
Page 1 of 13

© Annals of Research Hospitals. All rights reserved. Ann Res Hosp 2019;3:10arh.amegroups.com

Introduction

The insulin-like growth factor (IGF) pathway includes IGF 
(IGF-I and IGF-II), insulin-like growth factor binding 
proteins (IGFBPs) and insulin-like growth factor receptors 
(IGF-IR and IGF-IIR) (1,2).

IGFs play key roles in normal growth, metabolism and 
homeostasis of organisms. Their main production site is in 
the liver under the control of growth hormone (GH). The 
detection of their differential expression in pathological 
conditions, such as cancer, cardiovascular and metabolic 
diseases, has stimulated researchers’ interest in designing 
new and promising therapeutic approaches (3,4).

Several recent studies reveal the interaction of IGF 
pathway with the immune system. IGFs’ detection at 
mRNA and protein level in peripheral blood mononuclear 
cells, the interaction of the growth factor pathway with 
various cytokines (e.g., interferons) and immune cells such 
as T lymphocytes, macrophages and bone marrow cells, 
are only few examples (5-7). Moreover, dysregulation of 
the IGFs pathway in the setting of various autoimmune 
diseases, such as type I diabetes, Grave’s disease, Crohn’s 

disease, rheumatoid arthritis (RA) and Sjogren’s syndrome 
(SS), implies a potential contributory role of IGFs in 
autoimmune pathogenesis (8-17).

The aim of the present review is to summarize the 
available literature regarding the role of IGF pathway in 
immune system regulation as well the pathophysiology of 
systemic autoimmune diseases.

IGF-1 gene: localization and isoforms

The human IGF-1 gene is located in the long arm of 
chromosome 12, contains six exons and gives rise to three 
mainly heterogeneous transcripts: Ea, Eb and Ec- through 
a combination of: (I) alternative use of promoters, (II) 
alternative splicing and (III) different polyadenylation 
signals (18,19).

These IGF-I transcripts encode three different peptides, 
which also undergo post-translational modification. IGF-I 
Ea transcript derives from the splicing pattern exon 1 or 
2-3-4-6 of the IGF-1 gene represents the main IGF-I 
mRNA produced by the liver and other tissues as well, 
with similar exon sequence (20,21). IGF-I Eb transcript 
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is a splice variant of exon 1 or 2-3-4-5. Its expression was 
initially detected in human liver (22), while it was also found 
to be expressed, in skeletal muscle and other various tissues 
and cells such as prostate and endometrium (19). IGF-I Ec 
transcript is an exon 1 or 2-3-4-5-6 splice variant of the 
IGF-1 gene. Structurally, the IGF-I Ec mRNA transcript 
differs from the IGF-I Ea variant by the presence of the first 
49 base pairs from exon 5. IGF-I Ec mRNA transcript was 
initially identified in human liver, however, it is expressed 
at approximately 10% of the main IGF-I Ea transcript (21).  
This transcript was named mechano-growth factor 
(MGF) since it was found to be upregulated in response 
to muscle stretch and/or damage (23). Of interest, its 
expression has been also identified in various tissues such as  
endometrium (24), normal and cancerous prostatic cells (25), 
as well as in osteoblast-like osteosarcoma cells (26,27). Its 
regulation appears to be under IL-6 action (28).

The different IGF-I mRNA transcripts encode its 
precursor proteins, which differ in length of their amino-
terminal peptide (signal peptide) and the structure of 
peptide E (extension peptide or E domain) at their final 
end. The last four (4) amino acids in the C region appear 
to be responsible for the strong affinity (binding) to the 
IGF-IR receptor and the transmission of its signal (19,29). 
The biological significance of splicing variants of the IGF-I 
gene is unknown and the molecular and physiological 
mechanisms regulating their expression are uncertain, 
however, these variants probably indicate the complexity of 
IGF-I activities through its different isoforms (18).

