Anterior cervical disc arthroplasty (ACDA) versus anterior cervical discectomy and fusion (ACDF): a systematic review and metaanalysis

Monish M. Maharaj^{1,2,3}, Ralph J. Mobbs^{1,2,3}, Jarred Hogan^{1,2,3}, Dong Fang Zhao⁴, Prashanth J. Rao^{1,2,3}, Kevin Phan^{1,2,3,4}

¹NeuroSpine Surgery Research Group (NSURG), Sydney, Australia; ²NeuroSpine Clinic, Prince of Wales Private Hospital, Randwick, Sydney, Australia; ³University of New South Wales, Sydney, Australia; ⁴University of Sydney, Sydney, Australia

Correspondence to: Kevin Phan. NeuroSpine Surgery Research Group (NSURG), Suite 7a, Level 7 Prince of Wales Private Hospital, Barker Street, Randwick, New South Wales 2031, Australia. Email: kphan.vc@gmail.com.

Background: Surgical approaches are usually required in cases of severe cervical disc disease. The traditional method of anterior cervical disc fusion (ACDF) has been associated with reduced local mobility and increased occurrence of adjacent segment disease. The newer method of anterior cervical disc arthroplasty (ACDA) relies upon artificial discs of various products. Current literature is inconsistent in the comparative performance of these methods with regards to clinical, radiological and patient outcomes.

Methods: Electronic databases, including OVID Medline, PubMed, Scopus, Cochrane Central Register of Controlled Trials and Cochrane Database of Systematic Reviews, were comprehensively searched to retrieve studies comparing the treatment outcomes of ACDF and ACDA. Baseline characteristics and outcome data were extracted from eligible articles.

Results: Two hundred and fifty five articles were identified through the database searches, and after screening 28 studies were included in the systematic review and meta-analysis. A total of 4,070 patients were included (2156 ACDA, 1914 ACDF). There was no significant difference between the two groups in operation time, blood loss during operation, long-term all-complication rate and reoperation rate at the level of injury. The ACDA group had significantly better neurological outcomes, as well as a significantly lower rate of adjacent segment diseases.

Conclusions: Compared with ACDF, the ACDA procedure is associated with improved reoperation rate and reduction in neurological deficits amongst previously demonstrated benefits. There is heterogeneity in ACDA devices; future studies are required to investigate the impact of this technique on treatment outcomes.

Keywords: Anterior cervical disc arthroplasty (ACDA); adjacent segment disease; anterior cervical discectomy and fusion (ACDF); meta-analysis

Submitted Aug 03, 2015. Accepted for publication Aug 22, 2015. doi: 10.3978/j.issn.2414-469X.2015.09.01 View this article at: http://dx.doi.org/10.3978/j.issn.2414-469X.2015.09.01

Background

Cervical disc disease affects up to 84 people per 100,000 of the population, with the C7 segment being the most commonly affected (1). Disc pathology may manifest clinically as localized and radicular pain, myelopathy and spinal joint instability. If severe, such as in degenerative disc disease, infections and trauma, surgical methods are indicated. As first outlined by Robinson and Smith (1955), the gold standard of surgical intervention has been anterior cervical disc fusion (ACDF), though the procedure is speculated to reduce local mobility while simultaneously driving significant adjacent disease (2,3). Study by Goffin *et al.* (1995) (n=25; follow-up 5-9 years) estimated prevalence of adjacent segment disease to be approximately

60%, although this number has drastically reduced with current studies reporting figures as low as 16% (4-6). However, as described by Harrod *et al.* (2011), the reported figures differed significantly amongst individual studies based on radiological or clinical assessment, and Harrod *et al.* openly criticized their own conclusions due to a lack of quality evidence (7). Radiological classifications are generally inclusive of features such as disc space narrowing, osteophyte formation, and end-plate sclerosis (8).

Over the last few decades, the emergence of artificial discs has offered a secondary option of management, with multiple products approved by the FDA. The most common artificial discs are the Bryan Disc, the Prestige Disc and Pro-Disc-C. At present, the Mobi-C is the only approved artificial disc for use in both single- and double-level operations (9). Referred throughout the literature as a total disc replacement (TDR) or disc arthroplasty, some studies have demonstrated motion preservation and reduced adjacent segment disease in comparison to the fusion alternative (8,10). However, the incidence of post-operative complications and reoperation rates ranges across accessible studies with no formal conclusion on overall outcomes.

Several reviews have been published comparing the two procedures across multiple clinical, radiological and patient-outcome domains, however there remains a lack of consensus over which option is superior (11-14). Conclusions amongst reviews are not consistent with Gao *et al.* (2013) demonstrating superiority in surgical parameters associated with ACDF and better clinical outcomes for disc arthroplasty (13). The aim of our study is to perform a meta-analysis on the clinical and biomechanical factors comparing ACDF with anterior cervical disc arthroplasty (ACDA) for the treatment of single-level cervical disc disease.

Methods

Search strategy

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were adhered to for the present review (15,16). Electronic searches were conducted using OVID Medline, PubMed, Scopus, Cochrane central register of controlled trials (CCTR) and the Cochrane database of systematic reviews (CDSR) from their dates of inception until April 2015. Key terms were combined using common Boolean principles and included the group terms of "ACDF" or "anterior cervical disc fusion" and "ACDA" or "artificial disc arthroplasty" or "cervical disc arthroplasty" or "total disc replacement". Two authors (M.M. and J.H.) performed the search independently with any discrepancies resolved by discussion. The reference lists of all retrieved articles were reviewed for identification of relevant studies omitted from search results. All studies were assessed using our selection criteria. The cut-off point for our definition of short term was arbitrarily set at a mean follow-up of less than or equal to 36 months.

Selection criteria

Eligible studies for the present meta-analysis were comparative in nature, comprising patient groups who were treated with ACDF or ACDA. Studies with fewer than ten patients in each cohort were excluded. All publications were limited to those involving human subjects and in the English language. Abstracts, case reports, conference presentations, editorials, reviews and expert opinions were excluded.

Data extraction and critical appraisal

Relevant data was extracted from manuscripts, tables and figures. Two investigators (M.M, J.H.) independently reviewed each article, with discrepancies resolved by consensus and discussion. The quality of studies was assessed using case series quality assessment criteria recommended by the National Health Service Centre for Reviews and Dissemination (University of York, Heslington, UK) (17). The final results were reviewed by the senior investigators.

Statistical analysis

Relative risk (RR) and weighted mean difference (WMD) were used as summary statistics. In the present study, both fixed-effect and random-effects models were tested. In the fixed-effect model, it was assumed that treatment effect in each study was the same, whereas in a random-effects model, it was assumed that there were variations between studies. χ^2 tests were used to study heterogeneity between trials. I² statistic was used to estimate the percentage of total variation across studies, owing to heterogeneity rather than chance, with values greater than 50% considered as substantial heterogeneity. I² can be calculated as: I² = 100% × (Q - df)/Q, with Q defined as Cochrane's

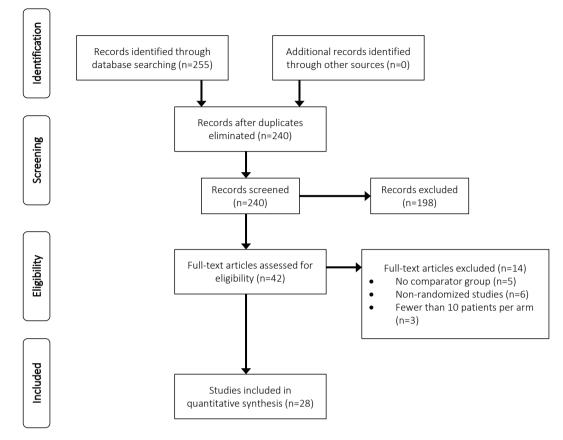


Figure 1 PRISMA flow-chart for the present systematic review comparing ACDA versus ACDF outcomes. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses; ACDA, anterior cervical disc arthroplasty; ACDF, anterior cervical discectomy and fusion.

heterogeneity statistics and df defined as degree of freedom. If there was substantial heterogeneity, the possible clinical and methodological reasons for this were explored qualitatively. In the present meta-analysis, the results using the random-effects model were presented to take into account the possible clinical diversity and methodological variation between studies. Specific analyses considering confounding factors were not possible because raw data was not available. All P values were 2-sided.

Results

Included studies

Following search criteria 255 studies were located. After removal of duplicate studies and irrelevant results, 240 articles remained for detailed evaluation (*Figure 1*). After thorough screening 28 studies remained for assessment involving a total cohort of 4,070 patients, including 2,156 who underwent ACDA and 1,914 who underwent an ACDF procedure. Only prospective randomized controlled trials (RCTs) were included. The study characteristics and quality assessment are summarized in *Table 1* and *Table 2* (8-10,18-42).

Baseline characteristics

Table 3 illustrates the baseline data of analyzed outcomes. In our study, there was no significant difference in demographics between ACDA and ACDF. The average age in the ACDA cohort was 43.8 years compared to 44.6 years in the ACDF group. The proportion of males in the ACDA group was 36.7% *vs.* 37.6% in the ACDF group.

