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A historical perspective to first-line systemic 
treatment

Approximately 50,000 people in the United States carry a 
diagnosis of pancreatic cancer and it accounts for 8% of all 
cancer deaths (ACS Cancer Facts and Figures, 2019) (1). 
The vast majority of diagnoses are exocrine tumors, namely 
pancreatic ductal adenocarcinomas (PDAC). Metastatic 
PDAC remains one of the deadliest diagnoses, with 
5-year overall survival (OS) rates of 3% (SEER database). 
Chemotherapy has been the backbone of systemic therapy 
for metastatic PDAC for several decades, with the current 
standard of care treatments usually involving doublet 
(gemcitabine/nab-paclitaxel) or triplet (FOLFIRINOX) 
regimens. 

Gemcitabine was first established as a systemic therapy 
option in a head-to-head trial with 5-FU in patients with 
advanced symptomatic pancreatic adenocarcinoma, notably 
with 72% and 76% of patients having Stage IV disease, 
respectively (2). Patients in the gemcitabine group had 
an advantageous OS of 5.65 months (vs. 4.41 months for 
5-FU, P=0.0025) and progression-free survival (PFS) of 
2.33 months (vs. 0.93 months for 5-FU, P=0.0002). On the 
basis of this, gemcitabine became the first-line option for 
advanced disease. Several trials thereafter using gemcitabine 
combinations with other agents did not show additional 
benefit compared to gemcitabine alone (3).

In 2011, almost 15 years after this initial study, the 
phase III ACCORD 11 trial established FOLFIRNOX 
(5-fluorouracil or 5-FU, leucovorin, irinotecan and 
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oxaliplatin) as the new standard of care for advanced 
PDAC (4). The basis of this cocktail of treatments was 
early clinical evidence that irinotecan (5,6) and oxaliplatin 
combined with 5-FU (7) all had some benefit in PDAC, 
with synergism in preclinical studies (8-12) and little 
overlapping toxicities among the drugs. FOLFIRINOX 
was compared head-to-head to gemcitabine and found 
to be superior with a median OS of 11.1 months (vs. 
6.8 months for gemcitabine, P<0.001) and median 
PFS of 6.4 months (vs. 3.3 months for gemcitabine, 
P<0.001) (4). Importantly, the objective response rate 
(ORR) with FOLFIRINOX was 31.6% (vs. 9.4% for 
gemcitabine, P<0.001), however, it was associated with 
significantly worse grade 3 or 4 toxicities (46% vs. 21% 
for gemcitabine), most notably diarrhea (13% vs. 2%), 
thrombocytopenia (9.1% vs. 3.6%), sensory neuropathy 
(9% vs. 0%) and febrile neutropenia (5.4% vs. 1.2%) (4).

The combination of gemcitabine with nab-paclitaxel 
was established as another first-line option for advanced 
PDAC in the IMPACT study published two years later, in 
2013 (13). This combination was compared head-to-head 
with gemcitabine alone, and demonstrated an improved 
median OS of 8.5 months (vs. 6.7 months for gemcitabine, 
P<0.001) and median PFS of 5.5 months (vs. 3.7 months 
for gemcitabine, P<0.001) (13). The ORR for the 

combination was 23% (vs. 7% for gemcitabine, P<0.001), 
and notably, it was associated with a better toxicity profile 
than FOLFIRNOX, with 38% (vs. 27% for gemcitabine) 
of patients having grade 3 or 4 toxicities, most notably 
neuropathy (17% vs. 1% for gemcitabine), diarrhea (6% vs. 
1%) and febrile neutropenia (3% vs. 1%) (13).

Despite these successes of the early 2010s, effective 
systemic options for advanced PDAC remain a major unmet 
need. The next frontier of systemic therapies is primed to go 
beyond more efficacious chemotherapies, with treatments 
to leverage our basic understanding of pancreatic tumors to 
alter tumor metabolism and the microenvironment (TME), 
including the immune system (Figure 1). The remainder of 
this review will focus on the next wave of treatment options 
for advanced PDAC. 

