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Introduction

The recurrent laryngeal nerve (RLN) and external branch 
of superior laryngeal nerves (EBSLN) are at risk of injury 
during all thyroid and parathyroid surgeries by virtue of 
their close proximity to the operative field and injury to 
these nerves can result in significant patient morbidity 
secondary to the voice, swallowing and breathing issues that 
nerve dysfunction triggers. During neck endocrine surgeries, 
rates of nerve injury have traditionally been reported as low 
(3–5%). However, more recent series suggest that these 
past reports have significantly underestimated the true 

incidence, citing rates closer to 10%. Similarly, although 
actual incidence of EBSLN injury remain unknown, it may 
approach 58% (1,2). These inconsistencies in reported 
injury rates likely relate to many factors including a lack 
of standardization of pre and post-operative laryngeal 
examination practices, the often subtle and variable nature 
of nerve palsy symptoms, and reporting biases from large 
thyroid centers where complication rates are low. Clinical 
implications of unilateral RLN injury revolve around 
breathing, phonation, and swallowing with severity ranging 
from mild impairment to severe. Conversely, bilateral RLN 
injury can necessitate the placement of a tracheostomy by 
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causing a grossly narrowed, immobile larynx and significant 
respiratory distress. Clinical symptoms of EBSLN injury are 
variable, often may be overlooked, but can be significant, 
especially to professional voice-users. The symptoms 
include vocal fatigue and decreased pitch and inability to 
project voice. The laryngoscopy findings associated with 
EBSLN injury include posterior glottic rotation toward the 
paretic side, bowing of the vocal fold on the weak side and 
inferior displacement of the affected cord. Notably, these 
findings can be subtle and can easily go unnoticed.

Techniques to identify and monitor the laryngeal nerves 
during neck endocrine procedures have been developed over 
the past 50 years with the aim of minimizing postoperative 
nerve dysfunction and thus lowering patient morbidity. 
Many techniques have been proposed, from simple nerve 
identification to intermittent and, now, continuous nerve 
monitoring. Specialized committees have been formed and 
guidelines have been published to encourage standardization 
of monitoring techniques. This has helped in uniform 
collection of monitoring data across different populations of 
patients and surgeons, which along with technical advances 
in neuromonitoring techniques and better understanding 
of neurophysiology of the larynx have been instrumental 
in continued evolution of monitoring strategies and 
management algorithms. This article discusses the evolution 
of these monitoring techniques over the past five decades 
and highlights the current international recommendations 
for neural monitoring in neck endocrine surgery. Future 

directions in nerve monitoring will also be discussed. 

Evolution of intraoperative nerve monitoring 
(IONM)

One of the earliest reports of electrical RLN and EBSLN 
identification, stimulation and response evaluation was 
in 1966 in the Annals of Surgery. This study used a canine 
model intubated with an endotracheal tube (ET) with 
a balloon placed within the larynx and connected to a 
pressure-recording system. Results indicated that the 
pressure changes from an intralaryngeal balloon consistently 
showed changes upon RLN electrical stimulation and, 
for the first time, provided a method for electrical 
identification of the RLN. Similar changes were noted for 
the SLN. The same group translated this research to the 
human population during thyroid surgeries, showing that 
endolaryngeal balloon pressure recording could indicate 
when the RLN and SLN were stimulated (3). In 1970, 
Riddell published a 23-year series spanning from 1946 to 
1969, reporting on RLN identification using laryngeal 
palpation with simulation of the RLN as an additional safety 
measure for nerve protection during thyroid surgery (4).  
In 1986, palpation of the posterior cricoarytenoid muscle 
with nerve stimulation of 0.5–2.0 mA was presented as 
a simple and safe technique for RLN identification and 
assessment during thyroid surgeries, in addition to a 
thorough knowledge of cervical anatomy (5).