Operation outcomes

Pooled operation outcomes are illustrated in *Table 4*. Operation time (84.6 vs. 95.9 mins, P=0.09) and blood loss (63.0 vs. 69.1 mL, P=0.56) were comparable between ACDA and ACDF cohorts. There was negligible difference

Follow up duration	First author (year)	ACDA product	Study type	Study country	ACDA (n)	ACDF (n)	Mean follow-up time (mo)
Short-term	Hou <i>et al</i> . (2014) (18)	Discover	RCT	China	117	108	24
(FU 12 mo <	Li et al. (2014) (19)	Scient-X	Prospective CT	China	39	42	24
x < 24 mo)	Tracey et al. (2014) (20)	Prestige	Retrospective	USA	171	88	12
	Rožanković et al. (2014) (21)	Discover	RCT	Croatia	51	50	24
	Kang et al. (2013) (22)	ProDisc-C	RCT	China	12	12	33
	Zhang et al. (2012) (23)	Bryan	RCT, M	China	60	60	24
	Auerbach et al. (2011) (24)	ProDisc-C	Prospective	USA	93	94	24
	Coric et al. (2011) (8)	Kineflex-C	RCT, M	USA	136	133	24
	Hisey et al. (2011) (25)	Mobi-C	RCT, M	USA	164	81	24
	Kelly et al. (2011) (26)	ProDisc-C	RCT	USA	100	99	24
	Park et al. (2011) (27)	PCM	RCT, M	USA	272	182	12
	Anakwenze <i>et al</i> . (2009) (28)	ProDisc-C	RCT	USA	89	91	24
	Cheng et al. (2009) (29)	Bryan	RCT	China	31	34	24
	Heller et al. (2009) (30)	Bryan	RCT, M	USA	242	221	24
	Kim <i>et al</i> . (2009) (31)	Bryan	RCT	Korea	51	39	19
	Anderson <i>et al</i> . (2008) (32)	Bryan	RCT, M	USA	242	221	24
	Peng-Fei <i>et al</i> . (2008) (33)	NR	RCT	China	12	12	17
	Sasso et al. (2008) (34)	Bryan	RCT, M	USA	242	221	24
	Mummaneni et al. (2007) (10)	Prestige	RCT, M	USA	276	265	24
	Nabhan <i>et al</i> . (2007) (35)	ProDisc-C	RCT	Germany	16	17	6
Long-term	Davis et al. (2015) (9)	Mobi-C	RCT, M	USA	225	105	48
(>24 mo)	Burkus <i>et al</i> . (2014) (36)	Prestige	RCT, M	USA	276	265	84
	Coric et al. (2013) (37)	Bryan/Kineflex-C	RCT	USA	41	38	72
	Zigler et al. (2012) (38)	ProDisc-C	RCT, M	USA	103	106	60
	Sasso <i>et al</i> . (2011) (39)	Bryan	RCT, M	USA	242	221	48
	Burkus et al. (2010) (40)	Prestige	RCT, M	USA	144	127	60
	Delamarter et al. (2010) (41)	ProDisc-C	RCT, M	USA	103	106	48
	Garrido e <i>t al</i> . (2010) (42)	Bryan	RCT	USA	21	26	48

Table 1 Study characteristics

ACDA, anterior cervical disc arthroplasty; ACDF, anterior cervical discectomy and fusion; RCT, randomised controlled trial; M, Multi-centre; FU, follow up; mo, month.

in length of stay (Table 4).

Functional and clinical outcomes

There was no significant difference in all-complication rates between ACDA and CADF groups for short-term follow-up (11.5% vs. 11.9%; RR, 0.91; P=0.53) or long-term follow-up (3.0% vs. 4.5%; RR, 0.55; P=0.16) (*Figure 2*). Significantly better neurological outcomes were found

in the ACDA group compared to ACDF for short-term follow-up (6.6% vs. 12.2%; RR, 0.54; P<0.0001), but not for long-term follow-up (11.2% vs. 10.8%; RR, 1.52; P=0.55) (*Figure 3*). Reoperation rates at the level of injury were similar between ACDA and ACDF for short-term (2.0% vs. 1.9%; RR, 1.02; P=0.94) and long-term (1.8% vs. 1.8%; RR, 1.02; P=0.76) follow-up (*Figure 4A*). Whilst secondary cervical spine reoperations were less frequent in the ACDA group at short-term follow-up (3.5% vs. 6.4%;

Table 2 Q	uality assessment of studies inclue	led in meta-analysis					
Follow up duration	First author (year)	Representativeness of both cohorts	Quality of data records	Comparability of cohorts	Outcome assessment	Relevant follow-up period	Important confounders/ prognostic factors Identified
Short-	Hou et al. (2014) (18)	Average	Excellent	Average	Excellent	Good	Poor
term	Li et al. (2014) (19)	Average	Good	Average	Good	Good	Good
(FU 12	Tracey et al. (2014) (20)	Good	Good	Good	Average	Good	Poor
mo < x <	Rožanković et al. (2014) (21)	Good	Good	Good	Good	Good	Poor
24 mo)	Kang et al. (2013) (22)	Poor	Good	Good	Good	Good	Poor
	Zhang et al. (2012) (23)	Excellent	Good	Good	Good	Good	Good
	Auerbach et al. (2011) (24)	Good	Good	Good	Good	Good	Good
	Coric <i>et al</i> . (2011) (8)	Good	Average	Good	Average	Good	Poor
	Hisey <i>et al</i> . (2011) (25)	Excellent	Good	Good	Poor	Good	Poor
	Kelly et al. (2011) (26)	Excellent	Average	Good	Poor	Good	Good
	Park et al. (2011) (27)	Good	Good	Good	Good	Good	Average
	Anakwenze et al. (2009) (28)	Good	Average	Good	Average	Good	Average
	Cheng et al. (2009) (29)	Poor	Poor	Good	Good	Good	Poor
	Heller et al. (2009) (30)	Good	Good	Good	Average	Good	Good
	Kim et al. (2009) (31)	Good	Good	Good	Good	Good	Good
	Anderson <i>et al</i> . (2008) (32)	Good	Good	Average	Good	Good	Good
	Peng-Fei <i>et al</i> . (2008) (33)	Poor	Poor	Average	Poor	Good	Poor
	Sasso et al. (2008) (34)	Good	Average	Good	Average	Good	Average
	Mummaneni <i>et al</i> . (2007) (10)	Good	Average	Good	Poor	Good	Poor
	Nabhan <i>et al</i> . (2007) (35)	Poor	Poor	Poor	Good	Good	Poor
Long-	Davis et al. (2015) (9)	Excellent	Good	Good	Poor	Good	Poor
term	Burkus et al. (2014) (36)	Average	Good	Good	Excellent	Excellent	Poor
(>24 mo)	Coric et al. (2013) (37)	Poor	Good	Good	Poor	Excellent	Poor
	Zigler et al. (2012) (38)	Excellent	Good	Good	Poor	Excellent	Poor
	Sasso et al. (2011) (39)	Good	Good	Good	Excellent	Excellent	Good
	Burkus <i>et al</i> . (2010) (40)	Average	Good	Good	Poor	Excellent	Poor
	Delamarter et al. (2010) (41)	Excellent	Good	Good	Excellent	Excellent	Average
	Garrido et al. (2010) (42)	Poor	Good	Good	Poor	Excellent	Average

Table 2 Quality assessment of studies included in meta-analysi

FU, follow up; mo, month.

RR, 0.58; P=0.02), no difference was detected at long-term (7.4% vs. 10.9%; RR, 0.68; P=0.23) (*Figure 4B*). The rate of adjacent segment diseases was lower for the ACDA group at both short-term (10.7% vs. 16.9%; RR, 0.55; P=0.007) and long-term (27.4% vs. 44.4%; RR, 0.54; P<0.00001) follow-up (*Figure 5*). Across short-term papers, pooled data favored the ACDA procedure with a statistically significant difference shown in relation to neck disability index (NDI)

(MD, -3.59, P=0.008) and visual analog scale (VAS) arm scores (MD, -0.51, P=0.01) (*Figures 6*,7). The results did not translate significantly across the long-term groups, however the trends were consistent.

Biomechanical outcomes

Only eight human studies reported on the biomechanical

Table 3 Baseline cha	Table 3 Baseline characteristics								
Baseline	RR or MD (95% CI)	²	P value for heterogeneity	P value overall					
Age (years)	-0.78 (-1.64, 0.08)	54	0.004	0.08					
BMI	-0.48 (-0.96, 0)	33	0.16	0.05					
Males	0.96 (0.90, 1.03)	0	0.86	0.28					
NDI	-0.23 (-0.82, 0.35)	0	0.59	0.43					
VAS (neck)	-0.01 (-0.21, 0.19)	0	0.67	0.94					
VAS (arm)	0.06 (-0.31, 0.43)	0	0.92	0.75					
ROM F/E (sup)	0.18 (-0.25, 0.62)	39	0.11	0.41					
ROM F/E (inf)	-0.34 (-2.03, 1.35)	91	<0.00001	0.69					
ROM	-0.20 (-0.78, 0.37)	76	<0.00001	0.49					

RR, relative risk; MD, mean difference; CI, confidence interval; VAS, visual analog scale; BMI, body mass index; NDI, neck disability index; Sup, superior segment; inf, inferior segment; ROM, range of motion; F/E, flexion/extension.