Insulin growth factor binding proteins and their 
biological role

IGF I and II are mainly produced by the liver under the 
action of GH which is secreted by the pituitary gland. 
The availability of IGF-I for binding to its receptor is 
determined by its interaction with the binding proteins. 
Six main types of insulin growth factor binding proteins 
(IGFBPs 1–6) has been identified which display very high 
affinity for IGF-I (30). The first five preferentially bind 
IGF-I over IGF-II, while IGFBP-6 has a 100-fold higher 
affinity for IGF-II compared to IGF-I (31,32). IGFBP-3 is 
the most abundant IGFBP in serum, is produced primarily 
from hepatocytes but is also produced from other tissues 
such as kidney, uterus and placenta (33).

In the circulation, more than 90% of both IGF-I and -II 
are bound to IGF binding proteins IGFBP3 or IGFBP5 and 
a glycoprotein called IGFALS. The rest are bound to the 

other IGFBPs and less than 1% circulates as a free form (34). 
IGF activity is determined by the ratio of free to bound 
IGF-I, since the bound form does not execute its biological 
activity (35). IGFBPs compete with IGF-IR and normally 
have higher binding affinity to IGF-I than IGF-IR does. 
Therefore, binding of IGFBPs to IGF-I prevents the ligand 
from interacting with the receptor and, therefore suppresses 
IGF-I actions. On the other hand, IGFBPs may act as a 
reservoir of slowly releasing IGF-I, preventing the receptor 
down regulation by the exposure to high IGF-Ι levels (36).

Another binding control mechanism is through post-
translational modifications (ubiquitination, phosphorylation, 
etc.) that can alter their ability to bind to IGF-I (36). Post-
translational modifications along with the presence of 
specific proteases that degrade IGFBPs/IGF-Ι complex have 
been associated with various types of cancer. There is also 
a group of cysteine-rich proteins, known as IGFBP-related 
proteins (IGFBP-rPs), that share important structural 
similarities with the IGFBPs, but they have low binding 
affinity to IGFs. It has been proposed that these proteins 
and the IGFBPs constitute an IGFBP superfamily, however, 
the functions of the IGFBP-rPs regarding the IGFs actions 
are yet unclear (37).

IGF receptors and downstream signaling

The IGF receptor (IGF-R) belongs to the family of 
transmembrane receptor tyrosine kinases and exhibits 
homology to the insulin receptor (IR). It includes two types: 
(I) type I, which is the major receptor of IGF-I and (II) type 
II, to which IGF-II is predominantly attached (38). Type I 
IGF-IR is composed of 1368 amino acids, consisting of two 
extracellular α-subunits, the IGF-I binding domain and two 
transmembrane β-subunits, which contain three tyrosine 
residues. IGF-I may also be associated with a lower affinity 
to both type II (IGF-IIR) and IR. The former primarily 
mediates the internalization of IGF-I as well as metabolic 
processes while the latter affects cell division (19).

A hybrid IGF-IR/IR receptor consisting of an IR semi-
receptor that binds to an IGF-IR semi-receptor has been 
also described. IGF-Ι signaling through this hybrid receptor 
has been implicated in cancer biology (39).