Over the past thirty years, different IONM techniques 
have been proposed including laryngeal palpation (Figure 1),  
glott ic  pressure monitoring,  glott ic  observat ion, 
intralaryngeal hookwire electrodes, ET based electrodes and 
post cricoid surface electrodes. Of these, ET based surface 
electrodes (Figure 2) are currently the most popular for 
monitoring of the RLN in thyroid surgery and have several 
advantages over other methods including ease of set up, non-
invasive nature and large EMG potentials recordable with 
such electrodes. However as with any neurophysiological 
monitoring category, whether intracranial, spinal or 
peripheral, standardization of IONM technique is necessary 
to ensure that results generated are repeatable, reliable and 
clinically meaningful. Studies investigating the utility of 
IONM compared to direct nerve visualization alone have 
varied greatly with regards to inclusion criteria, laryngeal 
examination practices, type of monitoring applied and 
reported results. Most studies have used ET based surface 
electrodes to record electromyographic potentials elicited 
by vocal fold contraction in response to intermittent direct 
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Figure 1 Technique of laryngeal palpation.
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nerve stimulation. More recently, there have been a number 
of series reporting methods of continuous intraoperative 
nerve monitoring (CIONM) which has the advantage over 
intermittent stimulation techniques of assessing real-time 
nerve integrity and thus better preventing impending nerve 
injury. Data is lacking as to whether CIONM will ultimately 
reduce temporary and/or permanent RLN injury rates 
however the concept, by virtue of its potential preventative 
benefits, is appealing. 

It is important to remember that a key element in the 
anesthetic technique with IONM is the avoidance of muscle 
relaxants or the use of muscle relaxants with a very short 
half-life for endotracheal intubation. In general, to date 
the research and documentation involving the anesthetic 
techniques for IONM are limited. As IONM techniques and 
applications continue to evolve, the need for a collaborative 
environment between the surgeon and anesthesia services 
leading to optimal IONM for better surgical outcomes is 
increasing. Macias et al have published an interdisciplinary 
collaborative protocol for monitored neck surgery based on 
the evidence and clinical experience of over 3,000 cases (6).

Uptake of IONM worldwide

There has been increasing interest in IONM over the past 
decade as outcome measures assume greater importance in 
patient care algorithms and as more practitioners recognize 
that macroscopic nerve identification and preservation does 
not necessarily equate to functional neural integrity (7-13). 
In 2006, the American Association of Endocrine Surgeons 
(AAES) evaluated attitudes about neuromonitoring, usage 
patterns and predictors of its use via email surveys. Non 

users of IONM tended to be older (P=0.023) with a lower 
case volume (P=0.003), less familiarity with the technology 
(P<0.001), and less access to the equipment (P<0.001) (8). 
However, despite these findings, the percentage of surgeons 
in the United States who always use nerve monitoring 
continues to increase particularly amongst young surgeons, 
academic surgeons and those in high volume centers. In 
Germany, IONM is standard of care and, according to a 
national survey in 2010, 90% of surgical departments in 
Germany are equipped with nerve monitors with RLN 
monitoring used in 93% of thyroidectomies (10,14). 
In the United Kingdom, a minority of members of the 
British Association of Endocrine and Thyroid Surgeons 
(BAETS) use IONM, however this proportion is gradually 
increasing (11). In a 2005 study from the UK, patient 
age did not impact on the use of IONM however type of 
disease present (malignant versus benign) and timing of 
surgery (revision versus primary procedures) were both 
significantly correlated with IONM usage (P<0.00001) (12).  
In Denmark, an IONM usage rate of 77% has been 
reported from a registry of surgical results in 2007 (13) 
and similarly, in France, IONM use increased from 6,200 
in 2008 to 10,000 in 2010. Reports out of Italy, Poland, 
Spain and China have reported similar utilization trends. 
A survey from Italy identified that the main motivations 
for IONM use included medico-legal reasons (30%), RLN 
confirmation (20%), RLN identification (20%), prognosis 
(10%) difficult cases (10%), decreased surgical time (5%) 
and education (5%). High volume and academic centers 
reported use more consistent with published guidelines 
of IONM (15). The recent world-wide standards and 
recommendations published in guidelines by various 
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Figure 2 Graphic depiction of correct positioning of monitoring endotracheal tube in position during intraoperative nerve monitoring:  
(A) endoscopic view; (B) side cutaway view of the larynx and trachea.
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organizations are described in the “Current Standards for 
IONM in thyroid and parathyroid surgeries section” below. 

