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Introduction

Three-dimensional printing (3DP) is a rapidly growing 
industry. A variety of techniques can be used to print 
physical models from three-dimensional renderings based 
on CAD software, and STL design files. Whilst the use of 
this technology in medicine is still in its infancy, 3DP offers 
the possibility of revolutionising healthcare with its ability 
to rapidly create customized shapes from a wide range of 
materials (1-6). 

One sector of medicine where 3DP offers great potential 
benefits is in neurosurgery, and in particular spinal surgery. 
Due to the complex anatomy of the spine, as well as the 
delicate nature of the surrounding structures, any technique 
that may aid surgical planning and procedural accuracy 
offers the ability to improve patient outcomes (5). This 
systematic review will cover the current applications of 3DP 
in spinal surgery, including its role in surgical planning, 
surgical guides, customised implants and “Off-the-Shelf” 
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implants. It will conclude with a brief overview of future 
directions of 3DP in this field. 

Methods

Purpose

The objective of this review is to summarize the literature 
regarding the use of 3D printing technologies for the 
planning or production of patient-specific implants (PSIs) 
for spinal surgery. A comprehensive search of the Medline 
and EMBASE databases was conducted in line with the 
PRISMA guidelines (7-9) (Supplementary). 

Search strategy

A comprehensive search of published reports was performed 
via six electronic databases; namely, Ovid Medline, 
PubMed, Cochrane Central Register of Controlled Trials, 
Cochrane Database of Systematic Reviews, American 
College of Physicians Journal Club and Database of 
Abstracts of Review of Effectiveness from their date of 
inception to March 2017. To maximise the sensitivity of 
the search strategy, the terms; “three-dimensional”, “3D”, 
“patient-specific”, “spinal surgery”, “fusion”, were combined 
as either key words or MeSH terms. The reference lists of 
all retrieved articles were reviewed to identify additional 
potentially relevant studies.

The population to be studied included any patient 
presenting for spinal surgery. Exclusion criteria included 
a non-surgical focus, non-spinal focus, animal studies and 
3D imaging focus. No limits were set on time or level of 
evidence, as 3DP in spinal surgery is recent and evidence is 
mainly limited to low-power studies.

Results

These searches returned a combined 2,411 articles, of 
which 453 duplicates were removed, before the remaining 
1,958 articles were screened by title and abstract for 
relevancy, leaving 75 articles for full text review. Of these, 
54 were included in this review. A flow-chart of this process 
is shown in Figure 1 (9). 

A summary of 3DP of pre-operative models is given 
in Table 1. A summary of 3DP surgical guides is given in  
Table 2. Table 3 summarizes the current literature on 
the use of customised 3DP implants for spine surgical 
procedures. 

Discussion

Surgical planning

3DP is most frequently utilised in spinal surgery in the 
pre-operative planning stage. A full-scale, stereoscopic 
understanding of the pathology allows for more detailed 
planning and simulation of the procedure (10-18,20-30,50-52).  
Assessing complex pathologies on a model overcomes 
many of the issues associated with traditional 3D imaging, 
such as the lack of realistic anatomical representation and 
the associated complexity of computer-related skills and 
techniques (10,12). Sugimoto et al. (25) reported that the 
usefulness of 3DP increases with the complexity of the 
pathology, with the surgeon’s ability to manoeuvre a model 
being useful to appreciate patient’s anatomy without having 
to mentally reconstruct multiple 2D images (Table 1). 

The improved visualization and preparation afforded 
by the use of individualized models has clinical benefits, 
with reduced operation time and perioperative blood loss 
being most commonly reported (11,13,14,21-23,26-28,30). 
Reduction in operation time of 15–20% has been reported 
in multiple studies (11,14,23) across various surgical 
procedures. The main reasons given for reduced operation 
time included a more evolved understanding of the 
pathology, such as location and surgical approach, and 
the facilitation of pre-operative instrumentation decisions 
(14,16,18-21,24,27,28,50). Other clinical benefits such as 
improved diagnosis, reduction in fluoroscopy time, better 
communication within the surgical team and lower rates of 
screw misplacement have been reported when compared 
with the use of conventional imaging in pre-operative 
planning (11,14,20,26,30). Izatt et al. (14) found that the 
use of a 3DP biomodel improved surgical outcomes in 
78% of cases, though this is contradicted by Li et al. (23) 
who reported no change in complication rates or clinical 
outcomes. As many of the studies performed are small scale 
with no controls, it is likely there is not enough evidence 
to properly elicit benefits of 3DP models in surgical 
preparation on these parameters. Larger scale studies 
with the power to detect differences more accurately are 
required.

Some barriers exist for the translation of 3DP models 
for surgical planning in small scale studies to general 
clinical practice. In the studies reviewed, time taken 
to create the models ranged from 5 hours to 2 days, 
with extra costs anywhere between $300 and >$1,000 
(10,11,13,18,20,22,26,27). Izatt et al. (14) stated that these 
additional costs were offset in 59% of cases by the more 
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Figure 1 Flow chart of literature search performed using PRISMA methodology (9).

efficient operative technique and planning afforded by 
the models, as well as fewer intra-operative complications 
and greater accuracy associated with their use. This was 
supported by Wang et al. (28), who found that the decreased 
need for intra-operative navigation made the procedure 
more economical. However, time and cost are still likely 
to limit the use of this technology in the immediate 
future. Other limitations include a lack of surgically useful 
information, such as joint instability, and an absence of 
real-time information like those provided by imaging (18). 
Guarino et al. (13) also found that access issues were not 
only due to cost, but also a paucity of providers with the 
equipment and expertise to make the widespread use of this 
technology commercially viable. The learning curve for the 
required familiarity with the software has also been reported 
as a barrier (23,30). As time taken to create the models and 
the associated costs continue to decline, there should be an 
increase in the use of this technology in clinical practice. 