Chemotherapy regimens on the horizon

Current efforts to optimize chemotherapy regimens 
have included adding platinum-based chemotherapy to 
gemcitabine and nab-paclitaxel. Early phase Ib/II data of 25 
patients has suggested that adding cisplatin to gemcitabine 
and nab-paclitaxel may be tolerable, with the most common 
grade 3 or 4 adverse events being thrombocytopenia (68%), 
anemia (32%), neutropenia (24%) and diarrhea (16%) 

Figure 1 The essential arms of pancreatic cancer treatment. The ideal treatment modality or combination would target immune suppressive 
mechanisms, alter the stromal environment, target metabolic reprogramming by the tumor, and leverage genetic vulnerabilities in the tumor. 
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(14,15). Promising efficacy was seen in this early trial with 
8% of patients having a complete response, 62% a partial 
response, 17% stable disease and 12% progressive disease, 
with a median PFS of 10.1 months (14,15). A phase III 
study with this regimen is currently ongoing. 

Other early studies are evaluating the role of liposomal 
irinotecan, 5-FU, leucovorin and oxaliplatin (NAPOX), an 
approved second-line treatment for metastatic PDAC after 
progression on gemcitabine (16), in the first-line setting 
for metastatic PDAC (17). Preliminary data from a phase 
I/II study suggested an ORR of 34% and disease control 
at 16 weeks achieved in 71.9% of patients. The data for 
median OS and PFS are yet to mature (17). Of note, grade 
3 or higher treatment related toxicity was seen in 69.6% of 
patients, with the majority of those being neutropenia, and 
no complaints of grade 3 or higher fatigue or neuropathy 
were observed (17).

An evolving paradigm for maintenance and 
targeted therapy

The conventional approach to systemic treatment for 
metastatic PDAC is to continue treatment for as long as 
tolerable without progression, with little impetus to take 
breaks unless desired by the patient. More recently, this 
paradigm has been challenged in the PRODEGE35-
PANOPTIMOX trial, a phase II study with the overall goal 
of reducing oxaliplatin exposure. Patients in this study were 
randomized to receive FOLFIRINOX until progression 
(arm A), FOLFIRINOX for 4 months followed by 
maintenance 5-FU until progression (arm B), or sequential 
treatment with gemcitabine and FOLFIRINOX every  
2 months (arm C) (18). The 4-month ORR with continuous 
FOLFIRINOX (arm A) was 35% compared to 41% with 
maintenance 5-FU (arm B), with a median PFS of 6.3 
vs. 5.7 months and median OS of 10.1 and 11.2 months, 
respectively (18). This therefore suggests that strategies 
for maintenance chemotherapy may be equivalent to 
continuous therapy in terms of overall survival, and warrant 
further investigation. 

The clearest evidence for the role of maintenance 
therapy in metastatic PDAC was recently established 
in BRCA positive patients. As many as 4–7% of PDAC 
patients carry BRCA1 or BRCA2 mutations (19), which 
causes a deficiency in DNA double-strand break repair, and 
may confer increased sensitivity to chemotherapy (20-23). 
While there has yet to be comparative studies of platinum-
based versus non-platinum-based first line chemotherapy 

options in advanced PDAC harboring BRCA mutations, 
the convention has been to favor FOLFIRINOX for these 
patients. This is supported by data from the phase III 
POLO trial, in which metastatic PDAC patients with BRCA 
mutations who had not progressed during at least 16 weeks 
of platinum based therapy were randomized to receive 
either olaparib, a PARP (polyadenosine diphosphate-ribose 
polymerase) inhibitor, or placebo (24). Among the patients 
who received olaparib, 22% remained progression free after 
2 years (vs. 10% of patients who received placebo).

Cells that are more prone to DNA damage, such as 
those with BRCA mutations, are particularly sensitive 
to PARP inhibition, which leads to further double 
stranded DNA breaks and defective repair, and in turn 
to programmed tumor cell death (25). The POLO trial 
established olaparib as the first targeted therapy used 
in metastatic PDAC, and is now standard of care for 
maintenance in BRCA mutant PDAC patients who have 
not progressed on chemotherapy (24). Patients in the trial 
who received olaparib had an improved median PFS of 
7.4 months (vs. 3.8 months for placebo, P=0.004), though 
the OS data has yet to mature (18.9 vs. 18.1 months at the 
time of analysis) (24).