Table 4 Operational outcomes				
Operational outcome	MD (95% CI)	²	P value for heterogeneity	P value overall
Operation duration (min)	6.14 (–0.91, 13.19)	87	<0.00001	0.09
Blood loss (mL)	-3.22 (-14.03, 7.60)	88	<0.00001	0.56
Length of stay (days)	-0.05 (-0.17, 0.07)	47	0.11	0.45

MD, mean difference; CI, confidence interval.

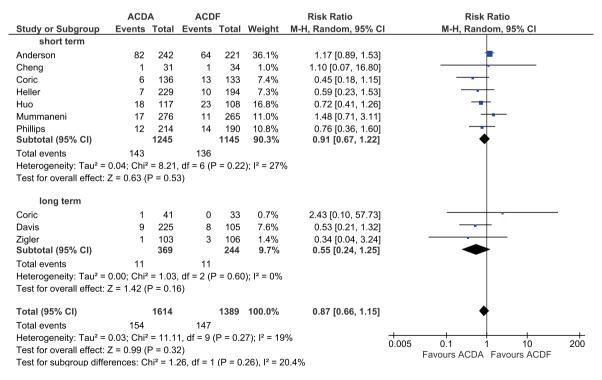


Figure 2 Forest plot of all complications for ACDA *vs.* ACDF, stratified into short-term and long-term outcomes. ACDA, anterior cervical disc arthroplasty; ACDF, anterior cervical discectomy and fusion.

Maharaj et al. ACDA vs. ACDF: a meta-analysis

	ACD	Α	ACD	F		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
short term							
Burkus	14	197	27	160	10.9%	0.42 [0.23, 0.78]	
Coric	7	136	7	133	8.7%	0.98 [0.35, 2.71]	
Heller	14	229	19	194	10.6%	0.62 [0.32, 1.21]	
Mummaneni	20	276	42	265	11.4%	0.46 [0.28, 0.76]	
Phillips	10	188	16	153	10.1%	0.51 [0.24, 1.09]	
Tracey Subtotal (95% CI)	14	171 1197	10	88 993	10.1% 61.8%	0.72 [0.33, 1.56] 0.54 [0.41, 0.71]	•
Total events	79		121				
Heterogeneity: Tau ² =	0.00: Chi ²	= 3.10	. df = 5 (F	9 = 0.68	3): $ ^2 = 0\%$		
Test for overall effect:	Z = 4.41 (P < 0.0	001)		,,		
long term							
Burkus	7	144	4	127	7.8%	1.54 [0.46, 5.15]	
Davis	14	25	8	105	10.2%	7.35 [3.47, 15.58]	
Delamarter	11	103	27	106	10.7%	0.42 [0.22, 0.80]	
Zigler	10	103	9	106	9.6%	1.14 [0.48, 2.70]	
Subtotal (95% CI)		375		444	38.2%	1.52 [0.38, 5.99]	
Total events	42		48				
Heterogeneity: Tau ² =	1.76; Chi ²	= 32.8	2, df = 3 (P < 0.0	00001); l ² :	= 91%	
Test for overall effect:	Z = 0.60 (P = 0.5	5)				
Total (95% CI)		1572		1437	100.0%	0.84 [0.48, 1.44]	•
Total events	121		169				
Heterogeneity: Tau ² =	0.62; Chi ²	= 49.6	0, df = 9 (P < 0.0)0001); l² :	= 82%	
Test for overall effect:					,,		0.01 0.1 1 10 10
Test for subgroup diffe	· ·		,	(P = 0)	(15) , $l^2 = 5$	2.6%	Favours ACDA Favours ACDF

Figure 3 Forest plot of neurological outcomes for ACDA *vs.* ACDF, stratified into short-term and long-term outcomes. ACDA, anterior cervical disc arthroplasty; ACDF, anterior cervical discectomy and fusion.

parameters of range of motion and adjacent segment disease. In general motion was stratified into the flexionextension range at the level of surgery as well as one spinal unit superiorly and inferiorly. At baseline there were no significant differences between the ACDA and ACDF cohorts across all three subgroups of analysis (*Table 1*). Pooled meta-analytical data (n=8) in the short term favored the ACDA procedure at the level of injury (RR, 4.79, P<0.00001) with no significant differences in the range of motion across both adjacent levels. In general the trend across the raw data illustrated a slight relative increase in the adjacent ROM in the fusion procedure.

Discussion

ACDF has been widely accepted in the setting of cervical disc pathology for decades. The major criticism of the procedure has been severe reduction in joint mobility at the operated level and an increased risk of adjacent segment disease. This comes as no surprise due to the surgical principles underlying the local fusion procedure.

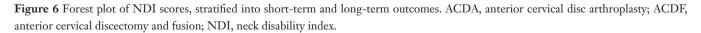
Previous work by Gao *et al.* has demonstrated superior local ROM associated with the disc arthroplasty procedure

(WMD 5.70 degrees; n=603; P<0.00001) (13). A separate meta-analysis by Yang *et al.* (2012) demonstrated a difference in incidence (RR, 0.57; 95% CI, 0.19-1.72; P=0.32) between the two, but failed to achieve statistical significance (43). Our findings demonstrate an increased range of motion associated with the ACDA procedure across both short- and long- term outcomes at the level of operation.

In terms of the ROM within adjacent segment units, our data, although not statistically significant, does show a trend towards a relative increase in the fusion cohort. Some studies have demonstrated increases in inter-segmental motion as a mechanism of motion compensation, which may account for these results (3,5,24,44). Biomechanical data has led to the hypothesis that this increase may predispose the patient to adjacent segment disease, the major contributor to reoperation rates (45,46).

Although we have found a difference in the rates of adjacent segment disease, our data has not indicated a correspondence between this clinical finding and reoperation. We speculate that this may be due to differences in definitions amongst studies for the clinical outcome, with the descriptive term across different papers