IONM in the reduction of RLN injury

The end-points of most published series looking at IONM in 
neck endocrine surgeries are transient and permanent RLN 
injury. However, the ability of many trials to demonstrate 
a clear benefit of IONM over no monitoring is limited by 
heterogeneity as well as lack of adequate power in study 
design. This heterogeneity is due to many factors including 
variability in pre- and post-operative laryngeal examination 
practices, utilization of different formats of IONM (e.g., 
invasive versus noninvasive devices, audio versus audio plus 
EMG documentation), sample size limitations, histologic 
nature of the pathology, type and extent of the surgical 
procedure, and surgeon’s expertise. Dralle et al. have 
shown that it would be very difficult to have an adequately 
powered study to differentiate between visual identification 
alone and IONM, as such a study would require 9 million 
nerves at risk (NAR) in benign goiter patients and 40,000 
NAR in thyroid cancer patients per arm to detect statistical 
significance (16). One of the larger studies performed to 
assess the value of IONM in neck endocrine procedures was 
by Barczyński et al. (17). In over 850 patients undergoing 
revision thyroidectomy, there was a statistically significant 
reduction in transient (2.6% versus 6.3%) and permanent 
(1.4% versus 2.4%) paralysis rates between patient receiving 
IONM and those without IONM. Another study by 
Barczyński et al. compared the outcomes of 1,000 patients 
with IONM versus 1,000 patients without IONM (18). 
They found that there was a lesser prevalence of transient 
nerve damage in the IONM group among high-risk 
patients. Additionally, there was a difference between low-
risk and high-risk patients which did not reach statistical 
significance. Overall conclusions from this prospective 
study were that IONM, compared to visualization alone, 
reduces the incidence of transient, but not permanent, 
nerve injury. Thomusch et al. studied over 5,000 procedures 
and concluded that IONM of the RLN in thyroid surgery 
significantly (P<0.05) lowers rates of transient and permanent 
RLN palsy compared to visual RLN identification alone (19). 
Yet other studies have demonstrated that IONM can reduce 
operative time and related costs but virtue of less time taken 
to identify the RLN.

A meta-analysis by Zheng et al. analyzed 5 prospective 
randomized studies and 12 comparative non-randomized 
studies (20). The global sample was >36,000 NAR. 

Transient neural damage was significantly reduced in the 
IONM group (2.56%) compared with 2.71% without 
IONM however permanent events showed no statistical 
significance. Pisanu et al. analyzed 3 prospective studies and 
17 comparative non-randomized trials with a global sample 
of >35,500 NAR and reported similar RLN paralysis rates 
between with-IONM and without-IONM groups (21).  
Sanabria et al. analyzed prospective trials only with a 
global sample of >3,000 NAR and noted no statistically 
reduced rates of temporary or permanent RLN paralysis 
with IONM, although there were trends towards such 
significance in both groups (22).

Important applications of IONM

The intraoperative assessment of RLN function with 
IONM during thyroid surgery is uniquely advantageous 
for many reasons, some of which are listed below as a lead-
in to the subsequent discussion on current guidelines and 
standards for IONM in thyroid and parathyroid surgeries.

(I) Early nerve identification and mapping.
Part icular ly  dur ing compl icated thyroid 
operations, early RLN identification can help 
avoid inadvertent nerve injury. Multiple studies 
have shown that IONM improves visual nerve 
identification rates by allowing for the nerve path 
to be mapped using probe stimulation at 2 mA 
well before visual identification is possible. Once 
the nerve is visually identified, stimulation at a 
current of 1 mA allows for mapping of the nerve.

(II) To identify anatomical variations such as 
extralaryngeal branches, specifically the motor 
branches, as well as non-RLN (23). It also 
identifies distortions in the nerve position caused 
by the primary thyroid disease process (e.g., 
substernal extension of a large thyroid goiter).

(III) Assistance in optimizing tissue removal during 
total thyroidectomy by facilitating dissection of 
tissues in the region of the ligament of Berry.

(IV) Intraoperative detection of impending neuropraxic 
neural injury likely allowing alteration of causative 
surgical maneuvers. It is important to realize that 
IONM is more useful in stretch or compression 
injury than in transactional nerve injury.