The  b ind ing  o f  IGF-I  to  α - subuni t s  l eads  to 
phosphorylation of tyrosine residues which in turn 
activates a cascade of intracellular reactions leading to 
mitogenic, anti-apoptotic as well as cell differentiation 
actions by regulating both normal and abnormal cellular 
development. More specifically, cytoplasmic molecules 
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Figure 1 IGF/IGF-IR signaling pathway. The binding of free (not bound to IGFBPs) IGF-I to its receptor phosphorylates the tyrosine 
residues leading to: (A) IRS/PI3K phosphorylation and subsequent downstream activation of Akt, mediating inhibition of apoptosis and 
proliferation; (B) Shc/Grb-2/Sos phosphorylation and complex formation, promotes the activation of Ras/Raf/MEK/MAPK cascade, 
leading to cell proliferation and growth. IGF-I binds to the hybrid IGF-IR/IR receptor activating PI3K and MAPK pathways. IGFI also 
binds the IGF-IIR without activating any signaling pathway. Insulin transduces its signal through hybrid IGF-R/IR and IGF-IR, while IGF-
II mediates its action through IGF-IR. The arrows indicate an activating effect. ERK, extracellular signal-regulated kinase; Grb2, growth 
factor receptor-bound protein-2; IGF-I, insulin growth factor-I; IGF-IR, insulin growth factor-I receptor; IGF-IIR, insulin growth factor-
II receptor; IR, insulin receptor; IRS, insulin receptor substrate; MAPK, mitogen-activated protein kinase; MKK, mitogen-activated protein 
kinase kinase; PI3K, phosphoinositide 3-kinase; Akt, protein kinase B; Src, Src homology and collagen; SOS Son of sevenless. 

incorporating insulin receptor substrate proteins (IRS) are 
activated (40), leading to initiation of two major signaling 
pathways (Figure 1); the first leads to the activation of 
3-phosphatidylinositol kinase (PI3K) involved in cellular 
processes such as resistance to apoptosis (through protein 
kinase B or Akt activation), cellular metabolism and growth; 
the second includes proteins that are involved in the growth 
factor signaling pathway, such as growth factor receptor-
bound protein 2 (Grb-2) and Src homology and Collagen 
(Shc). The latter is associated with Grb-2 which, through 
the Grb-SOS complex, promotes activation of Ras-Raf 
intermediates, which in turn activate extracellular signal–
regulated kinases (ERK), leading to cell proliferation 
and growth. Ras-Raf activates mitogen-activated protein 

kinase kinase 1/2 (MKKs), resulting in phosphorylation 
and activation of extracellular-signal-regulated kinases 1/2 
(ERK1/2), which then regulate the action of cellular and 
nuclear proteins, as well as transcription factors (41).

Expression of the IGF-Ι receptor seems to be dependent 
on the cell type, as well as the cellular microenvironment. 
Recent data reported significant overexpression in various 
cancer cells (42-44) as well as some autoimmune diseases (8).

The structure of the type II receptor consists of a single 
polypeptide chain without a kinase domain. It appears to be 
identical to the cation-independent mannose-6-phosphate 
receptor, to which it is attached. IGF-IIR does not have 
a signaling domain and is thought to be involved in the 
clearance of soluble IGF-II from serum and tissue fluids 
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through receptor-mediated endocytosis (45).

The physiological action of insulin growth factors

IGFs are involved in many cell processes, including cell 
differentiation, cell growth, proliferation, and apoptosis (19).

IGF-I plays an essential role in body growth and 
metabolism, especially during the postnatal life, through 
the activation of IGF-IR. It has been suggested that 
serum IGF-I, which is postnatally produced mainly by 
the liver under GH stimulation though other tissues can 
serve as potential sources through autocrine and paracrine 
mechanisms (31). In contrast, serum IGF-I exerts a 
negative feedback on GH production, either through direct 
inhibition of the pituitary gland and or indirect stimulation 
of somatostatin (SST), a known inhibitor of growth 
hormone releasing hormone (GHRH) (31).

IGF-II is a circulating peptide hormone whose regulation 
can be under the control of GH (46). IGF-II plays an 
important role in both developmental and metabolic 
pathways, especially during the prenatal life. Indeed, IGF-
II is preferentially expressed during embryogenesis and fetal 
development, it stimulates cell growth and proliferation and 
promotes embryo and fetus growth, through the activation 
of IGF-IR and IR, in particular the isoform A (IRA), which 
is predominantly expressed during prenatal life (39,47). 
IGF-II can also bind to IGF-IIR, which is considered a 
“scavenger receptor”. Indeed, IGF-II binding to IGF-
IIR leads to IGF-II degradation by the lysosomes without 
eliciting proliferation or survival signals (48,49). Overall, 
IGFs may also play an autocrine or paracrine role by 
binding to IGF-IR and/or IR on target cells (50).

