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Epidemiology of pancreatic cancer

Pancreatic ductal adenocarcinoma (PDAC) constitutes 
90% of all pancreatic malignancies and is characterised 
by extensive desmoplasia and early metastasis. The risk 
factors for PDAC include a family history of the disease, 
cigarette smoking, chronic pancreatitis, obesity and diabetes 
mellitus (1,2). PDAC most commonly occurs in the 60 to 
80 year age group, and its incidence is 50% higher in men 
than in women and (1) genetic mutations such as BRCA2, 
CDKN2A, STK11, PRSS1, SPINK1, CFTR, PALB2 and 
ATM increase the risk for PDAC (3), patients with chronic 
pancreatitis have a 15 fold increased risk of developing 
PDAC (4), cigarette smoking increases the risk of PDAC by 

75% even up to 10 years after cessation of smoking and (5) 
diabetes mellitus increases the risk by 30% up to 20 years 
after diagnosis (6). Obesity and high body mass index are 
positively correlated with the risk of developing PDAC (7).  
One meta-analysis showed a 19% increase in risk of 
developing PDAC in obese individuals (BMI ≥30 kg/m2) 
compared to normal participants (BMI 22 kg/m2) (8).

The genetic mutational landscape of PDAC involves 
the alteration of 69 genes which affect 12 core signalling 
pathways (9). Both oncogenes and tumour suppressor genes 
are mutated of which the major genes involved in PDAC are 
the oncogene Kristen Rat Sarcoma Virus (KRAS), and three 
tumour suppressor genes—TP53, CDKN2A and SMAD4. 
KRAS is the earliest mutation seen in low-grade pancreatic 
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intraepithelial neoplasia (PanIN) lesions, the precursors of 
PDAC (10). CDKN2A is also found early in neoplasia while 
SMAD4 and TP53 alterations occur late in tumorigenesis 
corresponding to grade 3 PanINs and invasive stages (11). 

Despite its low incidence, PDAC is the fourth leading 
cause of cancer related deaths and, alarmingly is projected to 
become the second leading cause of cancer related deaths by 
2030 (12). The high mortality in PDAC can be attributed to 
the presence of metastases even at the time of first diagnosis 
and the lack of effective treatments. Even with advances in 
current chemotherapy such as Folfirinox, and Gemcitabine-
Abraxane, in addition to surgery and radiotherapy, the 
5-year survival rate of PDAC has only marginally improved 
from 4% a decade ago to 8% (13,14). Surgical resection is 
the mainstay of treatment for prolonged survival (15) but 
unfortunately only 15–20% of cases are suitable for surgical 
resection because the majority of patients have visible 
metastatic disease at the time of diagnosis (16).

Role of stroma in pancreatic cancer

Desmoplasia is a striking feature of PDAC accounting for 
50–80% of the tumour volume (Figure 1) (17). This stromal 
reaction consists of cellular components such as pancreatic 
stellate cells (PSCs), which are the main source of the 
stromal collagen (Figure 2) (18), fibroblasts, immune cells, 
vascular and neural elements and non-cellular components 
such as collagens, fibronectin, glycoproteins, proteoglycans, 
hyaluronic acid, cytokines, growth factors, and secreted 

protein acidic and rich in cysteine (SPARC) (19). The 
immune cells mostly comprise immunosuppressive 
leukocytes such as myeloid derived suppressor cells (MDSC) 
and macrophages (20). 

Several studies have examined the influence of the stroma 
on the progression and outcome of PDAC (21,22). In a 
cohort of 233 patients who underwent surgical resection, 
Erkan et al. (23) demonstrated that overt stromal activity, 
as assessed by the expression of alpha smooth muscle actin 
(αSMA, a marker of activated PSCs) was associated with 
a poor prognosis. Similarly, Fujita et al. (24) observed that 
in 109 patients with PDAC, higher αSMA mRNA levels 
were correlated with poorer outcome. A stage-dependent 
influence of stroma on PDAC outcome was observed by 
Wang et al. (25) in a study involving 145 PDAC patients 
who underwent resection followed by gemcitabine-
chemotherapy. The authors reported that increased 
expression of αSMA was significantly associated with 
poor outcome only during the early stages of the tumour 
development. Higher expression of other stromal factors 
such as annexin II, stromal tenascin C (26), interleukin-1 
receptor-associated kinase 4 (IRAK4) expression (27), 
SPARC (28) and periostin (29) have also been reported 
to correlate with poor prognosis. Thus, these studies 
support the concept that stromal activity correlates with the 
progression of PDAC and a poor outcome. 