A number of other genetic alterations have been 
identified in PDAC that may shed insight into targeted 
therapy approaches. The vast majority of PDAC patients 
harbor mutations in KRAS and TP53, and mutations 
in CDKN2A, SMAD4, ARID1A and TGFBR2 are also 
prevalent (26-28). Of note, however, as many as 44% 
of patients may harbor mutational signatures reflective 
of DNA damage repair (DDR) defects, with 20% of all 
patients harboring mutations in canonical DDR pathway 
genes including BRCA1, BRCA2, PALB2, ATM and 
CHEK2. These mutations might confer susceptibility to 
chemotherapy and be targetable by PARP inhibition (29). 
A small fraction of patients also harbor BRAF or other 
targetable mutations that potentiate MAPK signaling, and 
case reports have suggested vulnerability of these tumors to 
MEK inhibitors (29).

Immune modulating therapies

Checkpoint inhibitors

A hallmark of PDAC is its complex tumor microenvironment 
(TME) composed of cancer associated fibroblasts (CAFs), 
immune cells, endothelial cells, in addition to tumor cells 
(Figure 2) (30-33). In particular, CAFs, which comprise 
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the bulk of most PDAC tumors (34,35), are important in 
the formation of a dense collagenous stroma that leads 
to a hypoxic microenvironment for tumor cells (36). Key 
mediators of CAF activation include sonic hedgehog (SHH), 
TGFb and cytokines including TNFa, IL1, IL6 and IL10, 
and once activated these cells play a critical role in producing 
a collagenous matrix (37-41). This matrix is composed 
of collagen, fibronectin and laminin along with non-
collagenous proteins such hyaluronan (HA), among others, 
and is a key driver of the chemotherapeutic resistance of 
these tumors (42-45). Strategies targeting HA in particular 
have proven effective in pre-clinical models and will be 
discussed in further detail later in this review.

CAFs also foster an immunosuppressive tumor 
environment (46,47) and promote metastasis (48,49) in part 
through their secretion of TGFb among other immune 

mediators (50,51). The majority of immune cells in the 
TME have immunosuppressive phenotypes, and include 
myeloid derived suppressor cells (MDSCs) and regulatory 
T cells (Tregs) (32,52). A role of GM-CSF secretion by 
tumor cells has also been implicated in promoting MDSC 
infiltration and antigen-specific T cell suppression (53). 
The phenotypic properties of these MDSCs are still being 
elucidated, and several studies have suggested they have a 
polymorphonuclear MDSC (PMN-MDSC) phenotype; 
that is, they are neutrophils that have migrated to the tumor 
with an immunosuppressive phenotype (54,55). 

Programmed death ligand-1 (PD-L1), an inhibitory 
immune checkpoint, is expressed on myeloid cells within 
the TME and in tumor cells. Higher expression of PD-L1 
in PDAC portends a poorer prognosis (56) and immune 
checkpoint blockade (ICB) has proven largely ineffective 

Figure 2 The pancreatic adenocarcinoma tumor microenvironment is composed of a dense, desmoplastic extracellular matrix that includes 
tumor cells, cancer associated fibroblasts, and immune cells, several of which have immunosuppressive functions including regulator T cells 
and myeloid derived suppressor cells. 
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for metastatic PDAC, despite the successes in other tumor 
types (57,58). This is likely due in part to the suppressive 
immune environment of these tumors. The first trial using 
single-agent ICB was with ipilimumab (an anti-CTLA4 
antibody) in a phase II study for locally advanced or 
metastatic PDAC (59). Among the 27 patients in the trial, 
there were no responders, though one patient was noted 
to have a delayed response after initial progression (59).  
Subsequent single-agent trials have followed suit, with 
only 2 out of 34 patients showing a partial response in a 
phase I trial of tremelimumab (anti-CTLA4 antibody) with 
gemcitabine (60), and none of the 14 patients showed a 
response in a phase I trial with BMS-936559 (anti-PD-L1 
antibody) (61). A more recent effort seeks to evaluate the 
conventional chemotherapy regimen of gemcitabine and 
nab-paclitaxel with nivolumab (62). 