The interaction of insulin growth factors and 
immune system

Recent data highlight the interaction between GH, the IGF 
pathway and the immune system (51). For example, IGF-I 
levels decrease with age as well as in chronic inflammatory 
disorders status, resulting in poor immune responses. On 
the other hand, children with chronic inflammatory diseases 
exhibit a developmental disorder possibly through IGF-I/
GH dysfunction as a result of excessive proinflammatory 
cytokines (52). IGF pathway has been shown to get 
involved in the growth of several immune cells including 
hematopoietic cells, B and T lymphocytes, macrophages 
and neutrophils (8). In experimental mouse model, 
hematopoiesis appears to increase after bone marrow 

transplantation and co-administration of IGF-I and/or  
GH (52). In bone marrow, administration of IGF-I 
promotes the production of mature B cells, while at the level 
of thymus and spleen it affects the growth of thymic and 
splenocyte cells, respectively. Depending on their degree of 
activation, T lymphocytes display differential expression of 
IGF-I, IGF-II, IGF-IR and IR (8,53). It has been further 
demonstrated that administration of IGF-I leads to cellular 
proliferation and chemotaxis possibly through interaction 
with a network of chemokines, whereas under other 
conditions it can lead to inhibition of T-cell growth by 
dampening IL-2 production (53-56). Increased expression 
of IGF-I is also observed in activated macrophages and 
neutrophils contributing to innate immune responses 
(57,58). Taken together, these data highlight an important 
role of GH/IGF-Ι pathway in immune functions, though 
the underlying mechanisms have not been fully elucidated.

The role of insulin growth factors on 
autoimmune diseases

Autoimmune diseases are a heterogeneous group of 
disorders with common etiopathogenetic mechanisms, 
but distinct clinical phenotypes. A genetically determined 
deregulated immune response in conjunction with hormonal 
and other environmental factors (e.g., stress, viruses, UV 
light, medications) leading to chronic inflammatory tissue 
damage is a well-accepted pathophysiological scenario in 
these disorders (59). In this context, the contribution of the 
IGF pathway in immune dysfunction appears to be a new 
field of investigation and potential target for therapeutic 
intervention.

RA

RA is a systemic chronic inflammatory disease of unclear 
etiology. It is characterized by immune activation, leucocyte 
infiltration and synovial inflammation untimely resulting in 
joint swelling (60). The cellular composition of the inflamed 
synovial fluid (SF) includes innate and adaptive immune 
cells such as T cells, B cells, monocytes and macrophages; 
moreover, fibroblasts promote chondrocyte catabolism and 
osteoclastogenesis resulting in articular destruction (61,62). 
The joint destruction is amplified by elevated levels of 
cytokines and GHs (63). The proliferation of synoviocytes 
leads to an increase in metabolic demands, which in turn 
fuels angiogenesis and expansion of new vessels into 
cartilage and bone, resulting in matrix degradation (64).
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IGF-I is thought to have a key role in the maintenance of 
the steady-state metabolism of cartilage and several studies 
suggest that IGF-Ι stimulates the synthesis and decreases 
the degradation of proteoglycans in cultured cartilage 
explants (65,66).

The contribution of IGF/IGFBP axes in RA pathogenesis 
has been extensively examined giving controversial results. 
Several studies over the last years reported high IGFBP2, 
IGFBP3 and IGF-Ι levels in both plasma and SF of RA 
patients compared to controls (15,65,67-71), though there 
are works reporting similar or reduced IGF-I levels in SF 
(72-74) or reduced IGFBP3 serum levels in RA patients 
compared to controls (72,75,76). Recently, IGFBP6—
a putative novel chemoattracting agent driving T-cell 
migration from the periphery to the inflamed joints in 
RA was also found upregulated in synovial RA tissue (77). 
Upregulation of IGFBPs and IGF-Ι have been also linked 
to the presence of proinflammatory cytokines such as 
interleukin-1 beta (IL-1β), tumor necrosis factor-alpha 
(TNFα) and C-reactive protein (CRP) (65,68). Of note, an 
important variant in the promoter of IGF1 gene has been 
previously shown to increase RA susceptibility, associated 
with low IGF-I serum levels and higher disease activity 
score (DAS) particularly in male individuals non-carrying 
the wild type 192-bp allele (78).