In contrast to the above findings, Ozdemir et al. (30) 
observed that low expression of αSMA correlated with 
worse outcome, albeit in a relatively small cohort of 53 
PDAC patients. In addition, Bever et al. (31) observed that 
high stroma density was associated with longer survival but 
that stronger expression of αSMA was not associated with 
differences in clinical outcome. 

The apparent contradictory findings on the influence of 
stroma on PDAC progression in the above studies could 
be due to the differences in the methodology of assessment 
of stromal activity (stromal density vs. αSMA expression), 
differences in patient cohorts, and stage of the tumour 
(early vs. late) and a possible biphasic influence of stroma 
on tumour progression. Another factor that may be relevant 
to the disparate findings is the presence of functionally 
different subsets of PSCs within the stroma of pancreatic 
tumours. In this regard Yuzawa et al. (32) have reported 
the presence of fibroblasts with varying expression of 
αSMA and PDGFRβ, with higher expression of PDGFRβ 
being associated with a worse prognosis, but αSMA being 
unrelated to outcome. In another study, Ohlund et al. (33) 
showed that the PSC-derived cancer-associated fibroblasts 

Figure 1 Desmoplasia in pancreatic cancer. A representative 
photomicrograph of a haematoxylin and eosin stained human 
pancreatic cancer section showing malignant elements (duct-like 
and tubular structures- indicated by asterisks) embedded in highly 
fibrotic stroma (indicated by arrows). Reprinted with permission 
from Elsevier (17).
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(CAFs) close to cancer cells exhibited increased αSMA 
expression, but those at the periphery of the tumour, 
(away from the tumour cells), lacked αSMA expression, 
secreted inflammatory mediators including IL-6 and were 
correlated with poor outcome. Overall, the weight of 
evidence supports the view that the stroma exerts significant 
influence on the progression of PDAC, suggesting a need 
for selectively targeting and reprogramming the stroma to 
help improve patient outcomes.

PSCs in the healthy pancreas

The finding by Apte et al. (18) that the collagenous stroma 
of the pancreas is produced by PSCs has led to numerous 
studies of the functions of this cell. We now know that 
in the normal pancreas, PSCs are stellate-shaped cells 
located around pancreatic acini and account for 4–7% of 
all parenchymal cells in the gland (34). In health, PSCs 
manifest a quiescent phenotype characterised by abundant 
vitamin A-containing lipid droplets in the cytoplasm. PSCs 

are identified by immunostaining for selective markers, such 
as desmin, glial fibrillary acidic protein (GFAP), nestin, 
neural cell adhesion molecule, nerve growth factor and 
synemin (35-37). Although the origin of PSCs is not clear, 
it was demonstrated that a proportion of PSCs originate 
from bone marrow and replenish PSCs in the pancreas 
(38). In addition, Ino et al. (39) showed that chemokine 
receptor type 2 (CCR2+) monocytes migrate from the bone 
marrow and transform into PSCs through the monocyte 
chemoattractant protein-1 (MCP-1)/CCR2 pathway. The 
monocyte lineage origin of PSC is also supported by the 
expression of monocyte specific marker α-naphthyl butyrate 
esterase (ANBE) (40). 

PSCs play key roles in both the healthy and diseased 
pancreas. In normal pancreas, PSCs express Toll-like 
receptors (TLRs) 2, 3, 4 and 5 (41) and have the ability 
for phagocytosis (42) and play a part in innate immunity 
as first-line defense against early injury. PSCs also secrete 
matrix metalloproteinases such as MMP2, MMP9 and 
MMP13 and metalloproteinase inhibitors such as TIMP1 

Figure 2 Pancreatic stellate cells are the major source of collagen in the stroma of pancreatic cancer. (A) A representative pair of serial 
sections of human pancreatic cancer showing stromal areas with strong positive staining for collagen as well as for αSMA, indicating the 
presence of activated PSCs in the fibrotic reaction in pancreatic cancer. Original magnification, ×100; (B) Colocalisation of α-SMA (brown), 
a marker for activated PSCs and procollagen α1 mRNA (blue, in situ hybridisation), restricted to stromal areas of human pancreatic cancer 
tissue (low and high power views) indicating that activated PSCs are the major source for collagen in the stroma of pancreatic cancer. 
Original magnification, ×200 and ×400 respectively. Reprinted with permission from Wolters Kluwer Health (18).
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and TIMP2 to maintain the balance of extracellular matrix, 
which is usually disrupted after activation in pancreatitis 
and PDAC. Several in vitro and in vivo studies suggest that 
PSCs may have progenitor-like capabilities, possessing 
ATP-binding cassette G2 (ABCG2) and they transform into 
insulin-secreting cells upon exposure to the relevant culture 
medium (40,43-46).