(V) Prognostication of postoperative neural function, 
this assumes particular importance in bilateral 
surgeries, for prevention of bilateral vocal fold 
paralysis (BVFP). IONM can prevent bilateral 
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RLN palsy associated with total thyroidectomy 
by alerting the surgeon to consider a staged 
procedure  when ips i la tera l  LOS occurs . 
Standardized LOS troubleshooting algorithms 
have been developed to assist that the surgeon 
using IONM in identifying the true LOS and 
determining optimal course for any remaining 
parts of the surgical procedure.

(VI) Improved rates of identification of superior 
laryngeal nerve.

(VII) Educational and medicolegal reasons.
(VIII) For low volume surgeons, RLN monitoring may 

significantly decrease the frequency of permanent 
RLN paralysis (24).

Current standards for IONM in thyroid and 
parathyroid surgeries

There is increasing organizational support for IONM 
in neck endocrine surgeries, catalyzed at least in part by 
the introduction of non-invasive monitoring devices, 
publication of guidelines defining standards for RLN/
EBSLN monitoring and of randomized prospective trials 
as well as by establishment of structured training courses. 
The American Academy of Otolaryngology and Head and 
Neck Surgery (AAOHNS) guidelines on voice preservation 
during thyroid surgery state that IONM is an option for 
patients undergoing thyroid surgery in order to (I) reduce 
RLN identification time, (II) decrease temporary VCP 
rates, and (III) avoid bilateral VCP (through prognostication 
of postoperative vocal cord function). These guidelines 
suggest significant utility of IONM in cases of (I) bilateral 
thyroid surgery, (II) revision thyroid surgery, and (III) 
surgery in the setting of an existing RLN paralysis (25).  
Similarly, guideline statements from the American 
Head and Neck Society (AHNS) on recurrent thyroid 
carcinoma (26), central neck dissection (27), and invasive 
thyroid carcinoma (28) concur that IONM is a valuable 
tool to assist with nerve identification, maximizing nerve 
functional integrity and prognostication of postoperative 
laryngeal function. The American Thyroid Association 
(ATA) has made mention of IONM within a number of 
consensus statements and guidelines. Recommendation 
42 of the ATA 2015 Guidelines for Thyroid Nodules and 
Well Differentiated Thyroid Cancer (29) state that visual 
identification of the RLN during dissection is required in 
all cases and that intraoperative neural stimulation (with 
or without monitoring) may be considered to facilitate 

nerve identification and to confirm neural function”. In 
addition, they note that training and observation of existing 
monitoring standards are important to provide optimal 
benefit from IONM given the complexity of monitoring 
systems. Two additional ATA Surgical Affairs Committee 
consensus statements (on outpatient thyroid surgery and 
on optimal surgical management of goiters) note that 
neural monitoring can be helpful in confirming intact 
neural function at the end of surgery, which may impact on 
discharge planning (30,31). Both the German Association of 
Endocrine Surgery and the International Neuromonitoring 
study group (INMSG) recommend neural monitoring in all 
cases of thyroid and parathyroid surgery.

The International Neural Monitoring Study Group 
(INMSG) was founded in 2006 to serve the emerging field 
of neurophysiologic monitoring of laryngeal nerves in neck 
endocrine surgery. It is an international multidisciplinary 
collaboration with experts in the field of neck endocrine 
surgery, laryngology, electromyography, anesthesiology, 
and neurophysiology. The goals of this collaborative 
group are to improve the quality of IONM, reduce 
inappropriate variations in IONM technique, adhere to 
strict standardization, foster the growth and stature of 
neurophysiological monitoring, encourage research, improve 
and update guidelines, implement IONM courses, develop 
quality standards for practice and training, define unequivocal 
references of RLN neurophysiology and pathology, refine 
EBSLN monitoring and evaluate new developing technology 
such as CIONM. They have published guidelines on RLN 
and EBSLN IONM standards for monitored thyroid and 
parathyroid surgery (32,33). The standards described in 
these guidelines brought uniformity in application of IONM 
during endocrine neck surgery. Since the publication of 
these guidelines, several papers documenting normative 
electromyography (EMG) data of the vagus nerve, RLN and 
EBSLN have been published (34-36). 