Study or Subarau	ACD Events		ACD		Weight	Risk Ratio M-H, Random, 95% Cl	Risk Ratio M-H, Random, 95% Cl
Study or Subgroup short term	Events	Total	Events	Total	weight	M-H, Kandom, 95% Ci	Mi-H, Randolli, 95% Ci
	0	040	0	004	04.00/	0.00.00.04.4.041	
Anderson	6	242	8	221	24.2%	0.68 [0.24, 1.94]	-
Burkus	4	276	2	265	9.2%	1.92 [0.35, 10.40]	
Coric	3	41	0	33	3.1%	5.67 [0.30, 105.96]	
Coric	6	136	7	133	23.3%	0.84 [0.29, 2.43]	
Heller	2	229	1	194	4.6%	1.69 [0.15, 18.54]	
Hisey Subtotal (95% CI)	1	164 1088	0	81 927	2.6% 67.0%	1.49 [0.06, 36.20] 1.02 [0.55, 1.92]	•
Total events Heterogeneity: Tau ² = Test for overall effect:				P = 0.73); I² = 0%		
long term							
Burkus	4	276	2	265	9.2%	1.92 [0.35, 10.40]	
Coric	1	41	0	33	2.6%	2.43 [0.10, 57.73]	
Sasso	4	242	1	221	5.5%	3.65 [0.41, 32.43]	
Zigler	3	103	8	106	15.6%	0.39 [0.11, 1.41]	
Subtotal (95% CI)		662		625	33.0%	1.19 [0.38, 3.69]	
Total events	12		11				
Heterogeneity: Tau ² = Test for overall effect:				P = 0.23); I² = 30%		
Total (95% CI)		1750		1552	100.0%	1.02 [0.61, 1.71]	•
Total events	34		29				
Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diffe	Z = 0.08 (P = 0.9	3)		,	%	0.005 0.1 1 10 Favours ACDA Favours ACDF
				-			
	ACD	A	ACD	F		Risk Ratio	Risk Ratio
Study or Subgroup					Weight	Risk Ratio M-H, Random, 95% Cl	
Study or Subgroup short term					Weight		
					Weight 11.5%		
short term	Events	Total	Events	Total		M-H, Random, 95% Cl	
short term Anderson	Events 12	Total 242	Events 17	Total 221	11.5%	M-H, Random, 95% Cl 0.64 [0.31, 1.32]	
short term Anderson Coric	Events 12 4	Total 242 41	Events 17 1	Total 221 33	11.5% 3.0%	<u>M-H, Random, 95% Cl</u> 0.64 [0.31, 1.32] 3.22 [0.38, 27.44]	
short term Anderson Coric Garrido	Events 12 4 1	Total 242 41 21	Events 17 1 6	Total 221 33 25	11.5% 3.0% 3.3%	M-H, Random, 95% Cl 0.64 [0.31, 1.32] 3.22 [0.38, 27.44] 0.20 [0.03, 1.52] 0.73 [0.25, 2.12]	
short term Anderson Coric Garrido Heller Hisey	Events 12 4 1 6	Total 242 41 21 229	Events 17 1 6 7	Total 221 33 25 194	11.5% 3.0% 3.3% 8.0% 4.7%	M-H, Random, 95% Cl 0.64 [0.31, 1.32] 3.22 [0.38, 27.44] 0.20 [0.03, 1.52] 0.73 [0.25, 2.12] 0.20 [0.04, 1.00]	
short term Anderson Coric Garrido Heller Hisey Tracey	Events 12 4 1 6 2	Total 242 41 21 229 164 171	Events 17 1 6 7 5	Total 221 33 25 194 81 88	11.5% 3.0% 3.3% 8.0% 4.7% 7.3%	M-H, Random, 95% Cl 0.64 [0.31, 1.32] 3.22 [0.38, 27.44] 0.20 [0.03, 1.52] 0.73 [0.25, 2.12] 0.20 [0.04, 1.00] 0.62 [0.19, 1.97]	
short term Anderson Coric Garrido Heller Hisey	Events 12 4 1 6 2 6	Total 242 41 21 229 164	Events 17 1 6 7 5 5 5	Total 221 33 25 194 81	11.5% 3.0% 3.3% 8.0% 4.7%	M-H, Random, 95% Cl 0.64 [0.31, 1.32] 3.22 [0.38, 27.44] 0.20 [0.03, 1.52] 0.73 [0.25, 2.12] 0.20 [0.04, 1.00]	
short term Anderson Coric Garrido Heller Hisey Tracey Zhang Subtotal (95% CI) Total events Heterogeneity: Tau ² =	Events 12 4 1 6 2 6 1 32 5 0.01; Chi ²	Total 242 41 21 229 164 171 60 928 = 6.07	Events 17 1 6 7 5 5 4 4 45 , df = 6 (F	Total 221 33 25 194 81 88 60 702	11.5% 3.0% 3.3% 8.0% 4.7% 7.3% 3.0% 40.9%	M-H, Random, 95% Cl 0.64 [0.31, 1.32] 3.22 [0.38, 27.44] 0.20 [0.03, 1.52] 0.73 [0.25, 2.12] 0.20 [0.04, 1.00] 0.62 [0.19, 1.97] 0.25 [0.03, 2.17]	
short term Anderson Coric Garrido Heller Hisey Tracey Zhang Subtotal (95% CI) Total events	Events 12 4 1 6 2 6 1 32 5 0.01; Chi ²	Total 242 41 21 229 164 171 60 928 = 6.07	Events 17 1 6 7 5 5 4 4 45 , df = 6 (F	Total 221 33 25 194 81 88 60 702	11.5% 3.0% 3.3% 8.0% 4.7% 7.3% 3.0% 40.9%	M-H, Random, 95% Cl 0.64 [0.31, 1.32] 3.22 [0.38, 27.44] 0.20 [0.03, 1.52] 0.73 [0.25, 2.12] 0.20 [0.04, 1.00] 0.62 [0.19, 1.97] 0.25 [0.03, 2.17]	
short term Anderson Coric Garrido Heller Hisey Tracey Zhang Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Iong term	Events 12 4 1 6 2 6 1 32 5 0.01; Chi ² Z = 2.30 (Total 242 41 229 164 171 60 928 = 6.07 P = 0.0	Events 17 1 6 7 5 5 4 4 45 , df = 6 (F 2)	Total 221 33 25 194 81 88 60 702 2 = 0.42	11.5% 3.0% 3.3% 8.0% 4.7% 7.3% 3.0% 40.9%); ² = 1%	M-H, Random, 95% Cl 0.64 [0.31, 1.32] 3.22 [0.38, 27.44] 0.20 [0.03, 1.52] 0.73 [0.25, 2.12] 0.20 [0.04, 1.00] 0.62 [0.19, 1.97] 0.25 [0.03, 2.17] 0.58 [0.36, 0.92]	
short term Anderson Coric Garrido Heller Hisey Tracey Zhang Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: long term Burkus	Events 12 4 1 6 2 6 1 32 5 0.01; Chi ² Z = 2.30 (11	Total 242 41 21 229 164 171 60 928 = 6.07 P = 0.0 211	Events 17 1 6 7 5 5 4 4 5 5 4 4 5 5 2 4 5 2 2 4	Total 221 33 25 194 81 88 60 702 ? = 0.42	11.5% 3.0% 3.3% 8.0% 4.7% 7.3% 3.0% 40.9%); ² = 1% 11.9%	M-H, Random, 95% Cl 0.64 [0.31, 1.32] 3.22 [0.38, 27.44] 0.20 [0.03, 1.52] 0.73 [0.25, 2.12] 0.20 [0.04, 1.00] 0.62 [0.19, 1.97] 0.25 [0.03, 2.17] 0.58 [0.36, 0.92] 0.39 [0.20, 0.78]	
short term Anderson Coric Garrido Heller Hisey Tracey Zhang Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Iong term Burkus Coric	Events 12 4 1 6 2 6 1 32 5 0.01; Chi ² Z = 2.30 (11 3	Total 242 41 21 229 164 171 60 928 = 6.07 P = 0.0 211 41	Events 17 1 6 7 5 5 4 45 , df = 6 (F 2) 24 1	Total 221 33 25 194 81 88 60 702 ? = 0.42 181 33	11.5% 3.0% 3.3% 8.0% 4.7% 7.3% 3.0% 40.9%); l ² = 1% 11.9% 2.9%	M-H, Random, 95% Cl 0.64 [0.31, 1.32] 3.22 [0.38, 27.44] 0.20 [0.03, 1.52] 0.73 [0.25, 2.12] 0.20 [0.04, 1.00] 0.62 [0.19, 1.97] 0.25 [0.03, 2.17] 0.58 [0.36, 0.92] 0.39 [0.20, 0.78] 2.41 [0.26, 22.15]	
short term Anderson Coric Garrido Heller Hisey Tracey Zhang Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Iong term Burkus Coric Davis	Events 12 4 1 6 2 6 1 32 5 0.01; Chi ² Z = 2.30 (11 3 9	Total 242 41 229 164 171 60 928 = 6.07 P = 0.0 211 41 225	Events 17 1 6 7 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 2) 24 1 6	Total 221 33 25 194 81 88 60 702 2 = 0.42 181 33 105	11.5% 3.0% 3.3% 8.0% 4.7% 7.3% 3.0% 40.9%); ² = 1% 11.9% 2.9% 8.6%	M-H, Random, 95% Cl 0.64 [0.31, 1.32] 3.22 [0.38, 27.44] 0.20 [0.03, 1.52] 0.73 [0.25, 2.12] 0.20 [0.04, 1.00] 0.62 [0.19, 1.97] 0.25 [0.03, 2.17] 0.58 [0.36, 0.92] 0.39 [0.20, 0.78] 2.41 [0.26, 22.15] 0.70 [0.26, 1.92]	
short term Anderson Coric Garrido Heller Hisey Tracey Zhang Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Iong term Burkus Coric Davis Delamarter	Events 12 4 1 6 2 6 1 32 2 = 2.30 (2 = 2.30 (11 3 9 23	Total 242 41 21 229 164 171 60 928 $= 6.07$ $P = 0.0$ 211 41 225 103	Events 17 1 6 7 5 5 4 45 , df = 6 (F 2) 24 1 6 12	Total 221 33 25 194 81 88 60 702 P = 0.42 181 33 105 106	11.5% 3.0% 3.3% 8.0% 4.7% 7.3% 3.0% 40.9%); ² = 1% 11.9% 2.9% 8.6% 12.4%	M-H, Random, 95% Cl 0.64 [0.31, 1.32] 3.22 [0.38, 27.44] 0.20 [0.03, 1.52] 0.73 [0.25, 2.12] 0.20 [0.04, 1.00] 0.62 [0.19, 1.97] 0.25 [0.03, 2.17] 0.58 [0.36, 0.92] 0.39 [0.20, 0.78] 2.41 [0.26, 22.15] 0.70 [0.26, 1.92] 1.97 [1.04, 3.75]	
short term Anderson Coric Garrido Heller Hisey Tracey Zhang Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Iong term Burkus Coric Davis Delamarter Garrido	Events 12 4 1 6 2 6 1 32 0.01; Chi ² Z = 2.30 (11 3 9 23 1	Total 242 41 21 229 164 171 60 928 $= 6.07$ $P = 0.0$ 211 41 225 103 21	Events 17 1 6 7 5 4 45 , df = 6 (F 2) 24 1 6 12 6	Total 221 33 25 194 81 88 60 702 2 = 0.42 181 33 105 106 25	11.5% 3.0% 3.3% 8.0% 4.7% 7.3% 3.0% 40.9%); ² = 1% 11.9% 2.9% 8.6% 12.4% 3.3%	M-H, Random, 95% Cl 0.64 [0.31, 1.32] 3.22 [0.38, 27.44] 0.20 [0.03, 1.52] 0.73 [0.25, 2.12] 0.20 [0.04, 1.00] 0.62 [0.19, 1.97] 0.25 [0.03, 2.17] 0.58 [0.36, 0.92] 0.39 [0.20, 0.78] 2.41 [0.26, 22.15] 0.70 [0.26, 1.92] 1.97 [1.04, 3.75] 0.20 [0.03, 1.52]	