Additionally, the involvement of IGF-IR in disease 
pathogenesis has been recently revealed. The main finding 
is the increased IGF-IR expression in peripheral blood 
leukocytes which was associated with systemic inflammation 
(79,80). In contrast, in an arthritis mouse model reduced 
IGF-IR expression was detected in synovial tissue (ST) 
and restoration was achieved upon IL-27 and IL-35  
treatment (81). Moreover, resistin suppression was 
associated with down-regulation of IGF-IR expression 
and a reduction in Akt phosphorylation in human synovial 
transplants in vivo. The observed high levels of resistin 
in RA SF were inversely correlated with IGF-I SF levels, 
while a clear IGF-IR expression was found in the synovium. 
Abrogation of resistin in the RA synovium using siRNA 
led to decreased phosphorylation of Akt, suggesting that 
resistin may activate Akt through IR/IGF-IR, facilitating 
excessive growth of ST in RA synovium (72).

Another key factor that regulates IGF-IR expression 
is micro RNA 223 (miR-223) which was found to be 
overexpressed in RA patients peripheral blood T cells (82-
84) and inversely associated with IGF-IR expression (83).

Accumulating data so far, support the role of IGF-I/
IGFBPs axes in human cachexia (31,54), a common 

manifestation among RA patients characterized by loss of 
fat-free mass, predominantly skeletal muscle (85). In an RA 
cohort of sixty patients was observed reduced serum IGF-Ι/
IGFBP1 ratio in patients with cachexia (86). In line with 
these findings, decreased IGF-Ι and increased adiponectin 
serum levels were correlated with higher disease activity 
and lower muscle mass (87). Interestingly, high-intensity 
resistance exercise can reduce the RA related cachexia by 
increasing muscular IGF-Ι and IGFBP3 expression (88-90).

An interesting new study reported that the thioredoxin 
domain-containing 5 (TXNDC5) gene is associated with 
susceptibility to RA and exhibits increased expression in 
the STs. In vitro experiments showed that TXNDC5 gene 
expression contributes to abnormal RA synovial fibroblasts 
(RASFs) proliferation and migration by increasing IGF-I 
activity through reduction of IGFBP1 levels (91).

Juvenile idiopathic arthritis (JIA)

JIA is a systemic chronic inflammatory disease (92). 
The term describes a clinically heterogeneous group of 
arthritides of unknown cause, with onset prior to 16 years 
of age. Growth retardation is a common feature of JIA (93).

Several studies so far consistently revealed an association 
between low serum or plasma IGFBP3 and IGF-I levels 
with the stunted growth observed in the setting of JIA  
(94-103) (Table 1), possibly as a result of excessive 
inflammatory activity (97,102,104) or increased proteolytic 
activity of serum gelatinase (94), previously shown to 
mediate proteolytic degradation of both IGFBP3 and 
IGF-I (105,106). In contrast, no association between IGF-I 
levels and cartilage oligomeric matrix protein (COMP) was 
observed (97,102).

Interestingly, normalization of IGF-I and IGF-IBP3 
levels was achieved following treatment with biological 
agents etanercept and tocilizumab resulting in growth 
reconstitution in JIA patients (107,108).

Systemic lupus erythematosus (SLE)

SLE is a severe, chronic autoimmune disorder characterized 
by involvement of multiple organ systems, loss of tolerance 
to self-antigens and dysregulated interferon responses. The 
disease can affect many different body systems, including 
joints, skin, kidneys, blood cells, heart, and lungs (109).

