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Introduction

Transcranial magnetic stimulation (TMS) employs the use 
of brief magnetic pulses which allow for direct noninvasive 
interference with functioning of the brain cortex (1,2). 
Stimulation results in interference with the functioning of 
a specific brain area to which it is delivered, therefore, in 
conscious healthy volunteers, creates a temporary “virtual 
lesion” effect (1,3). TMS experiments thus provide causal 
information about the role of an area due to behavioral 
changes in a specific task or process after stimulation 
of a specific area (3). This paper describes a brief 
perspective regarding the potential future use of TMS in 
ophthalmology.

TMS protocols

Choosing the correct TMS protocol is crucial before starting 

a TMS experiment. The simulation protocols include 
single pulse, double pulse, low or high frequency repetitive 
TMS (rTMS), and theta burst stimulation (TBS) (2,4). 
In more detail, single-pulse TMS, as the name suggests, 
employs one pulse per stimulation. The benefits of a single 
pulse TMS protocol can be seen in the mapping of motor 
cortical outputs by measurement of TMS motor evoked 
potentials (MEPs). This has allowed evaluation of empathy 
effects on the motor system (MEPs induced by a single-
pulse of TMS while viewing painful image/video stimuli) 
(5,6) as well as in investigation of motor conduction (7).  
Paired-pulse stimulation has a number of forms, one of 
which is the use of two single pulses to one cortical area 
(often the motor cortex) to investigate modulatory effects, 
and another is the use of two different coils so that single 
pulses can be delivered to two different brain regions (8). 
This second case allows the investigation of cortico-cortical 
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interactions. 
There are two commonly used rTMS protocols, with 

‘high-frequency’ stimulation typically using frequencies 
more than 1 Hz (most often 10 Hz) and ‘low-frequency’ 
rTMS using 1Hz or lower stimulation rates (2,9). These are 
typically used to produce ‘on-line’ and ‘off-line’ disruption 
of a cortical area, respectively. An example of rTMS use 
is in visual cognition experiments, such as delivering 
rTMS over posterior parietal cortex (PPC) to investigate 
the contribution of this area to visual search performance 
wherein a subject searches for a target amongst several 
distractors (10,11). It is important to note that rTMS might 
induce facilitation due to activation of inhibited neural 
pathways or inhibition of maladaptive responses (12), 
although the neurophysiological mechanisms of exactly how 
this occurs remain unclear.

TBS is a ‘high frequency’ rTMS protocol, involving  
3 pulses, 50 Hz stimulation bursts delivered at a rate of 5 Hz.  
TBS protocols include intermittent (2 s of stimulation 
repeated every 10 s) (iTBS), intermediate (5 s of stimulation 
repeated every 15 s) (imTBS), and continuous (40 s of 
uninterrupted TBS) stimulation (cTBS) (13). These types 
of stimulation typically, in turn, produce facilitation, no 
change, or disruption of the area stimulated.

TMS application in ophthalmology

TMS is important in that it allows investigation of the 
effects of stimulation of the central nervous system. 
However, it is not yet broadly used in ophthalmology 
where there is potential for it to become a useful tool in 
ophthalmology cases that are related to central nervous 
system function. Examples include: spatial analysis 
experiments, in testing theories of eye movements, and in 
treating amblyopia.

Visual perception

TMS has been found to be able to interfere with spatial 
perception in numerous experiments, and data obtained 
show it could be used as a tool to evaluate visual hemifield 
asymmetries. This can be performed by analyzing the 
perception in left versus right visual fields. For example, 
TMS over PPC produces a “neglect-like” effect using tasks 
such as the conjunction visual search paradigm, where effects 
are particularly seen for peripheral target locations (14).  
Using such a task, the effect of TMS on performance with 
distant visual presentation (when compared with near visual 

presentation) was profound and this was found across both 
visual fields and, with PPC stimulation, a significant left 
versus right visual field difference was seen (the “neglect-
like” effect). Data from this experiment give an example 
of investigating the role of a higher brain cortical region 
PPC (rPPC) in processing information from extrastriate  
cortex (15). PPC has been suggested to be important in 
generating a response weighted transformation into the 
appropriate body coordinate system, a process which is 
important to allow action in space. Further investigation of 
this sort of visual processing, and the brain areas associated 
with it, in more specifically ophthalmological conditions 
has the potential to offer new insights, both in terms 
of brain function mechanisms and possible therapeutic 
interventions.

