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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the fourth 
most common cause of death in cancer worldwide, with a 
poor 5-year survival rate of 6%. Patients with PDAC poorly 
respond to chemotherapy, radiotherapy, or immunotherapy. 
Emerging evidence linking such poor prognosis and immune 
evasion compels us to explore the mechanisms behind 
immunosuppression in pancreatic tumor microenvironment 
(TME). This review introduces several potential mechanisms 
focusing on resident cells in pancreatic TME. We have also 
summarized recent published studies (1-25) in this field  
i n  Tab le  (26-50 )  ( h t tp : / / fp . amegroups . cn/cms/
apc.2019.06.04-1.pdf) (51-55).

Pancreatic cancer microenvironment

PDAC is characterized with accumulation of a desmoplastic 
stroma, which is composed of a plethora of cellular and 
acellular components, including fibroblasts, immune 
cells, pancreatic stellate cells (PSCs), endothelial cells, 
extracellular matrix, and soluble proteins such as cytokines 
and growth factors (56-59). These components constitute an 
immunosuppressive TME and up to 90% of the tumor bulk, 
function as an important mediator of therapy resistance 
and might be responsible for the failure of immunotherapy 
(60). While immune cells are abundant within the stroma, 
they mostly belong to immunosuppressive subsets such as 
tumor-associated macrophages (TAMs), tumor-associated 
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neutrophil granulocytes (TANs), regulatory T cells (Tregs), 
or immature myeloid cells/myeloid-derived suppressor 
cells (MDSCs) (61-63). These cells are recruited by tumors 
as an escape mechanism from immune surveillance, and 
they interact with other stromal components to create an 
immunosuppressive network (64). Conversely, anti-tumor 
immune cells like DCs, NK cells, and CD8+ T cells are 
relatively few and their anti-tumor effects are generally 
impaired. For example, majority of CD8+ T cells in 
pancreatic TME express high level of immune checkpoint 
receptors that significantly limit their cell-killing effects (65). 
One study has shown that adipocytes contribute to tumor 
microenvironment of obese pancreatic cancer patients. 
Hijacked adipocytes or tumor cells produce IL-1 to activate 
pancreas stellate cells (PSCs), and then the activated PSCs 
(aPSC) secrete IL-1 to recruit TANs who subsequently 
activate PSCs and mediate the tumor immunosuppressive 
microenvironment (66).

The PDAC microenvironment is glycolytic compared 
to surrounding tissue and associated with poor outcome 
in PDAC (67). Increased lactate in the extracellular 
environment was exported by monocarboxylate transporter 
4 (MCT4) from tumor cells who obtain energy in 
unique metabolic ways such as aerobic glycolysis, also 
known as the “Warburg effect”. The resultant lactate 
can limit T-cell effector functions, as this subset of 
immune cells is dependent on aerobic glycolysis (68). In 
contrast, macrophages and Tregs are able to use fatty acid 
oxidation to survive in a low-glucose environment (69,70). 
Additionally, the accumulated lactate at high concentration 
can skew macrophages towards the anti-inflammatory, 
tumor-promoting phenotype (M2-type) (71).

Pancreatic cancer cells

To escape attacks from the immune system, pancreatic 
cancer  ce l l s  adapt ive ly  ad just  themselves  to  the 
microenvironment around. For example, cancer cells 
downregulate the expression of antigen presenting 
molecules including major histocompatibility antigen 
(MHC) class I, B7-H5, and Fas receptor to diminish cell-
mediated immunity and intensify the expression of Fas 
ligand, which induces apoptosis of activated antitumor 
cytotoxic T cells (12,72-75). Further, pancreatic ductal 
epithelium upregulates the expression of adhesion 
molecule L1CAM (CD171), which enriches Tregs in 
TME to correlate malignant progression (50,76). Soluble 
ULBP2 (sULBP2), a ligand of NKG2D receptor, was 