Response of PSCs to injury

During pancreatic injury, PSCs are activated, a process 
associated with loss of the vitamin A-containing lipid droplets 
and transformation to a myofibroblast-like phenotype with 
expression of the activation marker alpha smooth muscle actin 
(αSMA), fibroblast activation protein-α (FAP-α), fibroblast-
specific protein-1 (FSP-1), and fibrinogen (35). Apte et al. 
(17,37,47) were the first to demonstrate that the collagenous 
stroma in pancreatic injury was produced by PSCs. Platelet 
derived growth factor (PDGF) induces differentiation of 
PSCs into the myofibroblast phenotype (Figure 3) (32,48). 
In addition, activated PSCs express intercellular adhesion 
molecule (ICAM)-1, produce cytokines including interleukins 

6, 7, and 8 and monocyte chemoattractant protein (MCP), 
and induce angiogenesis (34,49-51). 

PSCs can be activated by several mediators such as pro-
inflammatory cytokines (52), oxidant stress (53,54), ethanol 
and its metabolites, acetaldehyde and fatty acid ethyl 
esters (55,56), fatty acids (oleate) (57) and endotoxins (58).  
Other PSC activating factors of particular relevance 
to PDAC include acidosis (59), hypoxia (60), increased 
interstitial pressure (61), and hyperglycaemia (62). Recently, 
epigenetic modifications (increased acetylation of histones) 
have been shown to play an important role in the activation 
of PSCs and collagen synthesis (63). Bromodomain extra 
terminal domain (BET) proteins bind to acetylated motifs 
on histones leading to gene activation via recruitment of 
transcription factors and other chromatin regulators (64). 
Kumar et al. (63) demonstrated that BET proteins are 
expressed in PSCs and that pan inhibition of BET proteins 
(subtypes BRD 2, 3, and 4) using JQ1, a BET inhibitor 
leads to PSC quiescence and decreased collagen I synthesis. 
Furthermore, using specific siRNA for the BRD subtypes, 
the authors found that collagen synthesis was positively 
regulated by BRD4 but negatively regulated by BRD 2 and 3. 

Figure 3 Biology and activation of pancreatic stellate cells. Quiescent PSCs exhibiting vitamin A-containing lipid droplets are localised in 
around pancreatic acini and islets and express selective markers such as GFAP, nestin, NCAM, NGF and synemin. During health, quiescent 
PSCs are involved in ECM maintenance and may also play a role in regeneration of β-cells, innate immunity and acinar secretion. During 
pancreatic injury, quiescent PSCs are activated by several factors and acquire a myofibroblast-like phenotype, lose vitamin A and express 
α-SMA, FAP-α and FSP-1 markers. Activated PSCs produce excess ECM leading to desmoplasia, interact with cancer and other cells in 
the stroma through increased cytokine production, and also cause immunosuppression. FAP-α, fibroblast activation protein alpha; FSP-1, 
fibroblast-specific protein-1; GFAP, glial fibrillary acidic protein; NCAM, neural cell adhesion molecule; NGF, nerve growth factor; PSC, 
pancreatic stellate cell; α-SMA, alpha-smooth muscle actin.
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Mechanical properties of the local environment have 
been shown to play a role in activating PSCs. Using a 
physiomimetic system to recapitulate the mechanical 
microenvironment, Lachowski et al. (65) demonstrated that 
matrix stiffness can regulate the activation and migration 
of PSCs. These findings implicate the role of mechanical 
stimulation by the microenvironment in the progression 
PDAC through activation of PSC and fibrosis.

Interactions of PSCs and cancer cells

Apte et al. (18) established that activated PSCs are primarily 
responsible for the characteristic desmoplasia in PDAC. 
Activation of PSCs is considered an early event in PDAC 
due to the presence of activated PSCs expressing periostin—
a cell adhesion protein, galectin-1 (a glycan binding protein) 
and αSMA (an activation marker) in precursor lesions 
such as PanINs (66) and intra-ductal papillary mucinous 
neoplasms (IPMN) (67). It is now established that PSCs 
and tumour cells have bidirectional effects on each other. 
On one hand, pancreatic cancer cells (PCCs) promote PSC 
proliferation, migration and extracellular matrix synthesis 
(68,69) while on the other hand PSCs promote PCC 
progression, migration, and tumour cell survival (68,70). 

