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The contribution of the cortical shell to pedicle screw fixation
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Background: A pedicle screw insertion technique known as “hubbing” involves the removal of cortical 
bone around the screw insertion with the aim of improving fixation and decreasing screw loosening. 
However, the efficacy of this procedure relative to bone density and early loading have not been fully 
explored. The purpose of this study is to establish the contribution of the cortical layer (hubbing), cancellous 
density, early loading (toggling) in an idealised model. This is an in vitro laboratory study.
Methods: Synthetic bone blocks with cancellous bulk and a simulated cortical shell were implanted with 
6.5 mm pedicle screws. Three key variables were evaluated in this study; density of the simulated bone 
(10–20 lb/ft3), toggling (±0.5 mm for 10,000 cycles), and the presence or absence of the surrounding cortex 
(hubbing). Pullout testing after toggling was performed to determine maximum load, stiffness and energy. 
Results were analyzed to assess interaction and main effects.
Results: Removal of the cortex decreased the pullout loads by approximately 1,100 N after toggling. 
Toggling in the presence of the cortical shell had no effect. However, once the cortical shell is removed 
damage to the weaker cancellous bone accumulates and further compromises the fixation.
Conclusions: The addition of a cortical layer in the Sawbone model is significant and provides a more 
realistic model of load sharing. The cortex plays a considerable role in the protection of underlying 
cancellous bone as well as contributing to initial pullout strength. The results of this study demonstrate a 
negative synergistic effect when both toggling and hubbing are applied to the weaker bone.
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Introduction

Pedicle screw and rod systems are commonplace in spinal 
fusion surgery. Pedicle screws require initial rigid fixation 
and longevity to stabilise the spine while the fusion mass 
forms. This procedure is broadly successful with low rates 
of screw loosening for standard screws (1-3) and increased 
rates for dynamic systems (4-7). Screw loosening is a 
concern, with radiolucency around screws detrimental to 
fixation (8) and often warranting revision surgery (9).

Pedicle screws implanted using traditional techniques 
produce a characteristic butterfly shaped defect following 
Caudo-cephalad loading (10). Achieving bicortical 
screw fixation provides anchoring of the screw in the far 

cortex to improve stability (11), but not without risks to 
structures near the exiting screw (12-14). A technique 
known as “hubbing”, whereby the cortical shell is removed 
immediately adjacent to the pedicle screw insertion hole, 
allows deeper insertion of the screw. This is intended to 
reduce the lever arm thereby reducing load and ultimately 
motion at the tip of the screw to achieve fixation similar 
to bicortical placement (15). Paik et al. (15) investigated 
early loading (toggling) on specimens with and without 
hubbing and found that hubbed and toggled specimens 
had lower pullout strength as compared to those that were 
only toggled, osteoporotic specimens also showed lower 
pullout than their normal BMD counterparts. A directly 
comparative assessment of pullout without toggling is still 
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lacking.
It is well known that BMD is an important factor 

affecting pullout loads (16-18). However, it is unknown if an 
alteration in BMD can predispose bone to toggling damage 
following hubbing. Screw loosening has been shown to be 
more common in osteoporotic patients (19). The majority 
of screw stability is attained through fixation with cortical 
bone which suggests that hubbing may pose a greater 
risk to these patients (20). This study used a reproducible 
biomechanical model for evaluating toggling to investigate 
individual and interaction effects of toggling, hubbing, and 
bone quality.

Methods

Synthetic bone blocks (60 mm × 40 mm × 62 mm) with 
cancellous bulk and a simulated cortical shell of 2 mm thick 
short fiber filled epoxy layer (Sawbones, Vashaw, WA) 
were used in this study. The cortical shell was predrilled 
with a three fluted 3.2 mm drill bit (Surgibit, Orthopedic 
Innovations, Collaroy, NSW, Australia) followed by a 5 
mm tap and the placement of the screws. G5 multiaxial 
pedicle screws (diameter × long: 6.5 mm × 45 mm) (KH 
Medical Pty Ltd, Sydney, Australia) were implanted into the 
bone block followed by the G5 Rod 6.5 mm and G5 Cap 
using the manufacturers instrumentation and according to 
instructions for use.