The clinical heterogeneity of SLE is accompanied by 
complex disturbances in the immune system, with the 
hallmark of characteristic autoantibodies and an enhanced 
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Table 1 Differential expression of GH, IGFs and IGFBPs in rheumatoid and juvenile idiopathic arthritis

Study
Patient’s and controls 
age mean or range* 
(year)

Serum Plasma PBMCs Synovial fluid (SF)
Synovial 
tissue (ST)

Rheumatoid arthritis

Alunno et al., 2017 (77) 57±2.2 vs. NA NA NA NA ↑IGFBP6 ↑IGFBP6

Bostὅm et al., 2011 (72) 25–87 vs. 23–88 ↓IGFBP3, ↑resistin NA NA ↓IGF-I, ↑resistin NA

Denko et al., 1996 (73) NA NA NA NA ↓IGF-I NA

Erlandsson et al., (79) 40–64 vs. NA NA NA ↑IGF-IR NA NA

Fernihough et al., 1996 (71) 63 vs. 69 NA ↑IGF-I & IGFBP3 NA NA NA

Lauberg et al., 2012 (80) 50.5 vs. 55 NA NA ↑IGF-IR NA NA

Lee et al., 2006 (75) 30–56 vs. 30–56 ↓GH, −IGF-I, 
↓IGFBP3, −IGF-II

NA NA NA NA

Lemmey et al., 2001 (76) 57±2.2 vs. NA ↓IGF-I & IGFBP3 NA NA NA NA

Matsumoto et al., 1996 (70) 43.6±11.6 vs. 23.4±5.9 NA NA NA ↑IGF-I & IGFBP3 NA

Matsumoto et al., 1998 (69) 20–58 vs. 20–58 NA NA NA ↑IGFBP2 & IGFBP3 NA

Matsumoto et al., 2002 (67) 52 vs. NA ↑IGFBP3 NA NA NA NA

Neidel et al 2001 (68) 59 vs. 51 NA ↓IGF-II, ↑IGFBP2 NA NA NA

Neidel et al., 1997 (65) NA NA ↑IGFBP2 &IGFBP3, 
−IGF-I & IGF-II

NA ↑IGFBP2 & IGFBP3, 
−IGF-I & IGF-II

NA

Suzuki et al., 2015 (15) 58±12.6 vs. 32±6.0 ↑IGFBP3 NA NA NA ↑IGF-I & 
IGFBP3

Toussirot et al., 2005 (74) 47.6±2.1 vs. 44.3±1.7 ↑GH, −IGF-I, −
IGFBP3

NA NA NA NA

Juvenile idiopathic arthritis

Bechtold et al., 2001 (103) 9.7±1.9 vs. 7.8±6.2 NA ↓IGF-I & IGFBP3 NA NA NA

Bilginer et al.2010 (99) 10.5±4.1 vs. NA ↓IGF-I NA NA NA NA

Bjørnhart et al., 2009 (97) 6.9 vs. 9.2 ↓IGF-I NA NA NA NA

Bozzola et al., 2012 (104) 7.6 vs. 8.6 ↑IGF-I NA NA NA NA

Davies et al.1997 (95) NA vs. 8.5±2 NA ↓IGF-I NA NA NA

De Benedetti et al.2001 (96) 2–12 vs. NA ↓IGFBP3 NA NA NA NA

Guszczyn et al., 2009 (94) NA ↓IGFBP3& IGF-I NA NA NA NA

Lewander et al., 2017 (102) 12.4 vs. NA ↓IGF-I NA NA NA NA

Tsatsoulis et al. 1999 (101) 12.4±1.0 vs. 12.6±1.0 NA ↓IGF-I & IGFBP3 NA NA NA

Wong et al., 2008 (100) 6.5 vs. NA ↓IGFBP3 NA NA NA NA

*, mean and range age are expressed in years of patients compared to controls. ↑: increased; ↓: reduced; −: no differences. GH, growth 
hormone; IGF-I, insulin growth factor 1; IGF2, insulin growth factor 2; IGFBP 2/3, insulin growth factor binding protein 2/3; NA, not 
available.
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type I interferon (IFN) and B-cell activating factor (BAFF)/
B lymphocyte stimulator (BlyS) system (110).