short term Anderson Coric Garrido Heller Hisey Tracey Zhang Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Iong term Burkus Coric Davis Delamarter Garrido Sasso	Events 12 4 1 6 2 6 1 32 5 0.01; Chi ² Z = 2.30 (11 3 9 23 1 20	Total 242 41 229 164 171 60 928 = 6.07 P = 0.0 211 41 225 103 21 242	Events 17 1 6 7 5 5 4 45 2 6 (F 2) 24 1 6 12 6 24 24 12 6 24 12 6 24 12 6 24 12 6 24 12 6 24 12 6 24 12 6 24 12 12 12 12 12 12 12 12 12 12	Total 221 33 25 194 81 88 60 702 2 = 0.42 181 33 105 106 25 221	11.5% 3.0% 3.3% 8.0% 4.7% 7.3% 40.9% (1.2% 2.9% 8.6% 12.4% 3.3%	M-H, Random, 95% Cl 0.64 [0.31, 1.32] 3.22 [0.38, 27.44] 0.20 [0.03, 1.52] 0.73 [0.25, 2.12] 0.20 [0.04, 1.00] 0.62 [0.19, 1.97] 0.25 [0.03, 2.17] 0.58 [0.36, 0.92] 0.39 [0.20, 0.78] 2.41 [0.26, 22.15] 0.70 [0.26, 1.92] 1.97 [1.04, 3.75] 0.20 [0.03, 1.52] 0.76 [0.43, 1.34]	
short term Anderson Coric Garrido Heller Hisey Tracey Zhang Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Iong term Burkus Coric Davis Delamarter Garrido Sasso Zigler	Events 12 4 1 6 2 6 1 32 0.01; Chi ² Z = 2.30 (11 3 9 23 1	Total 242 41 229 164 171 60 928 5 = 6.07 P = 0.0 211 41 225 103 21 242 103	Events 17 1 6 7 5 4 45 , df = 6 (F 2) 24 1 6 12 6	Total 221 33 25 194 81 88 60 702 2 = 0.42 181 33 105 106 25 221 106	11.5% 3.0% 3.3% 8.0% 4.7% 7.3% 3.0% 40.9%); l ² = 1% 11.9% 2.9% 8.6% 12.4% 3.3% 13.3% 6.8%	M-H, Random, 95% Cl 0.64 [0.31, 1.32] 3.22 [0.38, 27.44] 0.20 [0.03, 1.52] 0.73 [0.25, 2.12] 0.20 [0.04, 1.00] 0.62 [0.19, 1.97] 0.25 [0.03, 2.17] 0.58 [0.36, 0.92] 0.39 [0.20, 0.78] 2.41 [0.26, 22.15] 0.70 [0.26, 1.92] 1.97 [1.04, 3.75] 0.20 [0.03, 1.52] 0.76 [0.43, 1.34] 0.26 [0.07, 0.89]	
short term Anderson Coric Garrido Heller Hisey Tracey Zhang Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Iong term Burkus Coric Davis Delamarter Garrido Sasso Zigler Subtotal (95% CI)	Events 12 4 1 6 2 6 1 32 $2 \cdot 0.01; Chi^2$ Z = 2.30 (111 3 9 23 1 20 3 3	Total 242 41 229 164 171 60 928 = 6.07 P = 0.0 211 41 225 103 21 242	Events 17 1 6 7 5 5 4 45 2 4 5 2 4 1 6 12 6 24 12 6 24 12 6 24 12 6 24 12 12 12 12 12 12 12 12 12 12	Total 221 33 25 194 81 88 60 702 2 = 0.42 181 33 105 106 25 221	11.5% 3.0% 3.3% 8.0% 4.7% 7.3% 40.9% (1.2% 2.9% 8.6% 12.4% 3.3%	M-H, Random, 95% Cl 0.64 [0.31, 1.32] 3.22 [0.38, 27.44] 0.20 [0.03, 1.52] 0.73 [0.25, 2.12] 0.20 [0.04, 1.00] 0.62 [0.19, 1.97] 0.25 [0.03, 2.17] 0.58 [0.36, 0.92] 0.39 [0.20, 0.78] 2.41 [0.26, 22.15] 0.70 [0.26, 1.92] 1.97 [1.04, 3.75] 0.20 [0.03, 1.52] 0.76 [0.43, 1.34]	
short term Anderson Coric Garrido Heller Hisey Tracey Zhang Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Iong term Burkus Coric Davis Delamarter Garrido Sasso Zigler Subtotal (95% CI) Total events	Events 12 4 1 6 2 6 1 32 2 = 2.30 (111 3 9 23 1 20 3 70	Total 242 41 21 229 164 171 60 928 $= 6.07$ $P = 0.0$ 211 41 225 103 212 103 946	Events 17 1 6 7 5 5 4 4 5 5 4 4 5 2 4 5 2 4 1 6 (F 2) 24 1 6 24 1 6 22 85	Total 221 33 25 194 81 88 60 702 2 = 0.42 2 = 0.42 181 33 105 106 25 221 106 777	11.5% 3.0% 3.3% 8.0% 4.7% 7.3% 3.0% 40.9%); ² = 1% 11.9% 2.9% 8.6% 12.4% 3.3% 6.8% 59.1%	M-H, Random, 95% Cl 0.64 [0.31, 1.32] 3.22 [0.38, 27.44] 0.20 [0.03, 1.52] 0.73 [0.25, 2.12] 0.20 [0.04, 1.00] 0.62 [0.19, 1.97] 0.25 [0.03, 2.17] 0.58 [0.36, 0.92] 0.58 [0.36, 0.92] 0.39 [0.20, 0.78] 2.41 [0.26, 22.15] 0.70 [0.26, 1.92] 1.97 [1.04, 3.75] 0.20 [0.03, 1.52] 0.76 [0.43, 1.34] 0.26 [0.07, 0.89] 0.68 [0.37, 1.27]	
short term Anderson Coric Garrido Heller Hisey Tracey Zhang Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Iong term Burkus Coric Davis Delamarter Garrido Sasso Zigler Subtotal (95% CI)	Events 12 4 1 6 2 6 1 32 2 = 0.01; Chi2 Z = 2.30 (11 3 9 23 1 20 3 1 20 3 70 20.41; Chi2	Total 242 41 21 229 164 171 60 928 $= 6.07$ $P = 0.0$ 211 41 225 103 212 103 946 $= 17.7$	Events 17 1 6 7 5 5 4 4 5 5 4 5 5 4 4 5 5 6 (F 2) 2 4 5 5 7 7 7 5 5 7 4 5 5 7 7 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7	Total 221 33 25 194 81 88 60 702 2 = 0.42 2 = 0.42 181 33 105 106 25 221 106 777	11.5% 3.0% 3.3% 8.0% 4.7% 7.3% 3.0% 40.9%); ² = 1% 11.9% 2.9% 8.6% 12.4% 3.3% 6.8% 59.1%	M-H, Random, 95% Cl 0.64 [0.31, 1.32] 3.22 [0.38, 27.44] 0.20 [0.03, 1.52] 0.73 [0.25, 2.12] 0.20 [0.04, 1.00] 0.62 [0.19, 1.97] 0.25 [0.03, 2.17] 0.58 [0.36, 0.92] 0.58 [0.36, 0.92] 0.39 [0.20, 0.78] 2.41 [0.26, 22.15] 0.70 [0.26, 1.92] 1.97 [1.04, 3.75] 0.20 [0.03, 1.52] 0.76 [0.43, 1.34] 0.26 [0.07, 0.89] 0.68 [0.37, 1.27]	
short term Anderson Coric Garrido Heller Hisey Tracey Zhang Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Iong term Burkus Coric Davis Delamarter Garrido Sasso Zigler Subtotal (95% CI) Total events Heterogeneity: Tau ² =	Events 12 4 1 6 2 6 1 32 2 = 0.01; Chi2 Z = 2.30 (11 3 9 23 1 20 3 1 20 3 70 20.41; Chi2	Total 242 41 21 229 164 171 60 928 $= 6.07$ $P = 0.0$ 211 41 225 103 212 103 946 $= 17.7$	Events 17 1 6 7 5 5 4 4 5 5 4 5 5 4 4 5 5 6 (F 2) 2 4 5 5 7 7 7 5 5 7 4 5 5 7 7 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7	Total 221 33 25 194 81 88 60 702 2 = 0.42 2 181 33 105 106 25 221 106 25 221 106 777 (P = 0.0	11.5% 3.0% 3.3% 8.0% 4.7% 7.3% 3.0% 40.9%); ² = 1% 11.9% 2.9% 8.6% 12.4% 3.3% 6.8% 59.1%	M-H, Random, 95% Cl 0.64 [0.31, 1.32] 3.22 [0.38, 27.44] 0.20 [0.03, 1.52] 0.73 [0.25, 2.12] 0.20 [0.04, 1.00] 0.62 [0.19, 1.97] 0.25 [0.03, 2.17] 0.58 [0.36, 0.92] 0.58 [0.36, 0.92] 0.39 [0.20, 0.78] 2.41 [0.26, 22.15] 0.70 [0.26, 1.92] 1.97 [1.04, 3.75] 0.20 [0.03, 1.52] 0.76 [0.43, 1.34] 0.26 [0.07, 0.89] 0.68 [0.37, 1.27]	
short term Anderson Coric Garrido Heller Hisey Tracey Zhang Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Iong term Burkus Coric Davis Delamarter Garrido Sasso Zigler Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect:	Events 12 4 1 6 2 6 1 32 2.30 (11 3 9 23 1 20 3 70 0.41; Chi ² Z = 1.21 (Total 242 41 21 229 164 171 60 928 = 6.07 P = 0.0 211 41 225 103 21 242 103 21 242 103 946 = 17.7 P = 0.2	Events 17 1 6 7 5 4 45 5 4 45 2) 24 16 12 6 24 12 85 7, df = 6 3)	Total 221 33 25 194 81 88 60 702 2 = 0.42 2 181 33 105 106 25 221 106 25 221 106 777 (P = 0.0	11.5% 3.0% 3.3% 8.0% 4.7% 7.3% 3.0% 40.9%); l ² = 1% 11.9% 2.9% 8.6% 12.4% 3.3% 13.3% 6.8% 59.1% 07); l ² = 6	M-H, Random, 95% Cl 0.64 [0.31, 1.32] 3.22 [0.38, 27.44] 0.20 [0.03, 1.52] 0.73 [0.25, 2.12] 0.20 [0.04, 1.00] 0.62 [0.19, 1.97] 0.25 [0.03, 2.17] 0.58 [0.36, 0.92] 0.39 [0.20, 0.78] 2.41 [0.26, 22.15] 0.70 [0.26, 1.92] 1.97 [1.04, 3.75] 0.20 [0.03, 1.52] 0.76 [0.43, 1.34] 0.26 [0.07, 0.89] 0.68 [0.37, 1.27]	
short term Anderson Coric Garrido Heller Hisey Tracey Zhang Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Iong term Burkus Coric Davis Delamarter Garrido Sasso Zigler Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect:	Events 12 4 1 6 2 6 1 32 2 - 2.30 (11 3 9 23 1 20 3 70 2 - 2.30 (2 - 2.30 (3 - 3.30 (3 - 3.30	Total 242 41 21 229 164 171 60 928 $= 6.07$ $P = 0.0$ 211 41 225 103 21 242 103 946 $= 17.7$ $P = 0.2$ 1874	Events 17 1 6 7 5 4 45 5 4 45 2) 24 1 6 24 12 6 24 12 6 24 12 6 24 12 6 24 12 6 24 12 6 24 12 6 12 12 12 12 12 12 12 12 12 12	Total 221 33 25 194 81 80 702 2 = 0.42 181 33 105 106 25 221 106 777 (P = 0.0) 1479	11.5% 3.0% 3.3% 8.0% 4.7% 7.3% 40.9% 1); ² = 1% 11.9% 2.9% 8.6% 12.4% 3.3% 13.3% 6.8% 59.1% 07); ² = 6 100.0%	M-H, Random, 95% Cl 0.64 [0.31, 1.32] 3.22 [0.38, 27.44] 0.20 [0.03, 1.52] 0.73 [0.25, 2.12] 0.20 [0.04, 1.00] 0.62 [0.19, 1.97] 0.25 [0.03, 2.17] 0.58 [0.36, 0.92] 0.58 [0.36, 0.92] 0.58 [0.36, 0.92] 1.97 [1.04, 3.75] 0.70 [0.26, 1.92] 1.97 [1.04, 3.75] 0.20 [0.03, 1.52] 0.76 [0.43, 1.34] 0.26 [0.07, 0.89] 0.68 [0.37, 1.27] 6%	