also upregulated in pancreatic cancer to decrease NK 
cytotoxicity towards tumor (4). Moreover, Hinz et al. found 
that transforming growth factor-2 (TGF-β2) induced 
Foxp3 (a transcription regulator) expression in pancreatic 
carcinoma to mediate immune privilege by suppressing 
proliferation of activated cytotoxic T cells, suggesting that 
pancreatic cancer cell may mimic Treg function in immune 
evasion (6). Similarly, focal adhesion kinase (FAK) was 
reported to correlate with high level of fibrosis and poor 
CD8+ cytotoxic T cell infiltration (7). B7-H4 is highly 
expressed on pancreatic cells disregard of the presence 
of pancreatic cancer, and it inhibits T cell proliferation, 
filtration, and interleukin-2 production (77-79). It was 
reported that tumor-associated Tregs can stimulate 
macrophages to secrete IL-6, subsequently activate STAT3 
which binds to the promoter of B7-H4 gene, leading 
to enhanced B7-H4 expression in tumor cells, antigen 
presenting cells (APCs), or other microenvironment-
supporting cells (80-82).

It was reported that pancreatic cancer cells can secret 
TGF-β via activating Smads (83,84) and facilitate immature 
dendritic cells turning into TGF-β–secreting cells (85,86). 
TGF-β is a multifunctioning cytokine involved in nearly 
all pivotal steps of neoplasia (87). In early pancreatic 
tumorigenesis, TGF-β acts as a suppressor due to its 
growth-inhibitory effect on epithelial cells, but it appears 
to promote tumor progression in advanced disease (55) as it 
promotes the proliferation of PSCs and the recruitment of 
CD4+ CD25+ FoxP3+ Tregs and also directly affects CD8+ 
cytotoxic T lymphocytes (CTLs) (65,88). According to 
reports, TGFβ inhibits CTL activity and differentiation 
through several suppressant genes implicated in anti-tumor 
immune response including Granzyme B (89), which is 
an anti-tumor serine protease found in CTL-associated 
cytotoxic granules (90,91). Patients with loss of SMAD4 
are appropriate target population for using TGFBR-
inhibition therapy since those patients will not benefit from 
growth-inhibitory effects of TGF-β (55). In addition, tumor 
cells can also secrete IL-1 to induce intratumoral DCs to 
produce CCL22, which was known to recruit Treg into 
TME (11).

Cancer cells are also capable of transforming their 
metabolism in TME to escape the attacks from immune 
system (92). For example, increased expression of 
indoleamine-2,3-dioxygenase (IDO) depletes tryptophan 
which is an important amino acid routinely functions in 
immune system cells including NK cells, cytotoxic T cells, 
and T effector (Teff) cells in PDAC (53,93,94). MMP-9 
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is a 92-kDa type IV collagenase secreted by mesenchymal 
stem cells (MSC) that can significantly limit the cytotoxicity 
of NK cells in vitro through decreasing the expression of 
NKp30, NKG2D, and perforin, and inhibiting the secretion 
of interferon gamma (IFN-γ) and tumor necrosis factor 
(TNF)-α (53,95,96). 

Pancreatic stellate cells (PSCs)

Increasing evidence demonstrates that the interaction 
between aPSCs and PDAC cells makes a difference in the 
development of PDAC. Through producing high level of 
growth factors, cytokines, chemotactic factors and excessive 
extracellular matrix (ECM), PSCs create desmoplasia and 
a glycolytic microenvironment that promote the initiation, 
development, invasion, metastasis, immune evasion, and 
chemoradiotherapy resistance of PDAC (97). In response 
to pancreatic injury, stress, inflammation, resident PSCs are 
converted into an activated myofibroblast-like phenotype 
to express α-smooth muscle actin (α-SMA), and synthesize 
ECM proteins to form fibrous tissue (98,99). The aPSCs 
are the main source of cancer-associated fibroblasts (CAFs). 
However, the difference between CAFs and aPSCs is still 
under debate (100).