The complementary bidirectional influence of PCCs 
and PSCs has been well demonstrated by both in vitro 
and in vivo studies. In co-culture studies, PCCs increased 
PSC proliferation and ECM synthesis mediated by PDGF, 
FGF2, and TGFβ1 (71). PCCs also promoted the secretion 
of matrix metalloproteinases by PSCs (72) through ECM 
metalloproteinase inducer (EMMPRIN) secretion (73) and 
TGFβ1 signalling (74). It is interesting to note that cancer 
cells induce autophagy in PSCs resulting in the degradation 
of proteins and release of amino acids such as alanine which 
then acts as an alternative carbon source for the TCA cycle 
and lipid synthesis in cancer cells. As a result, cancer cells 
have decreased dependency on glucose and glutamine in 
the nutrient-poor, and hypoxic environment of PDAC (75).  
The process of autophagy also activates PSCs leading to 
increased stromal synthesis. Endo et al. (76) demonstrated 
that knockdown of autophagy proteins in PSCs led to a 
decrease in ECM and IL-6 production in vitro and that co-
administration of these PSCs with PCCs led to smaller 
tumours and fewer metastases in nude mice. The authors 
also observed that in 133 patient-derived PDAC samples, 
autophagy significantly co-related with tumour growth, 
invasion, metastases and poor outcome. 

PSCs influence several critical steps in PDAC progression. 
PSCs induced epithelial mesenchymal transition (EMT) 
leading to increased invasion and migration of PCCs (77,78), 
and formation of a cancer stem cell (CSC) phenotype (79) 
(Figure 4). Although PSCs exhibit functionally diverse subsets 
with differential influence on PDAC progression (22),  
stromal signalling appears to be indispensable for PDAC 
progression. Indeed, Sherman et al. (80) clearly demonstrated 
that Kras mutation-induced signalling (the major gene 
mutation involved in PDAC) alone was insufficient to drive 
oncogene transcription and required permissive signalling 
from the stroma for the development of PDAC.

In animal models, co-injection of PCC with PSCs 
resulted in larger tumours with significant desmoplasia 
compared to injection of PCCs alone in both subcutaneous 
xenograft models (71) and orthotopic models (68,70,81); 
this increase in tumour size was due in part to PSC-induced 
PCC proliferation. The overexpression of the serine 
protease inhibitor SERPINE2 by PCCs was reported to be 
responsible for the increased tumour growth in vivo in the 
presence of PSCs (82). 

PSCs also have a facilitatory role in metastasis of 
tumour cells. In a gender mismatch study, Xu et al. (69) 
demonstrated the presence of PSCs in metastatic nodules 
suggesting dissemination of PSCs via the circulation to 
distant organs, possibly facilitating the seeding and growth 
of cancer cells at these sites. Similar observations were made 
by Suetsugu et al. (83) who observed that both PSCs and 
PCCs co-migrated from the spleen (the site of injection), 
to the metastatic nodules. Storck et al. (84) demonstrated 
that calcium-gated potassium 3.1 channels are crucial 
for the process of migration in PSCs and blocking these 
channels abolished both migration and chemotaxis of PSCs. 
In addition to migrating PSCs, local hepatic stellate cells 
in the liver also aid the formation of a metastatic niche for 
migrating PCCs (85). 

Recently,  exosomes have emerged as important 
mediators of the bidirectional interactions between stellate 
cells and tumour cells. Takikawa et al. (86) demonstrated 
that exosomes derived from PSCs contained a variety of 
microRNAs and an abundance of miR-21-5p and miR-
451a and mediated proliferation and migration of PCCs. 
Similarly, exosomes derived from PCCs stimulated the 
activation, proliferation, and migration of PSCs through 
upregulation of transforming growth factor β1 (TGFβ1) 
and tumour necrosis factor (TNF) (86). The signalling 
pathways involved in the PSC and PCC interactions are 
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summarised in Table 1. 