Three key variables evaluated in this study were density 
of the simulated bone, toggling before pullout testing, and 

the presence or absence of the surrounding cortex (hubbing). 
This resulted in eight groups with n=8 samples per group 
based on pre-hoc power calculations. The cancellous core 
was normal density, 10# cellular foam (10 lb/ft3) or low 
density, 20# cellular foam (20 lb/ft3). Dynamic toggle 
testing was performed in reverse cycle tension-compression 
at 5 Hz in air at room temperature at ±0.5 mm for 10,000 
cycles on a calibrated servo hydraulic mechanical testing 
machine (MTS Systems Corporation, Eden Prairie, 
MN). Samples were rigidly mounted to the load cell and 
the actuator incorporated a universal joint and chuck to 
accommodate alignment (Figure 1). Hubbed samples had 
the cortex removed to a radius of 5 mm hole using a high-
speed handpiece (Midas Rex, Medtronic, Fort Worth, TX, 
USA) with a matchstick burr (M-8/9MH30). Each sample 
was tested in uniaxial pullout (tension) at 5 mm per minute 
after the toggling loading. Maximum load, stiffness of the 
linear region, and energy to peak load were determined. 
Results were analyzed with a multivariate ANOVA. Post 
hoc t-tests with a significance level of 0.05 were performed 
to identify differences between individual groups where 
appropriate using SPSS.

Results

All samples completed the toggling without evidence of 
failure. Qualitatively, it was evident that the load versus 
displacement pull-out curves varied between groups. 
Samples with the cortex typically exhibited a steep climb 
and a sharp drop off during failure while groups with the 
cortex removed showed a more gradual failure (Figure 2).

The ANOVA results indicated main effects for Density 
and Cortex (hubbing) were present for maximum force and 
energy along with interaction effects (Tables 1,2). Stiffness 
had no interaction effects and has a more straightforward 
interpretation. Stiffness was decreased by the removal of the 
cortex for all but the non-toggled high-density group with 
the cortex in place (Figure 3). While the effect of decreasing 
cancellous density on stiffness was clearly negative, toggling 
did not have an effect on this property.

Maximum force and energy to failure both showed 
interaction effects of density/cortex and cortex/toggle. 
The effects of cortex removal are apparent due to the 
downward sloping lines in all samples. The interaction 
effects of cortex/toggle appear as crossed lines within the 
same density, showing additional loss of pullout load and 
energy of failure (Figures 4,5) when hubbing and toggling 
are combined. The interaction effects of density/cortex 

Figure 1 Toggle testing setup, inset image shows close up of the 
sample.
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Figure 2 Typical load displacement curves. (A) High density groups; (B) low density groups.

Table 1 ANOVA results (P values shown)

Dependent 
variable

Main effects Interaction effects

Density Cortex Toggle Density/cortex Density/toggle Cortex/toggle Density/cortex/toggle

Max force <0.001* <0.001* 0.144 0.011* 0.678 <0.001* 0.116

Stiffness <0.001* <0.001* 0.070 0.108 0.242 0.096 0.095

Energy <0.001* <0.001* 0.597 0.012* 0.519 0.004* 0.806

*, significant factors noted in bold (P<0.05).