To recognize abnormal EMG responses and to 
meaningfully interpret the EMG responses recorded by 
IONM, establishing normal range of EMG responses for 
Vagus nerve, RLN and EBSLN is important. Sritharan  
et al. (35) have delineated normative waveform morphology, 
mean latency and mean amplitude of the left and right 
vagus nerve, pooled RLN and pooled EBSLN (Figure 3). 
Caragacianu et al. have proposed an intraoperative EMG 
criteria, which when present imply normal vocal cord 
function postoperatively (37).

More recently INMSG has written the soon to be 
published, a two-part consensus guideline discussing 
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nerve monitoring for neck endocrine procedures. These 
documents contain an extensive discussion of staging 
bilateral thyroid surgery with monitoring loss of signal 
(LOS) (Part I) and of optimal RLN monitoring for invasive 
thyroid cancer (Part II). These are explicitly detailed 
documents and represent the most expansive guideline 
statements to date with evidence based literature reviews 
and technical discussions. They greatly help with the 
standardization of current techniques and clarify potential 
pitfalls of IONM in thyroid and parathyroid surgeries.

Part I of the INMSG guidelines discusses the use 
of IONM in bilateral thyroid surgery. BVFP results in 
tracheostomy in approximately 30% of patients. IONM 
provides a way of determining whether a nerve exhibits 

a LOS, thus potentially preventing bilateral BVFP by 
allowing the surgical procedure to be staged. The definition 
of LOS was proposed by the INMSG in 2011 as an EMG 
signal with amplitude of 100 µV or less. For this criteria 
to be used, initial EMG amplitude should be 500 µV  
or greater. Most LOS injuries occur due to traction, 
especially around the ligament of Berry. However, few 
of these injuries will be visually evident intraoperatively. 
Although recently there has been a movement towards 
unilateral thyroid surgery in low risk cancers up to 4 cm, 
rates of total thyroidectomy continue to increase in the 
US and around the world, and all surgeons—regardless 
of caseload volume—have increased complications with 
total as compared to hemi thyroidectomy. Interestingly, 

Figure 3 Normative waveform morphology, mean latency and mean amplitude of the left and right vagus nerve, pooled recurrent laryngeal 
nerve (RLN) and pooled external branch of superior laryngeal nerve (EBSLN) (recorded by ipsilateral endotracheal electrode). SD, standard 
deviation.
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contralateral cord paralysis after ipsilateral LOS appears to 
higher than rates where no ipsilateral LOS occurs, likely 
due to patient and surgeon related factors. Thus, when 
LOS is incorporated into the surgical strategy by staging 
a planned bilateral thyroidectomy, rates of bilateral VCP 
and tracheotomy can be dramatically reduced (Figure 4). 
The cost effectiveness of neural monitoring and LOS/
staged thyroidectomy has also been shown to be favorable. 
The Part I document also introduces a ‘yellow-red-black’ 
type model to represent the various stages of possible RLN 
injury. EMG-Yellow reflects impending neuropraxia with 
amplitude decrease of 50% or more and latency increase 
of 10% or more, the so-called ‘combined event’. These 
changes are often reversible with alteration of the surgical 
maneuver. EMG-Red reflects evolving neuropraxia with a 
further increase in the risk of VCP from the ‘yellow’ stage 
that occurs as the EMG amplitude drops to 100 µV or 
less. The Final EMG stage is the F-EMG-Black whereby 
the final EMG is considered as recovery EMG if both an 
absolute value of 250 µV along with recovery to >50% of 
baseline amplitude are present. Laryngeal twitch response to 
nerve stimulation may also be useful to support final LOS.

Part II of the INMSG guidelines discusses optimal RLN 

monitoring for invasive thyroid cancer. The RLN is one 
of the most frequent sites of invasion for locally aggressive 
thyroid cancer. RLN dysfunction from carcinoma invasion 
often occurs insidiously and, preoperatively, may present 
with voice and/or aspiration related issues or may be 
asymptomatic. Thus, to identify possible RLN paralysis 
pre-operatively, laryngeal examination should be performed 
on all patients with (I) with preoperative voice abnormality 
(II) a past history of surgery that may have endangered 
the vagus or RLN or (III) all patients with potentially 
invasive primary thyroid disease or significant central neck 
nodal disease. Cross sectional imaging can further define 
the potential degree of nerve involvement when VCP is 
detected on laryngoscopy preoperatively. Different types 
of RLN invasion are possible including perineural invasion 
involving only the epineurium (shaving of tumor may 
be possible in these cases), and perineural invasion with 
additional invasion into perineurium and endoneurium 
(nerve resection may be indicated in these cases depending 
on additional factors as detailed in these guidelines). 
EMG information obtained intraoperatively can help 
guide decision making in the invaded nerve and assist in 
determining when nerve preservation versus sacrifice is 