Figure 4 (A) Forest plot of reoperation rates at level of injury for ACDA *vs.* ACDF, stratified into short-term and long-term outcomes; (B) forest plot of secondary cervical reoperations for ACDA *vs.* ACDF, stratified into short-term and long-term outcomes. ACDA, anterior cervical disc arthroplasty; ACDF, anterior cervical discectomy and fusion.

Maharaj et al. ACDA vs. ACDF: a meta-analysis

	ACD	Α	ACD	F		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
short term							
Burkus	8	196	13	160	8.3%	0.50 [0.21, 1.18]	
Coric	12	136	33	133	13.2%	0.36 [0.19, 0.66]	
Garrido	1	21	3	25	1.6%	0.40 [0.04, 3.54]	
Li	5	39	6	42	5.5%	0.90 [0.30, 2.71]	
Mummaneni	3	276	11	265	4.3%	0.26 [0.07, 0.93]	
Phillips	59	151	60	122	27.1%	0.79 [0.61, 1.04]	
Subtotal (95% CI)		819		747	59.9%	0.55 [0.35, 0.85]	\bullet
Total events	88		126				
long term							
•					a		
Burkus Davis	8	144 225	13 90	127	8.4% 31.7%	0.54 [0.23, 1.27]	
Subtotal (95% CI)	93	369	90	105 232	40.1%	0.48 [0.41, 0.57] 0.48 [0.41, 0.57]	→
Total events	101		103				·
Heterogeneity: Tau ² =				e = 0.78	8); I² = 0%		
Test for overall effect:	Z = 8.32 (P < 0.0	0001)				
					400.00/	0 54 50 44 0 741	
Total (95% CI)		1188		979	100.0%	0.54 [0.41, 0.71]	\bullet
Total (95% CI) Total events	189	1188	229	979	100.0%	0.54 [0.41, 0.71]	•
, ,							
Total events	= 0.06; Chi ²	= 13.4	9, df = 7 (0.01 0.1 1 10 10 Favours ACDA Favours ACDF

Figure 5 Forest plot of adjacent segment disease for ACDA vs. ACDF, stratified into short-term and long-term outcomes. ACDA, anterior cervical disc arthroplasty; ACDF, anterior cervical discectomy and fusion.

	A	ACDA		A	ACDF			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
short term									
Heller	16.2	18.5	229	19.2	19.3	194	10.7%	-3.00 [-6.62, 0.62]	
Huo	17.2	13.4	117	18.3	11.4	108	11.2%	-1.10 [-4.34, 2.14]	
Li	5.8	2.9	39	10.2	3.4	42	13.3%	-4.40 [-5.77, -3.03]	
Rozankovic	11.6	4.44	51	19.68	5.98	50	12.6%	-8.08 [-10.14, -6.02]	
Zhang	44.77	5.6	60	45.57	5.83	60	12.7%	-0.80 [-2.85, 1.25]	
Subtotal (95% CI)			496			454	60.5%	-3.59 [-6.25, -0.93]	◆
Heterogeneity: Tau ² =	7.59; Cł	ni² = 28	3.19, df	= 4 (P ·	< 0.00	01); l² =	= 86%		
Test for overall effect:	Z = 2.64	(P=0	0.008)						
long term									
Burkus	17.5	20.4	219	21.7	20.7	189	10.2%	-4.20 [-8.20, -0.20]	
Davis	36.5	21.3	225	28.5	18.3	105	9.6%	8.00 [3.53, 12.47]	
Delamarter	20.3	18.6	103	21.2	14.9	106	9.5%	-0.90 [-5.48, 3.68]	
Sasso	13.2	16.1	181	19.8	20	138	10.1%	-6.60 [-10.68, -2.52]	
Subtotal (95% CI)			728			538	39.5%	-0.98 [-7.16, 5.21]	
Heterogeneity: Tau ² =	35.04; 0	Chi² = 2	25.14, c	df = 3 (P	< 0.0	001); l²	= 88%		
Test for overall effect:	Z = 0.31	(P = (0.76)						
Total (95% CI)			1224			992	100.0%	-2.57 [-5.09, -0.05]	
Heterogeneity: Tau ² =	11.99; 0	Chi² = {	58.45, c	df = 8 (P	< 0.0	0001);	² = 86%	-	
Test for overall effect:	Z = 2.00) (P = (0.05)						-10 -5 0 5 10 Favours ACDA Favours ACDF
Test for subgroup diffe		·		lf = 1 (P	= 0.4	5). I² =	0%		Favours ACDA Favours ACDF