The role of IGF/IGFBPs in SLE remains unclear. 
While no differences in IGF-I IGFBP3 or free IGF-I 
serum levels were observed in SLE patients compared 
to age-matched healthy controls (111,112), IGFBP2 
serum levels - the second most prevalent serum IGFBP- 
have been found to be increased in patients with active 
SLE compared to healthy controls (113). Another study 
conducted in a cohort of 86 patients suffering from 
lupus nephritis (LN), a major complication of SLE, 
serum IGFBP4 were significantly higher and correlated 
with chronicity index of renal pathology in LN patients 
compared to controls (114). Moreover, high mRNA 
and protein expression of IGF-I and IGFBP2 in kidney 
sections (115) and increased IGFBP2 serum levels has 
been detected in a lupus mouse model (116) (Table 2).

Of interest, a genetic variation +3179G/A of the 
IGF-1R gene has been recently shown to increase lupus 
susceptibility and severity in a Bulgarian population. Upon 
classification of these patients according to disease activity, 
significantly increased IGF-I serum levels were detected in 
very active SLE patients (Systemic Lupus Erythematosus 
Disease Index SLEDAI score > 10) compared to those with 
mild and moderate disease activity (SLEDAI ≤10) (117).

Systemic sclerosis (SSc)

SSc is a multiorgan disease, characterized by progressive 
fibrosis of the skin and internal organs (125). Alterations 
in immune system, vasculature and connective tissue are 
considered pathogenetic disease hallmarks (126).

IGF-I, among other growth factors, has been implicated 
in the pathogenesis of several fibrotic disorders (127). While 
initial reports did not detect any differences in IGF-I levels 
between SSc patients and controls (121), subsequent studies 
revealed increased IGF-I (118,119,122) and IGFBP3 serum 
levels and overexpression of IGF-I mRNA transcripts 
in skin biopsy of SSc patients (119) (Table 2). Moreover, 
following disease stratification, patients with diffuse 
cutaneous systemic sclerosis (dcSSc) displayed higher IGF-I 
levels compared to those with limited cutaneous systemic 
sclerosis (lcSSc) (119).

IGF-I/IGFBPs axis has been also implicated in the 
pathogenesis of pulmonary fibrosis which is the most 
common cause of SSc-related mortality (128). Increased 
IGF-I levels have been found in bronchoalveolar lavage 
fluid in patients with SSc-related pulmonary fibrosis 

as well as other forms of pulmonary fibrosis (129). In 
addition, immunohistochemical overexpression of IGF-
II, in explanted lung tissues derived from SSc patients 
complicated by pulmonary fibrosis has been detected, as 
well as, increased IGF-II mRNA and protein expression in 
primary cultured fibroblasts derived from the same SSc lung 
tissues (120).

Sjögren’s syndrome (SS)

SS is a chronic autoimmune disorder that typically affects 
exocrine glands—mainly labial and lacrimal—leading to 
complaints of dry mouth and eyes. Given the presence of 
periepithelial mononuclear cell infiltrates, both in exocrine 
glands and in other parenchymal organs such as kidney, 
lung, and liver, the term “autoimmune epithelitis” has been 
proposed (130).

The presence of IGF-I in the saliva of mammals 
in association with immunohistochemical evidence of 
its expression in salivary glands both in human and in 
experimental models imply a contributory role for this 
molecule in salivary gland epithelium homeostasis (131). 
A recent study proposed that pre-treatment of mice with 
IGF-I before irradiation resulted in reduced DNA damage 
of salivary glands and alleviation of symptoms associated 
with radiation treatment (132). Of note, IGF-I expression 
decreases with age, providing an explanation for the salivary 
dysfunction related to the atrophic salivary epithelium 
found in the elderly population (133).