Eye movements

Processing related to eye movement generation involves 
several cortical areas, including the frontal eye fields 
(FEF) in the frontal lobe and the PPC in the parietal lobe, 
functions of which can be investigated using TMS (11,16). 
An example of such an investigation looked at the control 
of the eyes and essentially whether they each have a single 
‘control center’, in which case the coordination of the eyes 
would have to be learned, or whether a unique command 
is sent to each eye causing them to behave like a single 
organ (10). Unlike the ‘control center’ idea, the suggestion 
where the eyes behave like a single organ is associated with 
innate binocular coordination. The former of these ideas 
was proposed by Helmholtz as early as 1868, while the 
latter was suggested by Hering (17). Using single pulse 
TMS delivered over the PPC, Vernet et al. (18) found 
that such stimulation increased the misalignment of the 
eyes before saccades and caused binocular coordination 
to deteriorate during saccades, consistent with the PPC 
both maintaining eye alignment during fixation and being 
involved in binocular coordination during saccades. These 
findings were argued to fit with Hering’s suggestion of equal 
innervation for the eyes (10).

Amblyopia

In the condition of reduced visual acuity in the absence 
of any demonstrable abnormality in the eye, one possible 
cause is amblyopia. Amblyopia might be caused by 
long-standing visual suppression and an imbalance in 
cortical activation. One possible use of TMS might be 
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in stimulating to alter this inhibition within the human 
cortex by modulating abnormal inter-hemispheric patterns 
of suppression. Interestingly, application of TMS to the 
amblyopic visual cortex has been found to temporarily 
improve contrast sensitivity (19), with contrast sensitivity 
being a parameter that can be affected by many aspects 
of vision and can be a more sensitive measure of visual 
acuity. These findings lead to the suggestion that TMS may 
potentially be useful in reducing pathological suppression. 
Along similar lines, cTBS has been shown to be effective in 
improving amblyopic eye contrast sensitivity for high spatial 
frequencies (20).

Optic neuritis

Optic neuritis is often caused by multiple sclerosis (MS), 
which is characterized by autoimmune inflammation, 
demyelination, and degeneration. This demyelination can 
affect nerve conduction and it is often followed by Uhthoff’s 
phenomenon, a temperature induced change in central 
motor conduction. These changes in motor conduction 
could be tested with TMS, making use of the fact that 
stimulation of motor cortex causes induced action potentials 
to descend, resulting in a “twitch” of the innervated 
muscle. Any delay or slowing in motor conduction could 
be recorded after temperature modification (for instance, 
due to a cold bath) (7). For motor conduction stimulation, 
it is important to threshold the level of TMS intensity 
according to individual subject motor thresholds (usually 
obtained using electromyographic recordings). This type 
of experiment must be done with caution as deterioration 
of visual acuity can occur with an increase of temperature 
in patients with optic neuritis, so study protocols must be 
particularly thoroughly reviewed before conducting this 
experiment in MS patients with, or suspected of having, 
optic neuritis.

Conclusions

TMS can be employed to investigate human visuospatial 
perception and eye movements, with one example being 
to test eye movement theories. TMS also has potential in 
treating amblyopia although more research is needed to 
investigate the efficacy with which it could be employed. 
It could also be employed where measurement of changes 
of the types associated with conditions such as MS occur. 
Overall, there is significant potential for expansion of the 
use of TMS into areas related to ophthalmology.
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