 
with space occupying lesions compressing the anterior 
visual pathway. Peripapillary RNFL and the macular 
RGC complex have both proven important in diagnosis, 
preoperative prognostication and post-operative monitoring 
of these patients. The ease of access, resolution of detail, 
reliability and clinical objectivity of OCT heighten the need 
to incorporate it into routine neuro-ophthalmic assessment. 
Small study populations and tumor heterogeneity limit 
the external validity of many OCT studies. However, 
more research and technological advancement in OCT 
will shed more light into its role in areas such as pediatric 
visual pathway gliomas and indications for surgical tumor 
decompression.
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