To overcome immune exclusion of effector T cells 
in PDAC tumors, combination strategies of immune 
modulating agents may prove useful. Preclinical studies 
have suggested that CAFs are producers of CXCL12, and 
inhibition of CXCR4, the receptor of CXCL12, promotes 
effector T cell infiltration and synergy with ICB (63). 
This has been validated using human tissue using a live 
tumor slice culture system in which treatment consisting 
of CXCR4 and PD1 blockade leads to tumor cell killing by 
clonally expanded effector T cells (64). This combination 
strategy is now being tested in a phase II clinical trial with 
early reports suggesting a 34.5% disease control rate (65).

An exception to the rule of non-response to ICB in 
PDAC may be in the rare patients harboring tumors 
with mutations in mismatch repair (MMR) genes and 
high levels of microsatellite instability (MSI-H), in which 
pembrolizumab (an anti-PD1 antibody) has shown some 
efficacy in small trials of PDAC patients (66,67). In one 
report, among 8 MMR deficient PDAC patients, a 62% 
ORR and 75% disease control rate with pembrolizumab has 
been reported (66). 

GVAX with ICB

The next wave of ICB approaches in PDAC supported by 
preclinical models has involved combination approaches 
with ICB to either boost the immune response of antigen 
presenting cells (APCs) or deplete suppressive cells within 
the TME (68). Several anti-PD1 antibodies have now been 
tested in clinical trials in combination with a regimen to 
optimize the microenvironment in PDAC, using cytoxan to 
deplete Tregs and GVAX to potentiate T cell activation (69).  

GVAX is either an autologous or allogeneic pancreatic 
cancer vaccine modified to express GM-CSF and irradiated 
to prevent further cell division. The motivation for 
using this is that GM-CSF, which is expressed by several 
immune cell types, is that it promotes influx of dendritic 
cells (DCs) and other APCs into the TME to prime T cell 
responses while also inducing production of granulocytes 
and monocytes by hematopoietic stem cells and polarizing 
macrophages in the TME to more inflammatory phenotypes 
(70-72). The best data to suggest the efficacy of GVAX in 
PDAC patients was in a phase Ib trial showing increased 
median OS of 5.7 months when given with ipilimumab 
compared to 3.6 months for ipilimumab alone (73).

Current ongoing efforts include combining GVAX and 
cytoxan with nivolumab and urelumab (an anti-CD137 
antibody) (NCT02451982), with pembrolizumab and 
stereotactic body radiotherapy (SBRT) (NCT02648282), with 
ipilimumab, nivolumab and CRS-207 (a listeria-based vaccine) 
(NCT03006302) (74), and with pembrolizumab, CRS-207 
and epacadostat (an IDO1 inhibitor) (NCT03006302). The 
complexity of these regimens, targeting multiple immune 
axes, represent the fundamental difficulty in activating anti-
tumor immune responses in PDAC. 

Targeting myeloid cells

Several strategies have also been employed to alter the 
phenotype of tumor myeloid cells or deplete suppressive 
myeloid cells. While an oversimplification, these cells are 
largely categorized as M1 (pro-inflammatory) macrophages 
and M2 (anti-inflammatory) macrophages, with some 
plasticity between these two extreme phenotypic states 
(75,76). Most macrophages in the tumor resemble an M2-
like phenotype, which can support tumor progression 
and metastasis (77,78). A promising approach to altering 
polarization of M2-like cells to an M1 phenotype involves 
inhibition of CSF-1R, a myeloid growth factor receptor 
expressed on the surface of tumor-associated macrophages 
(TAMs) and MDSCs (76). Preclinical studies have 
demonstrated blockade of CSF-1R improves responses 
to ICB (68). Two current anti-CSF-1R antibodies are 
currently being tested in phase I clinical trials. The first, 
AMG820 has shown safety in patients with advanced solid 
tumors (79), and the second, IMC-CS4, is being tested 
with co-treatment of GVAX, cytoxan and pembrolizumab 
in borderline resectable PDAC (NCT03153410). A third 
approach, a small molecule inhibitor of CSF-1R, PLX3397, 
has also been evaluated in a phase I/II trial in combination 
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with pembrolizumab for advanced solid tumors, including 
PDAC (80), and in a phase I study with durvalumab, 
however, further trials have not been initiated.