PSCs play an important role in mediating immune 
escape in pancreatic cancer. The rigid ECM components 
(such as collagen and fibronectin) induce Rho-associated 
coiled-coil kinase-dependent activation of FAK1. In 
turn, FAK1 tyrosine kinase regulates T cell survival, 
antigen sensitivity, cytokine production and migration, to 
significantly contribute to immunosuppression (7). Known 
to be produced by CAFs, fibroblast activation protein-α 
(FAP-α) and βig-h3 disrupt anti-tumor immunity, leading to 
immune escape and tumor growth (43,45).

PSCs also secrete plentiful soluble cytokines that 
conduce to T cell exhaustion and dysfunction. FAP+ PSCs 
are the only tumoral source of chemokine (C-X-C motif) 
ligand 12 (CXCL12, also named stromal-derived factor-1, 
SDF-1) that limits cytotoxic T cell trafficking, prompts 
macrophages’ differentiation into M2-type, and recruits 
TANs and MDSCs to the tumor site (101). Meanwhile, 
CXCL12/SDF-1 bound to PDA cells inhibits T cell access, 
leading to reduced immune responses (40,102). A recent 
study showed that REG3β expressed and released by healthy 
cells in the peritumoral region far from microenvironment 
could activate CXCL12/CXCR4 signaling cascade and 
interfere with the intercellular communication inside 
the tumor mediated by extracellular vesicles, resulting 

in macrophage phenotype alteration and tumor cell 
migration (103). In PDAC, activated PSCs, TAM, Tregs 
and mast cells can inhibit DC activation by producing 
high level of immunosuppressive cytokines such as IL-10 
and TGF-β (99,104,105). Similarly, interleukine-6 (IL-6), 
another versatile PSCs/MDSCs derived cytokine, inhibits 
cytotoxic T lymphocyte (CTL) anti-tumor immunity by 
multiple mechanisms, including impairing Teff cell trans-
endothelial migration, activation of Treg cells or TAMs, 
and disrupting the balance of Treg/Teff activities (44,106). 
Other excessive PSCs-derived suppressive cytokines such as 
VEGF, granulocyte-macrophage colony-stimulating factor 
(GM-CSF), PGE2, and MCP-1, also primarily contribute 
to immune escape and therapeutic resistance of PDAC 
(107,108). Furthermore, a recent study has demonstrated 
that galectin-1 is also secreted by activated PSCs, and it 
modulates Teff cell activation, proliferation, and apoptosis, 
holds T cells in an anergic state, and breaks the cytokine 
secretion balance toward a T helper type 2 (Th2) immune 
response (41).

Recent studies show that CAFs are capable of attracting 
and sequestering CD8+ T cells in the extratumoral 
compartment, which dampens T cells’ contact with and 
cell-killing effect of tumor cells (109). Depletion of CAFs 
abolishes immune suppression (110,111), enhances anti-
tumor activity of anti-CTLA-4 as well as anti-PD-L1 
(40,46), but also leads to infiltration of Tregs and induction 
of more aggressive tumor phenotypes (46,112). PEGylated 
hyaluronidase-degraded hyaluronic acid increases the 
intratumoral delivery of chemotherapy drugs (57) and 
improves effective tumor infiltration by CTLs (113) but it 
was restricted to patients with high hyaluronic acid level 
in tumor (114). Cyclopamine (M-CPA)/paclitaxel (PTX) 
was recently reported to restrain tumor cell proliferation 
and increase intratumoral vasculature density without 
concomitant infiltration of Tregs or MDSCs (47).

Myeloid cells

Tumor-infiltrating myeloid cells including CCR2+ TAM and 
CXCR2+ TAN, known as important mediators of immune 
evasion (115), secrete high level of IL-10 to enhance 
Treg and Th2 activation and expansion, and they can be 
targeted by small molecule inhibitors of CCR2 (CCR2i) 
and CXCR2 (CXCR2i) (116-118). Combined targeting of 
CCR2+ TAM and CXCR2+ TAN has the benefit of avoiding 
compensatory increase of counterpart compared with either 
TAM or TAN targeting alone. This is expected to result in a 
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significantly influx of CD8+ tumor-infiltrating lymphocytes 
with a remarkable decrease of Tregs to infiltrate (60,119).