Table 2 Post hoc comparisons for relevant groups (P values shown)

Effect Groups compared Max force Stiffness Energy

Toggling in high density w/o cortex hd/nc/nt-hd/nc/wt 0.023* 0.051 0.172

Cortex on pullout in high density w/o toggle hd/nc/nt-hd/wc/nt <0.001* 0.124 <0.001*

Toggling in high density w/cortex hdwcnt-hd/wc/wt 0.154 0.850 0.181

Cortex on pullout in high density with toggle hd/nc/wt-hd/wc/wt <0.001* 0.005* <0.001*

Toggling in low density w/o cortex ld/nc/nt-ld/nc/wt 0.013* 0.648 <0.001*

Cortex on pullout in low density w/o toggle ld/nc/nt-ld/wc/nt <0.001* <0.001* <0.001*

Toggling in low density w/cortex ld/wc/nt-ld/wc/wt 0.462 0.634 0.218

Cortex on pullout in low density with toggle ld/nc/wt-ld/wc/wt <0.001* <0.001* <0.001*

Density on pullout w/o cortex w/o toggle hd/nc/nt-ld/nc/nt <0.001* <0.001* <0.001*

Density on pullout w/o cortex w toggle hd/nc/wt-ld/nc/wt <0.001* <0.001* <0.001*

Density on pullout w cortex w/o toggle hd/wc/nt-ld/wc/nt <0.001* <0.001* <0.001*

Density on pullout w cortex w toggle hd/wc/wt-ld/wc/wt <0.001* <0.001* <0.001*

*, significant factors noted in bold (P<0.05). hd, high density cancellous foam; ld, low density cancellous foam; wc, with cortex present; nc, 
no cortex (hubbed); nt, non-toggled samples; wt, samples that were toggled.
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are slightly more challenging to see plainly but the higher 
density Sawbones pullout properties were reduced to a 
greater extent than the low-density samples.

Discussion

Bone density and strength vary based on patent health 
and underlying pathology. Osteopenic and osteoporotic 

bone is often encountered when performing spine surgery, 
influencing not only fracture risk also hardware fixation (9,21). 
Polyurethane foam is a well-established bone surrogate for 
biomechanical testing (22,23) and although there are some 
limitations, simulation of normal and osteoporotic bone can 
be achieved with 0.32 g/cc3 (20 lb/ft3) and 0.16 g/cc3 (10 lb/ft3)  
foam respectively (24). This study used two densities of 
simulated bone in a pedicle screw pullout model with and 
without toggling and hubbing. These factors were chosen to 
simulate clinically relevant variables.

Several studies have investigated factors influencing 
pedicle screw stability, such as trajectory (25,26), hole 
preparation (27), reuse of pilot holes (28) and screw 
back out (29). The removal of the cortex immediately 
surrounding the pedicle screw simulates a variation on 
screw placement known as hubbing. Concerns regarding 
this technique include reduced pullout loads (15,30). In our 
study, removal of the cortex not only decreased the pull-out 
loads alone but further weakened the fixation of the screws 
when subjected to toggling. Toggling simulates Caudo-
cephalad loading occurring during activities of daily  
living (10). Toggling in the presence of the cortical shell 
had no effect. However, once the cortical shell is removed, 
damage to the weaker cancellous bone accumulates and 
further weakens the fixation. This demonstrates that this 
combination of treatments is worse than either alone. 
Weaker cancellous bone produced lower pull-out strength, 
as expected, and this difference was considerable for the 
group with the removed cortical layer, decreasing maximum 

Figure 3 Mean and standard deviation of stiffness. hd, high density 
cancellous foam; ld, low density cancellous foam; nt, non-toggled 
samples; wt, samples that were toggled.

Figure 4 Mean and standard deviation of maximum force. hd, high 
density cancellous foam; ld, low density cancellous foam; nt, non-
toggled samples; wt, samples that were toggled.

Figure 5 Mean and standard deviation of energy of failure. hd, 
high density cancellous foam; ld, low density cancellous foam; nt, 
non-toggled samples; wt, samples that were toggled.
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pull-out load to less than one third that of the normal 
density samples. This value was similar for both low and 
high-density groups but due to the lower starting point of 
the low density group the proportional reduction and final 
properties were considerably greater. This suggests that 
screw fixation is more vulnerable in the presence of cortical 
damage in weaker, or potentially osteopenic bone.