Interactions of PSCs with other cells in the stroma

PSCs interact with other stromal cells such as endothelial 
cells, immune cells, neural cells and islet cells in the 
stroma. PSCs interact with endothelial cells by producing 
proangiogenic factors such as vascular endothelial growth 
factor (VEGF) (69), periostin (29), angiopoietin-1 (60), and 
Hepatocyte growth factor (HGF) (103) which are shown 
to induce endothelial proliferation in vitro. On the other 
hand, PSCs also display antiangiogenic features such as (I) 

secretion of collagenous stroma (104,105), (II) expression 
of vasohibin-1, which acts as negative feedback for VEGF-
induced gene expression (60,106), and (III) induction of 
PCCs to secrete endostatin (104). Taken together, the bi-
functional role of PSCs in angiogenesis may play a role in 
the selective vascularisation in PDAC, wherein tumours 
are usually better perfused at the periphery (leading edge) 
and less perfused towards the core (107). While pro-
angiogenic factors expressed by PSCs are responsible for 
the hypervascularity, cancer cell-secreted endostatin is 
implicated in the hypo-vascularity of the juxta-tumoral 
stroma (108). Furthermore, targeting PSCs has been 

Figure 4 Interactions of activated pancreatic stellate cells with tumour and stromal cells. Activated PSCs are involved in crosstalk with 
tumour cells that is mediated by several cytokines, leading to proliferation, invasion, metastasis, improved survival, and chemoresistance as 
well as radio-resistance of cancer cells. In turn, tumour cells promote ECM synthesis, proliferation, and migration of PSCs. Activated PSCs 
are primarily involved in the synthesis of collagen I and fibronectin leading to desmoplasia. Activated PSCs also lead to fibrosis of islets 
and decrease insulin production from β-cells, thereby possibly playing a role in diabetes mellitus. During pancreatic cancer, neurotrophic 
factors secreted by PSCs are involved in nerve cell plasticity and neurogenic pain. Angiogenic factors secreted by PSCs cause increased 
angiogenesis. Activated PSCs play a crucial role in creating an immunosuppressive environment by interacting with immune cells leading 
to T-cell sequestration and MDSC and mast cell infiltration. CSC, cancer stem cells; CXCL, chemotactic chemokine ligand; CXCR, 
chemotactic chemokine receptor; EMT, epithelial mesenchymal transition; FGF, fibroblast growth factor; IFNγ, interferon gamma; IL, 
interleukin; NGF, nerve growth factor; MDSC, myeloid derived suppressor cells; PSC, pancreatic stellate cells; TGFβ, transforming growth 
factor beta; TNFα, tumour necrosis factor alpha; VEGF, vascular endothelial growth factor.
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Table 1 Signalling pathways reported to be involved in the interaction between PSCs and PCCs

Signalling pathway Mediator Functional role Inhibitor/activator used Reference

Rho-ROCK pathway Rho-associated 
protein kinase

α-SMA expression, proliferation, 
chemotaxis, type I collagen, fibrosis

Y-27632: a specific ROCK 
inhibitor 

(87)

Mitogen-activated 
protein kinase (MAPK) 
signalling pathway 

MAPK PSC proliferation, TIMP-1 production, 
α-SMA

U0216: a specific MAP kinase 
(MEK) inhibitor

(88)

PI3-Kinase pathway PDGF PSC migration and proliferation Wortmannin: a specific  
PI3-kinase inhibitor 

(89) 

SMADS SMAD-2,3 PSC activation, proliferation, ECM 
deposition, transdifferentiation, TGF-β1 
expression

PD98059: a specific inhibitor 
of mitogen-activated protein 
kinase (MEK1)

(90)

Protein kinase C Hyperglycaemia PSC proliferation, α-SMA, collagen-I 
production, angiogenesis

Calphostin C: a protein kinase 
C (PKC)-specific inhibitor

(91) 

Peroxisome  
proliferator-activated 
gamma (PPARγ) 

PPAR-γ ligands Inhibition of PSC activation, proliferation, 
and collagen synthesis; increased 
phagocytosis

 siRNA (42)

Hedgehog pathway Smo, Gli PSC activation, ECM synthesis, 
migration, desmoplasia, angiogenesis; 
PCC proliferation, migration and 
chemoresistance

NVP-LDE225: a Hh pathway 
inhibitor

(92)

Wnt/β-catenin signalling β-catenin PSCs promote invasion of PCCs Retinoic acid (93)

Vitamin D receptor Vitamin D Inhibition of PSC activation; decreased 
chemoresistance

Calcipotriol: a vitamin D 
receptor activator

(94)

Toll-like receptor (TLR) 
signalling 

TLR9 Expression of PSC-derived cytokines  
(e.g., CCL3, CCL11) immunosuppression 

ODN1826: a TLR9 ligand (95)