CCR2 and CXCR2, key myeloid chemokines, play 
important roles in recruitment of PMN-MDSCs the 
TME in PDAC, as evidenced, for example by the elevated 
expression of CXCR2 on these cells within the tumor 
(81,82). Preclinical studies have suggested that inhibition of 
the CCL2/CXCR2 axis can potentiate immune responses 
within pancreatic tumors (82,83). This strategy has been 
the basis for clinical testing of a small molecular CCR2 
inhibitor, CCX872-B, in a phase Ib study in combination 
with FOLFIRINOX for non-metastatic PDAC, which 
showed an improved objective tumor response of 49% 
compared to FOLFIRINOX alone (0%), and a subsequent 
study in non-resectable and metastatic patients has 
demonstrated an OS of 29% at 18 months (84).

Anti-CD40 blockade

CD40 is a member of the TNF receptor family expressed 
on DCs, which when activated by CD40L (CD154), 
upregulates MHC class I, costimulatory molecules such as 
CD86, and other TNF superfamily members such as OX40, 
GITR and CD137. CD40-activated DCs are subsequently 
able to prime tumor-specific T cells independent of the 
STING or TLR pathways (85-90). CD40 agonist antibodies 
have thus been developed and have shown remarkable 
efficacy in preclinical PDAC models (91,92). A phase Ib 
study of newly diagnosed metastatic PDAC patients treated 
with gemcitabine, nab-paclitaxel and APX005M (a CD40 
agonist antibody) with or without nivolumab has recently 
shown promising results (93). Of the 24 patients evaluable 
for dose-limiting toxicity in this study, 58% had a partial 
response and 33% had stable disease, though notably 
54% of patients experienced an adverse event leading to 
discontinuation of treatment (93).

Radiation with ICB

Radiation therapy has the ability to potentiate tumor 
responses by activating the innate immune system. In 
particular, ionizing radiation causes the intracellular 
accumulation of reactive oxygen species (ROS) that then 
leads to DNA damage by the formation of toxic adducts, 
and single- and double-stranded DNA breaks (94). This 
DNA damage subsequently leads to the inhibition of 
the cell cycle in tumors, and triggers cell death pathways 

including apoptosis and autophagy (95). The DNA 
breaks from radiation are a potential vulnerability within 
tumors that may be leveraged with the treatment of PARP 
inhibitors, as described above for the treatment of tumors 
with mutations in DDR genes, and strategies to combine 
these two modalities are a direction of the future. 

Importantly, cell death induced by radiation leads to the 
release of intracellular contents that activate innate immune 
pathways. Activation of the immune system within the 
TME increases DC infiltration and activation, including 
upregulation of MHC-I and antigen presentation, which 
is in part mediated by activation of the cGAS-STING 
pathway (96-100). This in turn leads to migration of DCs to 
tumor draining LNs to activate T cell responses (101). This 
innate immune activating properties of radiation therapy 
make it ripe for combination with ICB to bolster T cell 
immune responses. 

The safety of combined radiotherapy and ICB has been 
established in several tumor types (102-106). Of note, 
evidence of abscopal effects have been prevalent in several 
case reports (106) and were noted to correlate with IFNγ-
induced gene expression in a prospective phase I study 
performed in 73 patients with heavily pre-treated metastatic 
solid tumors who received extracranial SBRT followed by 
pembrolizumab (107). In this study, 26.9% of patients had a 
greater than 30% reduction of a non-irradiated lesion (107).  
In metastatic PDAC, the safety of radiation with ICB 
has been shown in a pilot study of durvalumab and 
tremelimumab given with SBRT, which showed this was 
tolerated well with no dose-limiting toxicities (108,109). 
The best evidence for efficacy of this combined modality 
approach in PDAC is from a phase II study of 25 metastatic 
patients who had progressed on one line of treatment that 
were treated with nivolumab and ipilimumab with radiation 
therapy (3 fractions of 8 Gy) given at cycle 2 (110). Among 
the 22 evaluable patients during an interim analysis, the 
ORR was 14% with a median PFS of 2.5 months (110).