Figure 4 Algorithm for evaluation of intraoperative loss of signal (LOS).
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indicated. For nerves with preservation of some glottic 
function or proximal RLN EMG activity, consideration 
should be made to preserving the nerve whenever possible.

CIONM

Although intermittent IONM is extremely helpful, it 
can only provide intermittent RLN evaluation, allowing 
the nerve to be at risk of injury in between the stimulus. 
Hence, a new format of IONM that uses an implanted 
vagal electrode (Figure 5) to constantly provide a real time 
intraoperative EMG data of vagus nerve and RLN has 
evolved, it is termed continuous IONM (CIONM) (38-40).  
The adverse EMG changes detected by CIONM can 
indicate an impending neural injury and hence allow the 
surgeons to perform a corrective action like stopping/
reversing underlying maneuvers that may have caused 
the adverse EMG changes, thus may be able to avoid a 
permanent injury. Phelan et al. analyzed EMG adverse 
events and have coupled amplitude decline and latency 
incline to identify mild combined events (mCE) and severe 
combined events (sCE). They defined mild combined event 
(mCE) as concordant amplitude decrease of 50–70% and a 
latency increase of 5–10% and sCE as concordant amplitude 
decrease of >70% and a latency increase of >10%. The study 
noted that mCE was not related to postoperative VCP, 
whereas the sCE could evolve into frank LOS, which were 
much less reversible and could lead to postoperative VCP. 

Current standards for EBSLN monitoring

Evolution of EBSLN monitoring deserves special mention 
as it has been a much more recent addition to the IONM 
strategies. True rates of EBSLN injury after neck endocrine 

procedures are unknown but may approach 50% in some 
series. In part, this is because objective examination findings 
of such injury are often difficult to discern, even with direct 
laryngeal visualization. Voice changes after injury to the 
EBSLN can range in severity from mild to severe and 
causes altered fundamental frequency of the voice, difficulty 
producing high frequency sounds, and reduced vocal 
projection. However, due to the paucity of examination 
findings and lack of changes in vocal fold mobility, these 
changes are often overlooked and patients are reassured 
and discharged from follow up without further voice 
evaluation. EMG of the cricothyroid muscle (CTM) is the 
gold standard examination for diagnosis of EBSLN injury. 
Multiple classification schemes have been proposed to aid 
in EBSLN identification during thyroidectomy procedures, 
including the Cernea, Kierner, Friedman and Selvan 
EBSLN Classification Schemes (41-43).

Until recently, there were few reports in the literature 
describing how to identify and preserve the EBSLN during 
superior pole dissection. Most surgeons tend to avoid rather 
than routinely expose the EBSLN during thyroidectomy 
and reports on methods of EBSLN preservation in the 
literature have thus varied from visualization alone to 
electrical stimulation (44-48), although most surgeons 
tend to avoid rather than routinely expose and identify 
the EBSLN during thyroidectomy. In 2013, to improve 
the practice of neural monitoring of the EBSLN during 
thyroidectomy and parathyroidectomy, the INMSG 
published a guideline statement on EBSLN monitoring 
during neck endocrine surgery which introduced 
standardized procedures for EBSLN identification and 
stimulation (33). 