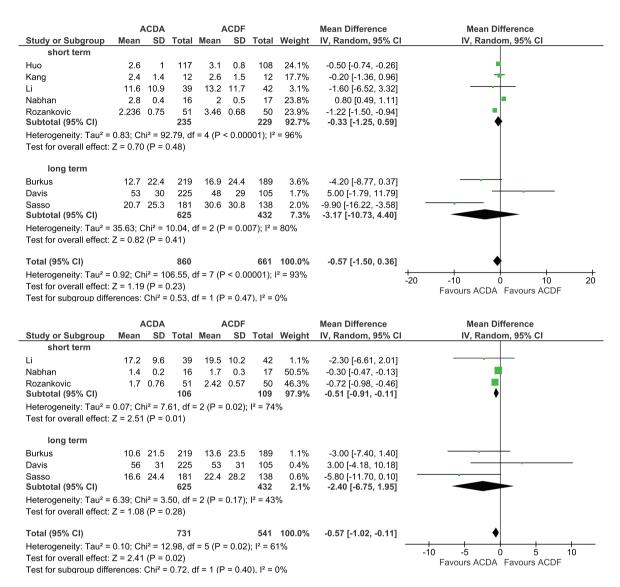


Figure 7 (A) Forest plot for VAS neck score; (B) forest plot for VAS arm score, stratified into short-term and long-term outcomes. ACDA, anterior cervical disc arthroplasty; ACDF, anterior cervical discectomy and fusion; VAS, visual analogue scale.

representing a combination including: device removal/ adjustment, adjacent segment operation and/or re-operation at the same level. As a consequence, other similar metaanalyses have not reported on true reoperation (11,13,47). When categorizing data to separate true reoperation at the same level, we found no differences between the ACDA and ACDF groups. However, taking such a rigorous approach to the definition limits the external validity of these conclusions due to the small number of studies included (long term: n=4). According to a multi-center (n=13), single-device trial by Murrey *et al.* (2007), the rate of true reoperation at the same level is approximately 1.8% (n=107, follow-up: 24 months).

Two previous reviews have demonstrated a longer operational time associated with the disc arthroplasty procedure, hypothesizing surgical experience to be the major underlying factor. Importantly neither study reported a difference with a magnitude that we believe to be clinically relevant (11,13). Our study found negligible differences between the two procedures in terms of both operational time (84.6 vs. 95.9 mins) and blood loss (63.0 vs. 69.1 mL). Consistent with this trend, we believe that as the volume of available literature increases alongside surgical experience over time, both procedures should converge due to the overall similarities in surgical approach and technique. Our pooled operational outcomes are directly comparable to those achieved with multiple cervical arthroplasty devices. We were unable to sub-stratify outcomes based on the type of artificial disc used due to the small number of trials for each. Only one paper by Zhang *et al.* (2015) has directly compared different devices and found clinically negligible differences between the Bryan disc and the Pro-Disc C products (48). Currently the Prodisc-C, Prestige and Bryan devices are the only products approved for use clinically by the FDA (12,49).

Our findings demonstrate ACDA to be a safe procedure with favorable outcomes in the setting of cervical disc disease. In our meta-analysis, 34 studies remained suitable for statistical analysis with a mean follow-up ranging between 24-84 months. Our review is unique in that it employs a strict and updated methodology specifically focusing on the clinical parameters surrounding the two procedures in comparable RCT trials. Importantly we concede that bias could have arisen from insufficient reporting in many trials, namely due to the lack of standard deviations, which is something to be addressed in future studies.

Reporting on neurological outcomes was not consistent throughout comparison studies. In particular the reporting of the VAS was not clearly defined amongst trials, with two different scales utilized amongst different trials, thus limiting the external validity of our conclusions. Our results contradict those reported by Ren et al. (2014) and Fallah et al. (2012). However, overall, the pooled cohort volume for these conclusions limits the external validity of claims (47,50). Some studies stratified data presentation into groups with proportional improvement, preventing their entry into our statistical analysis (30,51). Despite this our results did demonstrate statistically favorable clinical outcomes associated with the ACDA group on the bases of NDI and VAS arm score improvements, although longer follow-up data is still required. Both procedures have been validated to improve clinical outcomes (VAS, SF12, SF36, NDI), however adequate data comparing the two is lacking.

Limitations

Although no large-scale trials currently compare the outcomes of different disc replacement products, we concede that differences in outcomes may exist. The most commonly used device in our study was the Bryan disc, implemented in eight of the trials included in the final meta-analysis. In addition the lack of standardization, due to differences in definitions and general data reporting, resulted in the exclusion of over half of the trials from the data extraction phase of the methodology. Aside from aforementioned definitions this also included reporting of changes as opposed to actual values and not reporting variances.

Conclusions

The present meta-analysis demonstrates that cervical disc arthroplasty is superior to the ACDF procedure in the setting of cervical disc disease on the basis of improved reoperation rates and reductions in neurological deficit amongst other previously demonstrated benefits. There are no differences between the two procedures amongst patient-reported clinical outcomes. However, future reporting of clinical outcomes, particularly VAS scoring, needs to be standardized. There may be differences in outcomes amongst different ACDA devices, however the current volume of literature does not enable appropriate comparisons to be made.

Acknowledgements

None.

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

References

- Radhakrishnan K, Litchy WJ, O'Fallon WM, et al. Epidemiology of cervical radiculopathy. A populationbased study from Rochester, Minnesota, 1976 through 1990. Brain 1994;117:325-35.
- Robinson RA, Smith GW. Anterolateral Cervical Disc Removal and Interbody Fusion for Cervical Disc Syndrome. SAS J 2010;4:34-35.</jr>
- Hilibrand AS, Robbins M. Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J 2004;4:190S-194S.
- 4. Goffin J, van Loon J, Van Calenbergh F, et al. Long-term results after anterior cervical fusion and osteosynthetic

stabilization for fractures and/or dislocations of the cervical spine. J Spinal Disord 1995;8:500-8; discussion 499.

- Ishihara H, Kanamori M, Kawaguchi Y, et al. Adjacent segment disease after anterior cervical interbody fusion. Spine J 2004;4:624-8.
- Song KJ, Choi BW, Jeon TS, et al. Adjacent segment degenerative disease: is it due to disease progression or a fusion-associated phenomenon? Comparison between segments adjacent to the fused and non-fused segments. Eur Spine J 2011;20:1940-5.
- Harrod CC, Hilibrand AS, Fischer DJ, et al. Adjacent segment pathology following cervical motionsparing procedures or devices compared with fusion surgery: a systematic review. Spine (Phila Pa 1976) 2012;37:S96-S112.
- Coric D, Nunley PD, Guyer RD, et al. Prospective, randomized, multicenter study of cervical arthroplasty: 269 patients from the Kineflex IC artificial disc investigational device exemption study with a minimum 2-year follow-up: clinical article. J Neurosurg Spine 2011;15:348-58.
- Davis RJ, Nunley PD, Kim KD, et al. Two-level total disc replacement with Mobi-C cervical artificial disc versus anterior discectomy and fusion: a prospective, randomized, controlled multicenter clinical trial with 4-year follow-up results. J Neurosurg Spine 2015;22:15-25.
- Mummaneni PV, Burkus JK, Haid RW, et al. Clinical and radiographic analysis of cervical disc arthroplasty compared with allograft fusion: a randomized controlled clinical trial. J Neurosurg Spine 2007;6:198-209.
- Luo J, Huang S, Gong M, et al. Comparison of artificial cervical arthroplasty versus anterior cervical discectomy and fusion for one-level cervical degenerative disc disease: a meta-analysis of randomized controlled trials. Eur J Orthop Surg Traumatol 2015;25 Suppl 1:S115-25.
- Mummaneni PV, Amin BY, Wu JC, et al. Cervical artificial disc replacement versus fusion in the cervical spine: a systematic review comparing long-term followup results from two FDA trials. Evid Based Spine Care J 2012;3:59-66.
- Gao Y, Liu M, Li T, et al. A meta-analysis comparing the results of cervical disc arthroplasty with anterior cervical discectomy and fusion (ACDF) for the treatment of symptomatic cervical disc disease. J Bone Joint Surg Am 2013;95:555-61.
- Boselie TF, Willems PC, van Mameren H, et al. Arthroplasty versus fusion in single-level cervical degenerative disc disease: a Cochrane review. Spine (Phila Pa 1976) 2013;38:E1096-107.