Depending on dominant signals around, macrophages 
can adopt an alterable functional status (24). When 
stimulated by bacterial products such as lipopolysaccharide 
(LPS), Th1 cytokines, IFN-γ or TNF-α, macrophages 
become immunostimulatory (M1) with high expression 
of inducible nitric oxide synthase (iNOS), CD80, CD86, 
MHCII proteins, and TNFα to exert their tumoricidal 
effects (120,121). On the contrary, in response to Th2 
cytokines, IL4, IL10, IL13, or immunocomplex (IC), 
macrophages acquire an alternatively immunosuppressive 
status (M2) that express arginase 1, CD206, and low 
amounts  of  MHCII (120,122) .  TAMs often have 
characteristics of both M1 and M2 and the phenotype 
of TAMs may change during tumor development (123). 
TAMs may play an M1-like phenotype role in the early 
stage of carcinogenesis, and gradually convert into an 
M2-like phenotype when tumors start to invade and 
metastasize (124). Along with tumor progression, Tams 
with M1-like phenotype, M2-like phenotype, or with co-
expressed markers of both M2 and M1 macrophages exist in 
pancreatic TME and a higher M2:M1 ratio correlates with a 
poor prognosis (125,126). Although majority of TAMs tend 
to be M2-type, their biological activity can be redirected 
(127). For example, CD40 agonist, paclitaxel, low-dose γ 
irradiation, inhibitor of receptor-interacting protein kinase 
1 (RIP1) or RIP3, or disruption of the dectin 1-galectin 9 
axis are all shown to redirect macrophages from M2-type to 
M1-type with their respective effects, in consequential or 
parallel manner (22,23,25-27,128-130).

MDSCs (CD11b+), the precursors of macrophage, 
neutrophil and dendritic cells, are regarded as another 
inhibitory population of myeloid cells. Accumulated 
MDSCs and their enhanced function are induced by 
soluble mediators in TME, including IFN-γ, TNF, and 
GM-CSF (131-136). Expansion of MDSCs was shown 
to be further driven by cytokines such as TGF-β, IFN-γ, 
G-CSF, GM-CSF, VEGF, IL-1β, IL-6, IL-10 and CCL12 
in PDAC (137). There was report that cytokines inducing 
MDSCs via acting on a conjunct molecular pathway and 
the immunosuppressive activity of both tumor-induced and 
bone marrow-derived MDSCs are completely dependent on 
the C/EBPbeta transcription factor (138).

MDSCs exhibit a profound capacity to suppress T cell 
proliferation and activation in a dose-dependent manner 
and attenuate functional differentiation of tumor-specific 
CD4+ T cells into effector TH1 cells via IL-6 production 

to facilitate tumor progression (106). Depletion of CD11b+ 
MDSC cells downregulates the expression of PD-L1 in 
tumor cells, resulting in a significant infiltration of CD8+ T 
cells and a decrease of immunosuppressive Tregs infiltration, 
leading to effective inhibition of pancreatic tumor growth 
in a CD8+T-dependent fashion (17). Recently, neutrophil-
like CD13high MDSCs are found to suppress anti-cancer 
T cell responses via expression of arginase-1 and correlate 
with poor prognosis of PDAC patients (139). Inhibition 
of cyclooxygenase-2, PGE2-mediated arginase, or 
phosphodiesterase-5 was shown to downregulate arginase-1 
in murine MDSCs and led to an effective tumor control 
(19,20).