As compared to IONM of the RLN, EBSLN monitoring 
is based on two distinct outcome measures, namely (I) 
evaluation of the cricothyroid twitch response (present 
in all patients); and (II) EMG glottic response of vocal 
cord depolarization identified on surface ET electrodes. 
This is present in 70–100% of patients depending on 
type of ET used, notably, the Trivantage tube (Figure 6) 
has higher sensitivity (49). Meticulous dissection of the 
superior thyroid pole is essential to ensure the EBSLN 
is not entrapped within branches of the superior vascular 
pedicle prior to vessel ligation and division. Approximately 
20% of EBSLNs may not be able to be visually identified 
due to a subfascial/intramuscular course within the inferior 
constrictor muscle (44) however the INMSG guidelines 
recommend that attempts to directly visualize the EBSLN 
should be made in all cases. The cricothyroid twitch 

Figure 5 Vagal electrode in place for continuous intraoperative 
nerve monitoring (CIONM) during thyroid surgery.
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technique for EBSLN IONM is based on the following 
premises:

(I) The EBSLN needs to be stimulated as clearly 
presents (through CTM visual twitch assessment 
or endotracheal glottic waveform if observable) 
cranially and medially to the evolving superior pole 
pedicle (true positive stimulation);

(II) Stimulation of the pedicle that is to be divided is 
stimulated as negative for EBSLN (i.e., no CTM 
visual twitch or endotracheal glottic waveform) 
(true negative for absence of neural tissue in the 

pedicle provided that a true positive stimulation is 
initially obtained).

The  St imula t ion-Glot t i c  EMG technique  tor 
EBSLN IONM uses ET electrodes to measures the 
glottic depolarization resulting from ipsilateral EBSLN 
stimulation. This is thought to occur due to the human 
communicating nerve which is an extension of the EBSLN 
that innervates the anterior half of the ipsilateral vocal 
fold, described in up to 85% of anatomical dissection 
studies (50). Equipment-related measurement issues may 
explain why an identifiable glottic waveform is present 
in only 70–80% of patients using standard EMG tubes. 
False positive stimulation of the EBSLN occurs when a 
positive CTM waveform is obtained due to a nonneural 
shunt stimulation and may occur when 2 mA stimulation 
currents are utilized during nerve mapping. False positive 
results can be minimized by reducing stimulation current 
to 1mA following nerve identification and observing 
for a positive CTM twitch response. Liddy et al. (51) 
have studied correlation of diverse EMG response with 
presence or absence of visual and palpable muscle activation 
to document target muscles (those with concomitant 
muscular contraction) and non-target muscles (those 
with no concomitant muscular contraction) for RLN and 
EBSLN (Figure 7A,B). They noted that recording low-

Figure 6 Trivantage NIM endotracheal tube for EBSLN 
monitoring, the tube has a larger electrode surface area 
allowing more sensitive assessment of the anterior glottis during 
thyroarytenoid muscle depolarization with EBSLN stimulation. 
NIM, neural integrity monitor; EBSLN, external branch of the 
superior laryngeal nerve.

Figure 7 Target and non-target muscles for (A) the recurrent laryngeal nerve (RLN) and/or vagus nerve and (B) the external branch of 
thesuperior laryngeal nerve (EBSLN) stimulations: when a nerve is stimulated, target muscles will demonstrate concomitant muscular 
contraction while non-target muscles will not. Reproduced from Liddy et al. (51).

Recurrent laryngeal nerve

External branch of the superior laryngeal 
nerve
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amplitude EMG waveform in non-target muscles when 
a nerve is stimulated can be explained by understanding 
the far-field artifactual waveforms concept. False negative 
results occur when the EBSN is misidentified for a 
nonneural structure, resulting in no CTM twitch (and no 
EMG response) following EBSLN stimulation, and may 
result from equipment related recording issues, blood or 
fascial covering over the nerve, insufficient stimulation 
current, neuromuscular blockade, and transient EBSLN 
neuropraxia.

Conclusions

There has been much recent progress in the evolution 
standard procedures for IONM during thyroid and 
parathyroid surgeries in line with the recognition that 
neural visual integrity does not equate to functional viability 
and with an increasing focus on optimizing outcomes 
in neck endocrine surgical procedures. Standardization 
and organizational support have been instrumental in 
promoting the use of IONM and in increasing the number 
of publications that report intraoperative EMG data with 
their meaningful clinical interpretations. These trends 
are likely to continue and, as evolution of the equipment 
for neuromonitoring continues and our understanding of 
laryngeal neuroanatomy expands, the options for IONM of 
the RLN and EBSLN will continue to advance.
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