The contribution of the IGF pathway in maintaining 
both the number of cells of the salivary gland and 
intercellular junctions, and to ensure the functioning of 
the salivary glands suggest a possible involvement in the 
pathogenesis of SS (134). Limited data until today, have 
revealed reduced immunohistochemical detection of IGF-I 
receptor in experimental autoimmune sialadenitis (135) 
and salivary gland biopsies (17) along with increased IGF-I 
expression in salivary gland biopsies from SS patients 
compared to controls (124). Furthermore, microarray data 
on peripheral blood monocytes, showed a clear down-
regulation of IGF-IR transcripts in SS patients compared to 
controls (123).

Conclusions

A growing body of evidence over the last years supports 
an important role of IGF/IGFBPs axis dysregulation in 
the pathogenesis of systemic rheumatic diseases. This can 
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Table 2 Differential expression of IGF & IGFBPs in systemic lupus erythematosus, systemic sclerosis and Sjogren’s syndrome

Study
Patient’s and controls age 
mean or range** (year)

Serum Affected tissue* Fibroblasts Plasma PBMCs

Systemic lupus erythematosus

Denko & Malemud 2004 (111) NA −IGF-I NA NA NA NA

Ding et al., 2016 (116) 34.9±1.2 vs. 35.3±1.9 ↑IGFBP2 NA NA NA NA

Mok et al., 2016 (113) 28.7±9.4 vs. NA ↑IGFBP2 NA NA NA NA

Stanilova et al., 2013 (117) 42.4±13.8 vs. 40.5±18.9 ↑IGF-I SLEDAI > 10 NA NA NA NA

Waldron et al., 2018 (112) 48.55±15.68 vs. 50.17±14.15 −IGF-I & IGFBP3 NA NA NA NA

Wu et al., 2016 (114) 35.0±1.2 vs. 34.6±1.8 ↑IGFBP4 NA NA NA NA

Systemic sclerosis

Fawzi et al., 2008 (118) 22.1±14.6 vs. 20.4±2.6 ↑IGF-I ↑IGF-I NA NA NA

Hamaguchi et al., 2008 (119) 46 vs. NA ↑IGF-I & IGFBP3 ↑IGF-I mRNA NA NA NA

Hsu & Feghali-Bostwick 2008 (120) NA NA NA ↑IGF-II 
mRNA

NA NA

Rothe et al., 1988 (121) 51 vs. NA −IGF-I NA NA NA NA

Winsz-Szczotka et al., 2016 (122) 53.12±15.56 vs. 50.67±11.2 NA NA NA ↑IGF-I NA

Sjogren’s syndrome

Emamian et al., 2009 (123) 57±11 vs. NA NA NA NA NA ↓IGF-IR

Katz et al., 2003 (17) 68 vs. 24 NA ↓IGF-IR NA NA NA

Markopoulos et al., 2000 (124) 45.8 vs. NA NA ↑IGF-I NA NA NA

*Affected tissue: skin in systemic sclerosis, minor salivary glands in Sjogren’s syndrome; **mean and range age are expressed in years of 
patients compared to controls. ↑: increased; ↓: reduced; −: no differences. IGF-I, insulin growth factor 1; IGFBP 2/3/4, insulin growth factor 
binding protein 2/3/4; IGF-IR, insulin growth factor receptor 1; MSG, minor salivary glands; PBMCs, peripheral blood mononuclear cells; 
SLEDAI, Systemic Lupus Erythematosus Disease Activity Index; NA, not available.

occur either through inhibitory growth signals leading 
eventually to apoptosis of host cells and generation of 
aberrant immune responses against self, or promotion 
of inflammatory processes mediated by inappropriate 
growth signals to selective immune and non-immune cell 
populations. Further research is required to fully elucidate 
the dual role of IGF/IGFBPs system in autoimmune 
pathology, possibly resulting in novel therapeutic targets.
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