Tregs

Natural CD4+CD25+ Tregs and Foxp3-transduced CD4+ 
T cells suppress naive T-cell proliferation in vitro in order 
to maintain immunologic tolerance (140). The forkhead 
transcription factor Foxp3 is a key molecular marker to 
identify Treg function and is the only definitive marker of 
CD4+CD25+ Treg (140,141). Apart from naturally occurring 
Tregs generated from the thymus, adaptive Tregs as negative 
regulators of anti-tumor cytotoxic T cells recognized, as 
these cells predominate in infections and tumor such as 
pancreatic adenocarcinoma and associate with poor prognosis 
in PDAC (142,143). Tumor cells recruit Tregs throughout 
an epithelial-to-mesenchymal (EMT) process by expressing 
L1CAM and secreting mediators including C-C motif 
chemokine ligand 2 (CCL2) and CCL22 (11,39,50). Tregs 
inhibit T-cell production of IFN-γ and IL-2 as well as their 
cytotoxic function, resulting in impediment to naturally 
occurring anti-tumor immunity (143).

Anti-CD25 mAb can enhance CTL responses and 
diminish pancreatic tumors in a CD8+ T cell-dependent 
manner (49). However, this strategy may cause immune 
dysfunction since CD25 is not a specific Treg marker. 
Recently, low-dose CpG TLR9 agonist improved ISOCOM 
tumor vaccine function by breaking Treg-mediated 
immunosuppression (49,144).

CD4+ T cells

CD4+ T cells are effector helper cells that can differentiate 
into three major subtypes with distinct function, playing 
an important role in immune response via releasing 
dissimilar inflammatory cytokines. Th1 cells support 
cellular immunity by selectively producing IL-2, IFN-γ and 
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TNF-α (145,146). Th2 cells support humoral immunity 
by producing IL-4, IL-5, IL-6, Il-10 and IL-13 (147) 
IL-4 and IL-10 are deemed as immunosuppressive factors 
(108,148). Th17 cells exert a strong pro-inflammatory effect 
by producing IL-17, IL-21 and IL-22 (149,150). While 
Th1 cells are assistant to cellular response against tumor 
cells, Th2 cells are believed to collude with pancreatic 
cancer cells and a higher Th2:Th1 ratio in tumor correlates 
with a poorer prognosis in pancreatic cancer patients 
(42). Emerging evidence suggests that IL-10 and TGF-β 
facilitate the shift of Th1 into Th2 cell type in vitro (151). 
Another study demonstrated that pancreatic cancer cells 
restrict CD4+ T-cell proliferation and migration, and induce 
IFN-γ production, supporting a role of CD4+ T cells in 
immune evasion (152).

CD8+ T cells

As the main force of tumor cell-killing immune cells, 
cytotoxic CD8+ T cells recognize specific tumor antigens 
presented as peptides on MHC class I molecules (153). 
Unfortunately, they express high levels of immune 
checkpoint receptors such as PD-1 (65). Strong evidence 
have proved that a pre-existing anti-tumor CD8+ T cell 
infiltration is required for therapeutic benefit from ICB and 
other immunotherapy (154,155). However, once memory 
T cells are generated, they are able to protect mice upon 
inoculation with other PDAC tumors since limited mutations 
shared among the majority of PDAC patients (34).

The prime task of the seesaw battle between tumor 
and body immunity is to release CD8+ T cells from the 
suppression of PD-L1. PD-L1 (B7-H1), an important 
co-suppressive molecule expressed on macrophages and 
DCs as well as on pancreatic cancer cells, was reported as 
a negative regulator of T-cell responses. PD-1 interacts 
with its ligand PD-L1 to maintain self-tolerance and 
to protect against excessive tissue damage induced by 
immune responses through downregulating the synthesis 
and secretion of IL-2, IFN-γ and IL-10 by myeloid DCs 
and T cells, and thus functions as an immune checkpoint 
under physiological conditions (156-162). It has been 
reported that PD-L1 can be upregulated by oncogenes such 
as AKT and STAT3 (163,164) or by chemotherapeutics 
like 5-fluorouracil, gemcitabine and paclitaxel via several 
pathways including the JAK/STAT pathway (165). Further, 
IFNγ, a proinflammatory cytokine secreted by activated 
T and natural killer (NK) cells and a vital component of 
the host cancer immune system (166,167), also acts as a 

prime inducer of PD-L1 in tumor cells via the MEK/ERK 
pathway and can be inhibited via suppressing STAT1 (168-
171).