Other approaches to microenvironment targeting

Pancreatic stellate cells, when activated, induce desmoplasia 
in PDAC, thus contributing to the dense, fibrous, 
hypovascular and consequently hypoxic microenvironment 
of these tumors (111,112). Together, this prevents adequate 
penetration of chemotherapy and contributes to an 
immunosuppressive environment and a failure of DCs to 
present antigens to tumor-specific T cells (113). A key 
driver of the desmoplastic reaction is the production of 
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HA by fibroblasts (45,114). These findings have led to 
the development of PEGPH20, a PEGylated form of the 
recombinant human hyaluronidase PH20, which degrades 
HA in the stroma (115). 

The combination of PEGPH20 with gemcitabine and 
nab-paclitaxel has been investigated in a phase II trial of 
patients with metastatic PDAC (116). In patients treated 
with this three-drug combination, the ORR was 40% 
compared to 33% for the gemcitabine and nab-paclitaxel 
arm of the study. However, HA levels were found to be 
predictive of response, and for patients with HA-high 
tumors (>50% of tumor surface), the ORR was 45% with the 
three drug combination compared to 31% with gemcitabine 
and nab-paclixel (116). In this latter subset, there was 
a trend towards improved median OS of 11.5 months  
compared to 8.5 months, respectively (116). This in turn 
has led to two phase III trials testing this combination on 
metastatic PDAC (NCT02175804). When PEGPH20 was 
combined with FOLFIRINOX, however, the combination 
was found to be detrimental and the study had to be 
stopped early due to toxicity in the investigational arm (117). 
A phase III trial will elucidate these conflicting results in 
the coming years (118). A phase II trial is also currently 
underway using combination treatment with PEGPH20 
and pembrolizumab as second-line treatment for metastatic 
PDAC (NCT03634332). 

Given the role of TGFb in promoting tumor growth, 
immunosuppression, and fibrosis of the TME, a natural 
therapeutic strategy may be inhibition of the TGFb 
signaling cascade (50,119). Thus far, attempts at systemic 
treatment with anti-TFGb agents have led to concerning 
toxicities, however, recent therapies leveraging targeted 
delivery strategies provide some hope for the future. A 
phase I study of M7824, a bifunctional fusion protein 
composed of a monoclonal antibody against PD-L1 and a 
TGFb trap, in advanced solid tumors, including 5 PDAC 
patients, has shown promising safety (120). Among the 
PDAC patients treated, one showed a partial response and 
another had prolonged stable disease (120). 

Angiotensin receptor blockade has been shown to 
decrease TGFb levels in several tumors. In particular, 
losartan has been shown to decrease stromal collagen 
and HA in desmoplastic tumor models by decreasing not 
just TGFb signaling, but also connective tissue growth 
factor, HA synthase 1 and 3, and endothelin-1 (121-123).  
This in turn mitigates the hypoxic TME, improving T cell 
infiltration and also the distribution and efficacy of therapies 
(123,124). In addition, a phase II study of neoadjuvant 

FOLIFIRINOX with losartan, which is known to decrease 
TGFb in the tumor (123,125), for locally advanced 
PDAC lead to an R0 resection rate of 61% (126), further 
supporting the notion that TGFb inhibition may provide 
therapeutic benefit. However, this combination has yet to 
be tested in the metastatic setting.

Altering metabolism and autophagy

As described above, the PDAC microenvironment is 
uniquely harsh and desmoplastic, with low vascularity 
creating hypoxic conditions and leading to nutrient 
deprivation (111,127-129). Survival in this environment 
requires cells to adapt their metabolic profile to survive, but 
opens the opportunity to exploit metabolic dependencies. 
KRAS mutations are found in almost all PDAC tumors, and 
lead to several metabolic derangements including increased 
glycolysis, which in turn leads to the accumulation of 
intermediates essential for rapid cell division such as 
metabolites for nucleotide synthesis (130-133). 

Well-perfused, normal cells usually generate most of 
their energy, in the way of adenosine triphosphate (ATP), by 
oxidative phosphorylation in mitochondria, which involves 
the tricarboxylic acid cycle (TCA) and oxygen as the final 
acceptor of free radicals in the electron transport chain (128).  
Under oxygen-poor conditions, however, cells often resort 
to glycolysis, which in PDAC is further potentiated by 
KRAS mutations, in a process known as the Warburg effect, 
which is less efficient for ATP production (128). This leads 
to the accumulation of several metabolites that may further 
promote tumor growth and immunosuppression in the 
TME. For example, the accumulation of lactate lowers the 
pH in the TME and in turn impairs anti-tumor immune 
responses, enables an increased mutational burden and 
facilitates hydrolysis of extracellular proteins to promote 
metastasis (129). 