Comparison to existing literature

Screw pull-out studies using human cadaveric tissues report 
a wide range of values from 102 to 1,741 N (15,26,28,31-
34). Similarly, screw pull-out with the calf model reports 
values from 747 to 7,300 N, depending on treatment (30,35). 
Polyurethane blocks have been reported in the literature 
and offer a wealth of data to compare against. High density 
blocks demonstrate pullout loads of 2,908 N (27) for 7.5 mm 
screws, 2,115–2,227 N (29) and 2,133 N (36) for 7.0 mm 
screws, 2,652 N (37) for 6.5 mm screws and 1,420–2,176 
with a 6 mm (38) screws. The comparable condition in 
the current study generated 2,011 N with 6.5 mm screws. 
Pfeiffer and Abernathie (27) have evaluated 6.25, 6.5, 6.75 
and 7.5 mm sizes, the results of which are more fully
compared in Figure 6. These values are higher than the 
majority of cadaveric pullout studies and are more closely 
comparable to the calf or porcine spine results (37,39).

A few studies have investigated lower density foam as well 
and are comparable to the low-density group in the present 
study. Low density with 6.5 mm generated 688 N (36). With 

6 and 6.2 mm screws, it is 307–727 N (38). This compares 
well with the current loads of 661 N. Kim et al. (40) have 
extensively investigated the effects specific design factors 
(inner and outer diameter shape and thread shape and 
tested them in 3 density ranges (5, 15 and 20 lb/ft3). These 
results are compared in Figure 7. Design variations included 
diameters (6.5 mm as in the current study) that were 
cylindrical or conical and threads including V, buttress, and 
square shapes. Results showed that V-shaped threads had 
the maximum pullout strength, regardless of bone density, 
diameter, shape and type of threads. The screw tested in the 
current study had a conical outer diameter and a two-stage 
outer diameter for cortical/cancellous bone and buttress 
shaped threads. When comparing these results, we see that 
the current screw achieves pullout loads in 10 lb/ft3 bone 
surrogate that are reported in 15 lb/ft3 foam. The current 
study evaluated pedicle screw pullout characteristics in 
simulated bone in the presence of a cortex. This feature was 
structurally significant and added approximately 1,100 N to 
the pullout load.

Caudo-cephalad loading in an in vitro setting (10) is 
well established and can be used as a preconditioning step 
prior to pullout or can itself be an endpoint for loosening 
(41-46). Toggling generally decreases the stability of the 
screw/bone construct (11,32), however, this is not always 
the case. Lotz et al. (47) reported pullout loads of 809±467 
N without cyclic loading and 801±265 N following cyclic 
loading. Likewise, there are some reports that do not agree 
as closely with the current study. Patel et al. (48) evaluated 

Figure 6 Summary of the peak loads for 6.25–7.5 mm pedicle screws from Pfeiffer and Abernathie (27). The red sample represents the 
comparative group from the present study (low density no cortex, no toggle).
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the effect of toggling with 4.7 and 6.5 mm pedicle screws in 
20 and 10 lb/ft3 foam bone. They found no difference with 
toggling despite having a more aggressive toggling protocol 
(±1 vs. ±0.5 mm). Also of note, the loads were much lower 
than the current study: 1,110 N (6.7 mm screw) vs. 2,011 
N (6.5 mm screw) for high density non-toggled pullout. 
There are several possible reasons for this, including a 
screw length of 30 vs. 45 mm. Stiffness of the testing setup 
is very important for a displacement controlled toggle 
and, although the test setup shown in the paper appeared 
sound, the use of test block anchor screws rather than a 
plate to restrain the block may have allowed the anchor 
screws to toggle as well as the pedicle screw, minimizing 
the motion at the pedicle screw/foam interface. Likewise, 
Mehmanparast et al. (49) performed a comparable study and 
found that toggling decreased pullout loads significantly 
for 20 lb/ft3 but not 10 or 30 lb/ft3 foam while stiffness was 
affected for all. Values were again lower but this may have 
been due to the smaller, 5mm screw. Interestingly, both of 
these studies report a non-significant increase in pullout 
strength for the low-density foam following toggling.