With the aforementioned role of immunosuppression, 
blockade of the interaction between PD-1 and PD-L1 by 
anti-PD-1 or anti-PD-L1 already demonstrated durable 
efficacy of tumor suppression in both mouse tumor models 
and human cancer patients except PDAC (65,172-176). 
The explicit cause of disabled curative effect remains 
uncertain. It was reported that anti-PD-1 treatment 
motivated a compensatory increasing expression of 
cytotoxic T-lymphocyte-associated protein 4 (Ctla4), which 
is another immune checkpoint (17). Arlauckas et al. showed 
that macrophages can remove anti-PD-1 antibodies from 
T cells (177). Therefore, combination of anti-PD-L1 and 
other therapies appears logic and attractive for pancreatic 
cancer. As reported, combination of high-dose radiotherapy 
with anti-PD-L1 markedly enhanced tumor responses 
in PDAC cell allografts where radiotherapy induced a 
large amount of tumor cells sensitive to cytotoxic killing. 
Further, early anti-PD-L1 therapy prevented the growth 
of immunosuppressive cells and increased recruitment 
and activation of T cells (178). Analogously, depleting 
FAP-expressing cells, Mll1 inhibitors, CXCL12/CXC R4 
pathway inhibitors, tocilizumab (anti-IL-6), CD40 agonist, 
STING agonists, for instance, all acted synergistically with 
anti-PD-L1 to significantly diminish cancer growth in a 
CD8+T-dependent manner (22,40,44,51,65,168).

B7-H5, a new B7 ligand for receptor CD28H to deliver a 
costimulatory signal to the human T-cell, is downregulated 
in pancreatic cancer cells, which might partially cripple 
CD8+T cells’ function (52). Recently, Chen et al. discovered 
that fibrinogen-like protein 1 (FGL1), a protein that is 
largely limited to liver and pancreas, was a major immune 
inhibitory ligand of another immune checkpoint LAG-
3 (179,180). FGL1 is highly produced by human cancer 
cells and it inhibits the activation of antigen-specific T 
cell as well as NK cells (179,181). While its expression 
appears to be downregulated in pancreas cancer (179), 
normal pancreatic tissues may express enough FGL1 to 
exert its immunosuppression. LAG-3+ cells are frequent 
in CD3+CD8+ TILs (96.30%) in PDAC (182). Blockade 
of FGL1-LAG3 may have promising effect on pancreatic 
cancer. More recently, it was reported that the intrinsic 
capacity of intratumoral T cells to recognize tumor 
tissue was rare and variable, suggesting that reactivating 
intratumoral T cells would benefit from approaches that 
simultaneously increase the quality of the intratumoral 
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TCR repertoire (183).

NK cells

NK cells, as the first line of defense in the body, play an 
essential role in the innate immune system and anti-tumor 
immunity including pancreatic cancer (184). Evidence 
shows that NK cells not only kill target cancer cells directly 
without prior sensitization (185,186), but also bind to 
specific surface ligands expressed on cancer cells, such as 
MHC class I molecules (187). Interestingly, complete loss of 
MHC class I will motivate NK cells response, which called 
the “missing self” response (188). In addition to their ability 
to kill mAb-coated tumor cells via inducing antibody-
dependent cellular cytotoxicity (ADCC), FcR-activated NK 
cells also release cytokines including IFN-γ, TNF-α, MIP-
1α, IL-8, and RANTES to improve antigen presentation, 
stimulate the chemotaxis of T cells, and suppress tumor cell 
proliferation (189,190). NK cell function can be enhanced 
via IL-21 produced by activated CD4+ T cells (191) and 
impaired via downregulation of specific activating surface 
receptors (e.g., NKG2D), cytotoxic granules (e.g., Perforin 
and Granzyme B), natural cytotoxicity receptors (NCR), 
or upregulation of MMP-9 and Igγ-1 chain C region 
(54,192,193). Targeting these molecular markers can 
partially restored NK function and retard tumor growth.