Periostin pathway Periostin Periostin secreted by PSCs promotes 
PCC proliferation, EMT and resistance to 
nutrient deprivation and hypoxia 

Erlotinib: an EGFR inhibitor and 
SCH772984: an Erk inhibitor 

(96)

Hypoxia inducible factor 
1 (HIF-1)

CCL2 PSC activation, macrophage recruitment HIF-1α siRNA (97)

HGF/c-MET pathway HGF PSC promote proliferation and metastasis 
of tumour cells

AMG 102: monoclonal antibody 
for HGF; compound A: small 
molecule inhibitor of c-MET

(81)

IL6/JAK/STAT IL-6 PSC activation and proliferation Ruxolitinib: a Jak1/2 inhibitor; 
MEK162: a MAPK inhibitor

(98)

Integrin Kindlin-2 Increased cytokines production in PSCs 
facilitating progression and migration of PCC 

Kindlin-2-knockdown (99)

Galectin-1 PSC-derived SDF-1 Proliferation of PSC and chemokine 
secretion facilitating PCC metastasis 

BAY 11-7082: a NF-κB inhibitor; 
AMD3100: a CXCR4 blocker

(100)

Reactive oxygen species 
(ROS) 

Suppression of 
miRNA-21

PSC activation and induction of glycolysis Resveratrol (101)

CXCL12 (SDF-1) 
signalling 

PSCs-derived 
CXCL12 (SDF-1)

Immunosuppression by preventing CD8+ T 
cells 

AMD3100: an SDF-1/CXCL12 
inhibitor

(102)

α-SMA, alpha smooth muscle actin; c-MET, tyrosine-protein kinase of Met; CCL, chemokine ligand; CXCL, chemotactic cytokine ligand; 
ECM, extracellular matrix; JAK/STAT, Janus kinase/signal transducers and activators of transcription; HGF, hepatocyte growth factor; PSC, 
pancreatic stellate cells; PCC, pancreatic cancer cells; SDF, stromal derived factor; PDGF, platelet-derived growth factor; SMAD, small 
worm mothers against decapentaplegic.
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demonstrated to reduce neo-vascularisation in vivo (81).
PSCs are involved in immune modulation in PDAC. 

PSCs express TLRs 2, 3, 4 and 5 and take part in innate 
immunity (41). Notably, PSCs play an important role 
in creating an immunosuppressive environment via the 
secretion of proinflammatory cytokines which mediate a 
number of effects on immune cells including:

(I)	 Sequestration of cytotoxic CD8+ T-cells (thereby 
preventing them from acting on cancer cells), 
mediated by CXCL12 produced by PSCs;

(II)	 Infiltration of CD4+ Foxp3+ Tregs cells and reduced 
T-cell and NK-cell mediated cytolysis, associated 
with increased production of the chemokine IP-10;

(III)	 Elevated MDSC infiltration and differentiation 
of MDSCs to a CD11b+ CD33+ phenotype which 
suppress T-lymphocyte proliferation; the latter 
effect is induced by IL6 produced by PSCs;

(IV)	 T cell apoptosis and Th2 cytokine secretion—
effects mediated by galectin-1 which is overexpressed 
in PSCs;

(V)	 Mast cell infiltration (109) resulting from PSC 
mediated activation of mast cells which in turn 
further activate PSCs through IL-13 and tryptase.

As noted earlier, PSCs express the neural marker GFAP 
and secrete several neurotrophic factors such as nerve growth 
factor (NGF) and brain derived neurotropic factor (BDNF) 
(110,111). PSCs are implicated in the perineural invasion and 
migration of tumour cells along nerve axons (112) and may 
contribute to the pain of PDAC through the production 
of the neurotropic factor TRPV1 (111). These effects are 
mediated by activation of the sonic hedgehog pathway in 
both PCCs and PSCs.

As mentioned earlier, diabetes is a major risk factor for 
PDAC. The role of PSCs in islet cell dysfunction is suggested 
by the identification of activated PSCs in and around 
fibrosed islets in a diabetic rat model and by the findings that 
pancreatic β-cells co-cultured with PSCs exhibit decreased 
insulin expression and increased apoptosis (113). The role 
of PSCs in new onset diabetes (which has been recently 
recognised as an important predictive factor for PDAC 
development) is as yet unknown. While adrenomedullin a 
52-amino acid peptide produced by PDAC cells has been 
implicated in PDAC associated new onset diabetes due to 
the ability of the peptide to inhibit insulin secretion (114), 
the influence of adrenomedullin on PSC function remains 
to be investigated. 