- 15. Moher D, Liberati A, Tetzlaff J, et al. Reprint--preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Phys Ther 2009;89:873-80.
- Phan K, Mobbs RJ. Systematic reviews and meta-analyses in spine surgery, neurosurgery and orthopedics: guidelines for the surgeon scientist. J Spine Surg 2015;1:19-27.
- Undertaking systematic reviews of research on effectiveness: CRD's guidance for carrying out or commissioning reviews. UK: NHS Centre for Reviews and Dissemination, 2006.
- Hou Y, Liu Y, Yuan W, et al. Cervical kinematics and radiological changes after Discover artificial disc replacement versus fusion. Spine J 2014;14:867-77.
- Li Z, Yu S, Zhao Y, et al. Clinical and radiologic comparison of dynamic cervical implant arthroplasty versus anterior cervical discectomy and fusion for the treatment of cervical degenerative disc disease. J Clin Neurosci 2014;21:942-8.
- Tracey RW, Kang DG, Cody JP, et al. Outcomes of single-level cervical disc arthroplasty versus anterior cervical discectomy and fusion. J Clin Neurosci 2014;21:1905-8.
- Rožanković M, Marasanov SM, Vukić M. Cervical Disc Replacement With Discover Versus Fusion In A Single Level Cervical Disc Disease: A Prospective Single Center Randomized Trial With A Minimum Two-Year Follow -Up. J Spinal Disord Tech 2014. [Epub ahead of print].
- Kang L, Lin D, Ding Z, et al. Artificial disk replacement combined with midlevel ACDF versus multilevel fusion for cervical disk disease involving 3 levels. Orthopedics 2013;36:e88-94.
- Zhang X, Zhang X, Chen C, et al. Randomized, controlled, multicenter, clinical trial comparing BRYAN cervical disc arthroplasty with anterior cervical decompression and fusion in China. Spine (Phila Pa 1976) 2012;37:433-8.
- Auerbach JD, Anakwenze OA, Milby AH, et al. Segmental contribution toward total cervical range of motion: a comparison of cervical disc arthroplasty and fusion. Spine (Phila Pa 1976) 2011;36:E1593-9.
- 25. Hisey MS, Bae HW, Davis R, et al. Multi-center, prospective, randomized, controlled investigational device exemption clinical trial comparing Mobi-C Cervical Artificial Disc to anterior discectomy and fusion in the treatment of symptomatic degenerative disc disease in the cervical spine. Int J Spine Surg 2014;8.
- 26. Kelly MP, Mok JM, Frisch RF, et al. Adjacent segment motion after anterior cervical discectomy and fusion

versus Prodisc-c cervical total disk arthroplasty: analysis from a randomized, controlled trial. Spine (Phila Pa 1976) 2011;36:1171-9.

- Park DK, Lin EL, Phillips FM. Index and adjacent level kinematics after cervical disc replacement and anterior fusion: in vivo quantitative radiographic analysis. Spine (Phila Pa 1976) 2011;36:721-30.
- Anakwenze OA, Auerbach JD, Milby AH, et al. Sagittal cervical alignment after cervical disc arthroplasty and anterior cervical discectomy and fusion: results of a prospective, randomized, controlled trial. Spine (Phila Pa 1976) 2009;34:2001-7.
- Cheng L, Nie L, Zhang L, et al. Fusion versus Bryan Cervical Disc in two-level cervical disc disease: a prospective, randomised study. Int Orthop 2009;33:1347-51.
- Heller JG, Sasso RC, Papadopoulos SM, et al. Comparison of BRYAN cervical disc arthroplasty with anterior cervical decompression and fusion: clinical and radiographic results of a randomized, controlled, clinical trial. Spine (Phila Pa 1976) 2009;34:101-7.
- Kim SW, Limson MA, Kim SB, et al. Comparison of radiographic changes after ACDF versus Bryan disc arthroplasty in single and bi-level cases. Eur Spine J 2009;18:218-31.
- Anderson PA, Sasso RC, Riew KD. Comparison of adverse events between the Bryan artificial cervical disc and anterior cervical arthrodesis. Spine (Phila Pa 1976) 2008;33:1305-12.
- Peng-Fei S, Yu-Hua J. Cervical disc prosthesis replacement and interbody fusion: a comparative study. Int Orthop 2008;32:103-6.
- 34. Sasso RC, Best NM, Metcalf NH, et al. Motion analysis of bryan cervical disc arthroplasty versus anterior discectomy and fusion: results from a prospective, randomized, multicenter, clinical trial. J Spinal Disord Tech 2008;21:393-9.
- 35. Nabhan A, Ahlhelm F, Pitzen T, et al. Disc replacement using Pro-Disc C versus fusion: a prospective randomised and controlled radiographic and clinical study. Eur Spine J 2007;16:423-30.
- 36. Burkus JK, Traynelis VC, Haid RW Jr, et al. Clinical and radiographic analysis of an artificial cervical disc: 7-year follow-up from the Prestige prospective randomized controlled clinical trial: Clinical article. J Neurosurg Spine 2014;21:516-28.
- Coric D, Kim PK, Clemente JD, et al. Prospective randomized study of cervical arthroplasty and anterior cervical discectomy and fusion with long-term follow-up:

results in 74 patients from a single site. J Neurosurg Spine 2013;18:36-42.

- 38. Zigler JE, Delamarter R, Murrey D, et al. ProDisc-C and Anterior Cervical Discectomy and Fusion as Surgical Treatment for Single-Level Cervical Symptomatic Degenerative Disc Disease: Five-Year Results of a Food and Drug Administration Study. Spine 2013;38:203-9.
- Sasso RC, Anderson PA, Riew KD, et al. Results of cervical arthroplasty compared with anterior discectomy and fusion: four-year clinical outcomes in a prospective, randomized controlled trial. Orthopedics 2011;34:889.
- 40. Burkus JK, Haid RW, Traynelis VC, et al. Longterm clinical and radiographic outcomes of cervical disc replacement with the Prestige disc: results from a prospective randomized controlled clinical trial. J Neurosurg Spine 2010;13:308-18.
- Delamarter RB, Murrey D, Janssen ME, et al. Results at 24 months from the prospective, randomized, multicenter Investigational Device Exemption trial of ProDisc-C versus anterior cervical discectomy and fusion with 4-year follow-up and continued access patients. SAS J 2010;4:122-8.
- 42. Garrido BJ, Taha TA, Sasso RC. Clinical outcomes of Bryan cervical disc arthroplasty a prospective, randomized, controlled, single site trial with 48-month follow-up. J Spinal Disord Tech 2010;23:367-71.
- Yang B, Li H, Zhang T, et al. The incidence of adjacent segment degeneration after cervical disc arthroplasty (CDA): a meta analysis of randomized controlled trials. PLoS One 2012;7:e35032.
- 44. Chung JY, Kim SK, Jung ST, et al. Clinical adjacentsegment pathology after anterior cervical discectomy and fusion: results after a minimum of 10-year follow-up. Spine J 2014;14:2290-8.
- 45. DiAngelo DJ, Roberston JT, Metcalf NH, et al. Biomechanical testing of an artificial cervical joint and an anterior cervical plate. J Spinal Disord Tech 2003;16:314-23.
- 46. Chang UK, Kim DH, Lee MC, et al. Changes in adjacentlevel disc pressure and facet joint force after cervical arthroplasty compared with cervical discectomy and fusion. J Neurosurg Spine 2007;7:33-9.
- Fallah A, Akl EA, Ebrahim S, et al. Anterior cervical discectomy with arthroplasty versus arthrodesis for singlelevel cervical spondylosis: a systematic review and metaanalysis. PLoS One 2012;7:e43407.
- 48. Zhang Z, Jiao L, Zhu W, et al. Comparison of Bryan versus ProDisc-C total disk replacement as treatment for

84

single-level cervical symptomatic degenerative disk disease. Arch Orthop Trauma Surg 2015;135:305-11.

- 49. Murrey D, Janssen M, Delamarter R, et al. Results of the prospective, randomized, controlled multicenter Food and Drug Administration investigational device exemption study of the ProDisc-C total disc replacement versus anterior discectomy and fusion for the treatment of 1-level symptomatic cervical disc disease. Spine J 2009;9:275-86.
- Ren C, Song Y, Xue Y, et al. Mid- to long-term outcomes after cervical disc arthroplasty compared with anterior discectomy and fusion: a systematic review and metaanalysis of randomized controlled trials. Eur Spine J 2014;23:1115-23.
- 51. Phillips FM, Lee JY, Geisler FH, et al. A prospective,

Cite this article as: Maharaj MM, Mobbs RJ, Hogan J, Zhao DF, Rao PJ, Phan K. Anterior cervical disc arthroplasty (ACDA) versus anterior cervical discectomy and fusion (ACDF): a systematic review and meta-analysis. J Spine Surg 2015;1(1):72-85. doi: 10.3978/j.issn.2414-469X.2015.09.01

randomized, controlled clinical investigation comparing PCM cervical disc arthroplasty with anterior cervical discectomy and fusion. 2-year results from the US FDA IDE clinical trial. Spine (Phila Pa 1976) 2013;38:E907-18.

Contributions: (I) Conception and design: MM Maharaj, RJ Mobbs, K Phan; (II) Administrative support: PJ Rao, RJ Mobbs, K Phan; (III) Provision of study materials or patients: MM Maharaj, RJ Mobbs, J Hogan, DF Zhao, PJ Rao, K Phan; (IV) Collection and assembly of data: MM Maharaj, J Hogan, DF Zhao, K Phan; (V) Data analysis and interpretation: MM Maharaj, RJ Mobbs, K Phan; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.