Dendritic cells

Dendritic cells (DCs) serve as specific antigen-presenting 
cells to pick up antigens from damaged tumor cells and 
then present them with the support of CD4+ Th cells to 
CD8+ T cells in the lymph nodes, a mechanism named 
“cross-priming” (153). Tumor-residing CD103+ DC are 
indispensable to recruit Teff cells into the TME and 
establish the T cell-inflamed tumor phenotype with a large 
CD8+ T cell infiltration (35). The establishment of non-
T-cell-inflamed tumors may due to deficiencies in T cell 
priming for lack of cross-presenting dendritic cells, which 
is believed due to increased CXCL1 in tumors in a c-Myc-
dependent manner (34). It was reported that increased 
IL-10 concentration limited antitumor cytotoxic T-cell 
responses and activation of NK cells during therapy by 
suppressing intratumoral DC production of IL-12 (28). 
One study showed that following three injections of the 
lipid-protamine-DNA (LPD) nanoparticles loaded with 
trap genes (IL-10 trap and CXCL12 trap), tumor growth 
was reduced, prolonged host survival was achieved with 

significantly reduced immunosuppressive cells such as 
M2 macrophages, MDSCs, and PD-L1+ cells (28). Some 
agonists like CpG, ISCOM vaccines, and CD40 agonist 
could also enhance antigen uptake and antigen processing 
by DCs (33,36,37,65).

Noting that DCs carrying antigens need to migrate from 
the tumor to the lymph nodes to activate CD8+T cells. IL-8 
produced by pancreatic cancer cells prevents the journey 
induced by MIP-3β since DC uniformly express both IL-8 
receptors CXCR1 and CXCR2 (38,194). Perhaps for this 
reason the quantity of DCs was significantly decreased in 
peripheral blood of PDAC patients (195).

CCL2, a chemokine that dramatically upregulated in 
pancreatic cancer cells, recruits various immunosuppressive 
cells such as MDSCs (196). Cooperatively, CCL2 and 
LCN2 in combination stimulate the generation of 
immunoregulatory DCs (DCreg), which have suppressive 
activity due to lowered expression of costimulatory 
molecules such as HLA-DR (39). DCreg subsequently 
induces immunosuppressive Treg cells, and eventually 
impair tumor-specific CTL function (39).

Perspectives and conclusion

Overall, pancreatic cancer immunotherapy aims to promote 
cytotoxic CD8+ T cell recruitment to pancreatic cancer and 
their killing effects against cancer cells. Low infiltration 
of CD8+ T cells is primarily due to the physical barriers 
of tumor stroma and inhibitory cytokines and chemokines 
within the TME. Lack of TILs' cytotoxicity may be due to 
decreased antigenicity in tumor cells, inhibition of immune 
checkpoints, direct effect of inhibitory cells, or effect of 
cytokines. It is also possible due to ineffective activation of 
TILs, because of function limit of DCs and poor specificity 
among TILs. Strategies to relieve immunosuppression 
include depleting inhibitory cells or suppressing their 
function, blocking signal transduction pathways, redirecting 
the relevant immune cells from pro-tumor status to anti-
tumor status, relieving immune checkpoint suppression, and 
promoting TILs to resist cancer cells.

Although immunotherapy emerges as a promising 
therapeutic option for pancreatic cancer, it still has not 
achieved significant and satisfactory improvement on the 
survival of patients. Crosstalk among various cells forms 
an intricate network that mediates immune evasion in 
pancreatic cancer microenvironment. Single therapy to 
date seems powerless to break through the constraint of 
immunosuppression, leaving combination therapies a 
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mission and hope. In consideration of inevitable side effects, 
identification of specific targets and development of non-
overlapping treatments may provide insights to improve 
efficacy and reduce adverse effects. Finally, thorough 
understanding of immunosuppression and enhancing of 
TILs’ anti-tumor specificity and lethality are constant 
topics and avenues for conquering pancreatic cancer with 
immunotherapy.
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