Recently, the role of PSCs in ECM remodelling is 
gaining attention. Using an in vitro 3D spheroid tumour 

model and advanced imaging techniques, Drifka et al. (115) 
demonstrated the permissive role of PSCs in fashioning the 
alignment of collagen fibres to facilitate the invasion and 
co-migration of cancer cells through the stroma. Similarly, 
Sada et al. (116) also using a 3D culture setting, have 
reported that PSCs, in response to hypoxia, reorganised 
collagen fibres to a parallel alignment facilitating cancer 
cell migration. These interactions between PSCs and ECM 
are shown to be dependent on cluster of differentiation 
51 (CD51) an integrin expressed in PSCs (117) which is 
also associated with aggressive disease and poor outcome. 
Other stromal proteins that are involved in PSC-ECM 
interactions include lumican, which enhances PSC adhesion 
and mobility (118) and periostin, which promotes cancer 
cell proliferation and metastasis (119).

PSCs and chemo and radio resistance

PDAC is highly resistant to chemotherapy as well as 
radiotherapy. Extensive desmoplasia combined with fibrosis 
mediated hypoxia leads to impaired drug delivery and 
chemoresistance (60,120,121). PSCs play an important role 
in the development of chemoresistance through various 
mechanisms. Activated PSCs secrete cytokines and large 
amounts of ECM rich in laminin, desmin, and collagen I/
III (34) leading to fibrosis and decreased vascularity which 
hampers the translocation of drugs to cancer cells. When 
co-injected with cancer cells into mouse pancreas, PSC 
promote proliferation, migration, and reduced apoptosis of 
cancer cells, leading to large tumour volumes contributing to 
chemoresistance (68,70,122). Furthermore, PSCs are known 
to induce stemness in cancer cells which may also contribute 
to resistance of the cancer cells to chemotherapy (79). Stromal-
derived factor-1 acting through the CXCR4 receptor was 
hypothesised to help in the evasion of gemcitabine-induced 
apoptosis of tumour cells in PDAC (123). PSCs are shown to 
increase the resistance of tumour cells to gemcitabine through 
increased expression of hairy and enhancer of split-1 (Hes1) in 
the notch signalling pathway (124). 

A more recent report indicates that PSCs in primary 
tumours can internalise and store the active form of 
gemcitabine within their cytoplasm (due to low expression 
of inactivating enzymes), consequently preventing the drug 
from reaching tumour cells (125).

PSCs are also implicated in resistance of PDAC 
to radiotherapy. Mantoni et al. (126) demonstrated a 
radioprotective effect of PSCs on PCCs through β1-integrin 
signalling. On the other hand, PSCs also enhance the stem 
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cell phenotype in cancer cells through EMT mediated by 
TGFβ leading to radiotherapy resistance (127). 

Targeting stromal-tumour interactions 

Despite the recent experimental advances in combinations 
of chemotherapeutic agents, the impact on the survival of 
patients with PDAC is disappointing. We assert that the 
failure of current treatments may be partly due to the fact 
that stromal-tumour interactions have largely been ignored 
in drug development efforts in the past. However, with the 
increasing recognition of the critical role of the stroma in 
PDAC progression, several studies targeting stromal-tumour 
interactions have recently been reported, with encouraging 
results in the pre-clinical phase, and with some being taken 
to early clinical trials. These are summarised as follows.

Hedgehog pathway

The hedgehog pathway in PDAC manifests as overexpression 
of the ligand sonic hedgehog (Shh) in tumour cells with 
overexpression of its receptor Smoothened (Smo) mainly 
in cancer-associated fibroblasts (128). In murine models, 
ormeloxifene (129) and IPI-926 (130) were successful in 
targeting the Hh pathway resulting in decreased stroma, 
reduced tumour volume and increased sensitivity to co-
administered gemcitabine. Rucki et al. (92) used KPC mice 
to demonstrate that dual inhibition of sonic hedgehog (Hh) 
and HGF/c-MET pathway sensitises PDAC to gemcitabine.  
However, targeting the Hh pathway in a clinical trial 
GDC-0449 using the inhibitors vismodegib, saridegib and 
sonidegib failed to yield a significant survival benefit (131). 