Investigations into hubbing are less common. A key 
publication on the topic comes from Paik et al. (15) 
who examined pullout following hubbing and toggling 
for cadaveric samples that were classified as normal or 
osteoporotic. A significant drop in pullout load from 772 to 
418 N (normal) and from 414 to 243 N (osteoporotic) was 
found. This represents a drop of 41% and 46% of the intact 
values. On a comparative basis, our results demonstrate a 
decrease of the intact value of 47% for the high-density 
group and a more substantial 70% drop in the low-density 

group. The trend was similar but the greater magnitude 
of the differences may be due to the relative differences 
between the foam densities being greater that found in 
cadaveric cancellous bone. Unfortunately, all samples were 
toggled and the effects of toggling, hubbing and bone 
density could not be individually assessed. Lill et al. (35) 
tested screws in calf spines and removed the effect of thicker 
cortex, as compared to humans, by over-drilling the dorsal 
cortex to 8 mm diameter and a depth of 2 mm. Although 
this study did not state the intention to evaluate hubbing, 
the procedure was very similar. The loads in this study were 
high (1.8–7.3k N) and unexpectedly, suggest that the bone 
became stronger following toggling.

Finally, Kang et al. (30) also tested the calf spine and 
found significantly lower pullout following toggling, also 
noting dorsal cortex deformation and micro fractures in 
cases after hubbing plus toggling.

The use of synthetic Sawbone bone surrogates has 
limitations. The properties of maximum pullout load 
and stiffness are much higher than that reported for 
human cadaveric bone. This is well documented and 
considering the reduced variability, this material is useful 
for comparative tests. The addition of a cortical layer is 
significant and demonstrates a more realistic model of 
load sharing. The addition of simulated pedicle geometry 
with cortical and cancellous layers would further aid in 
improving the accuracy of the model.

Conclusions

This study has presented an evolution of a well-established 

Figure 7 Results of Kim et al. (40). (A) The pullout strengths of pedicle screws according to the outer/inner diameter configurations; (B) 
the pullout strengths of pedicle screws according to the shape of the threads. The red line indicates the results of the comparison group in 
the current study. Cy/Cy, cylindrical/cylindrical type; Cy/Co, cylindrical/conical type; Co/Co, conical/conical type in outer/inner diameter 
configuration, V, a V-shaped thread; B, a buttress shape; S, a square shape. 

2500

2000

1500

1000

500

0

2500

2000

1500

1000

500

0

P
ul

lo
ut

 s
tr

en
gh

th
 (N

)

P
ul

lo
ut

 s
tr

en
gh

th
 (N

)

Grade 5       Grade 10     Grade 15      Grade 20 Grade 5        Grade 10       Grade 15      Grade 20

Bone densities

Cy/Cy

Cy/Co

Co/Co

G5

Bone densities

V

B

S

G5

A B



190 Pelletier et al. The contribution of the cortical shell to pedicle screw fixation

J Spine Surg 2017;3(2):184-192© Journal of Spine Surgery. All rights reserved. jss.amegroups.com

screw pullout/toggle testing model. The cortex plays a 
considerable role in the protection of underlying cancellous 
bone as well as contributing to initial pullout strength. 
Removal of the cortex not only decreased the pullout 
loads alone but further weakened the fixation of the screws 
when subjected to toggling. Toggling in the presence of 
the cortical shell had no effect. However, once the cortical 
shell is removed damage to the weaker cancellous bone 
accumulates and further weakens the fixation. Our idealised 
in vitro results suggest the existence of a detrimental 
interactive effect when both toggling and hubbing are 
applied to pedicle screws implanted in weaker, osteoporotic 
bone.
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