A number of studies have suggested the increased 
dependence on glycolysis in PDAC, in part due to 
upregulation of glycolytic enzymes such as hexokinase 2 and 
lactate dehydrogenases (134-137), and the accumulation of 
glycolytic metabolites such as lactate (134,135). However, 
this only tells part of the story, and the balance of oxidative 
phosphorylation and glycolysis in PDAC is more nuanced. 
More recent studies have suggested that PDAC cells are 
especially dependent on oxidative phosphorylation even 
under low nutrient conditions and this may represent a 
unique vulnerability (138-141). 

These basic findings have led to the exploration of 
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therapeutic approaches to alter mitochondrial biology in 
PDAC. A meta-analysis of 11 studies, 2 of which were 
negative randomized-control trials, of PDAC patients on 
metformin have suggested that the addition of metformin 
may prolong OS, but only in localized and not metastatic 
disease (142-144). The results from a number of trials 
that are currently active or recently closed are pending, 
including combinations of metformin with gemcitabine 
and nab-paclitaxel (NCT02336087), with FOLIFIRNOX 
(NCT01666730), with rapamycin (NCT02048384) and 
with radiosurgery (NCT02153450). 

A more promising recent approach has been the use of 
CPI-613, a lipoic acid analog that disrupts the activity of 
pyruvate dehydrogenase and alpha-ketoglutarate, two key 
mitochondrial enzymes (145,146). A phase I study of CPI-
613 given with FOLFIRINOX in advanced PDAC has 
demonstrated a good safety profile with an ORR of 61% 
and complete response rate of 17% (147). A randomized 
phase III trial of CPI-613 with FOLFIRINOX compared 
to  FOLFIRINOX i s  cur rent ly  underway  (NCT 
03504423) (148) and phase I studies for the combination 
of CPI-613 with gemcitabine and nab-paclitaxel are also 
in process (NCT03435289) (149). 

Another vulnerable pathway in PDAC is autophagy, which 
is a cytoplasmic cell recycling process that when inhibited 
disrupts oxidative phosphorylation and causes oxidative 
damage in these cells (150,151). Hydroxychloroquine (HCQ) 
is an inhibitor of autophagy that has been studied in a 
randomized phase II trial in combination with gemcitabine 
and nab-paclitaxel; however, it showed no benefit compared 
to gemcitabine and nab-paclitaxel alone in terms of 
12-month OS and median PFS (152). More exploratory 
work on the vulnerabilities in the autophagy pathway in 
PDAC will need to be done before this could become a 
viable treatment strategy. 

Targeting cancer stem cells

The WNT signaling pathway is critical in embryogenesis 
for morphogenesis and differentiation of many organs (153),  
and also plays a key role in oncogenesis in PDAC  
(154-156).  However,  unlike other cancers,  where 
mutations in the WNT signaling pathway may be an 
initiating event, loss of function in PDAC is rare and 
not sufficient to drive development of the tumor (155). 
WNT signaling leads to proteasomal degradation of beta-
catenin, causing cytoplasmic accumulation and nuclear 
localization (157). Preclinical studies have suggested 

that loss of beta-catenin can inhibit PDAC growth, 
thus creating the impetus to inhibit the WNT pathway 
in clinical studies (156). A phase Ib study of ipafricept 
(a WNT inhibitor) given with gemcitabine and nab-
paclitaxel has demonstrated a tolerable safety profile, 
with PR in 34.6% of patients of patients, median PFS of  
5.9 months and median OS of 9.7 months; however the 
program has been shut down by the sponsor (158).

Conclusions

Despite there being few FDA approved therapies that are 
effective in improving survival in PDAC patients, there 
are several lines of active investigation that may provide 
promising breakthroughs in the next decade. It is clear that 
the optimal approach to PDAC treatment will require a 
rationale combination of conventional chemotherapeutic 
approaches with multifaceted targeting of the vulnerabilities 
in the uniquely desmoplastic stroma, immunosuppressive 
TME, and metabolic physiology of PDAC tumors. 
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