HGF/c-MET pathway

HGF and its receptor c-MET are increasingly recognised 
for their role in stromal-tumour interactions in PDAC. 
In PDAC, HGF is produced by PSC while its receptor is 
expressed on cancer cells and this pathway is involved in 
cancer cell proliferation, invasion and metastases (103,122). 
Recent studies report that inhibition of the HGF/c-Met 
pathway in an orthotopic mouse model developed by co-
injection of cancer cells and PSC resulted in decreased 
tumour size and elimination of metastasis (81). Li et al. (132)  
observed that treatment with a combination of c-Met 
inhibitor XL184 and gemcitabine in a subcutaneous 
xenograft mouse model significantly decreased cancer 
growth, while individual treatments with either XL184 or 

gemcitabine were ineffective in decreasing the growth rate. 
Pothula et al. (81,122) showed that inhibition of both arms of 
HGF and c-Met pathway along with gemcitabine completely 
eliminated metastasis in an orthotopic mouse model strongly 
resembling human disease. The authors also found that 
gemcitabine alone stimulated stemness and aggressiveness 
of cancer cells suggesting the need for combination therapy. 
These findings have been corroborated by other studies 
which showed that gemcitabine treatment alone increased 
CSC numbers in PDAC (133,134). 

A recent study suggests that c-MET downstream 
signalling is important for the development of an aggressive 
tumour phenotype. Lomberk et al. (135) examining 
epigenetic landscapes in PDAC showed that tumour 
populations can be grouped into two distinct epigenomic 
landscapes namely less aggressive “classical type” and 
more aggressive “basal type” tumours. Further, utilising 
super-enhancer mapping coupled with transcription factor 
binding motif and upstream regulatory analyses, the authors 
demonstrated that downstream MET signalling is involved 
in tumour proliferation and EMT in “basal type” tumours 
and that genetic inactivation of MET using siRNA, shifts the 
epigenotype towards a less aggressive “classical type” tumour.

The above studies suggest that combination treatments 
involving the targeting of the HGF/c-MET pathway plus 
a chemotherapeutic agent may be a promising approach to 
treat PDAC.

Vitamin A 

Activated PSC lose cytoplasmic vitamin A (retinol) and 
transform into a myofibroblast phenotype leading to 
increased ECM synthesis and fibrosis (18). Han et al. (136) 
used a tumour microenvironment activated nano system 
to co-deliver all trans retinoic acid (a metabolite of retinol) 
and siRNA targeting heat shock protein 47 (HSP 47) to 
target both activated PSCs and ECM in an orthotopic 
pancreatic tumour mouse model developed by co-
inoculation of luciferase-expressing Panc-1 cells and PSCs. 
The nanosystem induced quiescence of activated PSCs, 
inhibited ECM proliferation and improved the efficacy of 
concomitant gemcitabine treatment. 

Vitamin D

Sherman et al. (94) found that activation of the vitamin 
D receptor (VDR) with calcipotriol in combination with 
gemcitabine induced quiescence of activated PSCs by 
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inducing Fabp4 (a PSC quiescence marker) and markedly 
reduced markers of inflammation and fibrosis in KPC mice 
(a transgenic PDAC model). On the other hand, vitamin 
D3 is reported to induce differentiation of immature CD34+ 
myeloid cells into dendritic cells thereby promoting tumour 
immunity (137). Stemming from the studies reported 
by Sherman et al. (94) a vitamin D analogue paricalcitol, 
is currently under clinical trial in combination with 
gemcitabine, and nab-paclitaxel (NCT03520790).

Epigenetic targeting 

Epigenetic modifications play an important role in the 
growth and progression of PDAC. As these modifications 
are reversible, targeting them offers new therapeutic 
opportunities in PDAC. Some studies have shown that 
targeting epigenetic pathways could help in reprogramming 
of the tumour microenvironment (138,139) to the detriment 
of the tumour. DNA methylation, histone modifications, 
bromodomain and extra-terminal domain (BET) family 
proteins are the common targets of therapy in PDAC. 
5-Azacitidine, a DNA methyl transferase inhibitor is 
currently being evaluated in a Phase II clinical trial in 
PDAC resected patients with node positive disease and 
elevated CA 19-9 (NCT01845805).

Conclusions

In conclusion, there is growing consensus that PSCs have 
diverse roles in both health and disease and that PSC-
cancer cell interactions are central to the progression of 
PDAC. Many studies are now targeting PSC activation 
and tumour-stromal interactions for developing better 
treatments for pancreatic cancer. Better understanding of 
PSC activation and their interaction with cancer and other 
stromal elements will aid in mitigating chemoresistance and 
developing novel therapies in the future for PDAC.
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