Another well reported benefit of 3DP models is improved 
patient education (11,13,17,19,53). A physical model is 
much easier for a patient to understand than complex MRI 
and CT scans. D’Urso et al. (11) reported a statistically 
significant improvement in informed consent from the 
patient’s perspective, confirmed by 25% higher patient 
informed consent scores using a biomodel demonstration 
when compared to pre-operative image demonstration. 
In one study (17), anxiety-related pain was found only to 
be relieved after a patient understood her condition with 
the aid of a biomodel, suggesting using models in patient 
education may improve clinical outcomes. 

Surgical guides

Spinal surgery is inherently dangerous due to the delicate 
nature of the surrounding anatomy. Intra-operative guides, 
created with patient-specific data, may have the ability to 
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Table 3 Summary of customised 3DP implants

Year Author Pathology Material 3DP implant Outcomes

2016 Phan et al. (44) Facet joint  
arthropathy

Titanium C1/2 posterior fixation 
device

Nil complications; pain reduction; 
satisfactory imaging 6 m post-op

2016 Wei et al. (45) Sacral chordoma Titanium Sacrum replacement 
prosthesis

Asymptomatic instrumental failure at 8 m; 
in-growth at bone-prosthesis interface

2016 Xu et al. (46) C2 Ewing sarcoma Titanium Axial vertebral body device Nil complications; no evidence of tumour 
and satisfactory imaging at 12 m

2017 Kim et al. (47) Sacral osteosarcoma Titanium Hemisacrum Nil complications. Improved symptoms 
and satisfactory imaging at 12 m

2017 Mobbs et al. (48) C1/2 chordoma 
& congenital L5 
hemivertebra

Titanium Occipito-cervical fixation 
device and hemivertebra 
prosthesis

Case 1 had complications associated with 
prolonged operation time; satisfactory 
imaging at 9 and 12 m respectively 

2017 Choy et al. (49) T9 primary bone 
tumour

Titanium Axial vertebral body device 
with inbuilt fixation holes

Nil complications; no evidence of tumour 
and satisfactory imaging at 6 m

mitigate the risks associated with these procedures (4,54). 
Pedicle screws are a fixation technique routinely used in 

spinal surgery, as they are the most effective way to stabilize 
vertebrae (4,37,43) and lower the risk of complications if 
inserted accurately (31). However, traditional techniques 
are associated with many problems and carry a high risk 
of breaching the pedicle, with the possibility of causing 
potentially fatal neurovascular injury (32). Thus, manual 
insertion based on surface anatomical landmarks, which 
is heavily dependent on the experience of the surgeon, is 
potentially undesirable. Computer assisted surgery can be 
used to monitor the placement of screws and increase the 
safety of these procedures. However this system is very 
expensive, complex to operate, cumbersome, has a long 
learning curve, often requires additional personnel and is 
associated with prolonged intra-operative time due to bone 
registration requirements (32,35,39). There are also issues 
with intra-operative changes in position, decreasing the 
accuracy of this technique (32). The use of intra-operative 
imaging increases harmful radiation exposure for both 
doctors and patients (30,34-36). 3DP guides may offer an 
alternative as a simple, convenient, low cost and complex-
equipment free way to improve the accuracy of pedicle 
screw placement (30-37,39-43).

To create 3DP screw guides, a 3D CT scan must be 
taken of the target vertebrae. Next, a 3D model is generated 
by specialist software from which the optimal screw 
trajectory and size can be determined, often in consultation 
with the surgeon. Finally, a navigational template is 
designed and built with optimal screw trajectory, the surface 

of which is the inverse of the posterior vertebral surface to 
ensure a good fit and accuracy of screw insertion (30-43,55). 
Numerous studies demonstrated that the guides help to 
lower operation time, with Deng et al. (37) suggesting this 
may decrease complications related to operative time (e.g., 
infection) (30,35,37,43). Other benefits include decreased 
intra-operative radiation, simplicity of use, elimination of 
procedural subjectivity, enhanced pre-operative planning 
and moderate cost in comparison with other techniques 
(30,32-38,42,43). 

It has been suggested that these guides may be 
particularly useful with more complex anatomy. In the 
cervical spine, asymmetry, vast inter-patient differences 
such as anomalous vertebral artery course, and the sensitive 
nature of surrounding tissues make procedural success 
more difficult to achieve, and hence able to benefit from 
individualised guides (30,31,33,34,37,38,40,43,56). Otsuki 
et al. (41) demonstrated that 3DP guides provide an extra 
benefit in revision surgery, where screw insertion is more 
difficult due to morphology changes caused by the first 
operation. 

The most commonly reported issue with the use of these 
templates is the necessity for clean bone preparation. Soft 
tissue must be completely removed for the template to fix 
into the correct spot, which may increase operation time 
and intra-operative blood loss (34,37,40,43). Depending 
on the material of the template, debris may be produced 
intra-operatively. Takemoto et al. (42) utilised titanium 
templates with reduced contact area to minimise these 
problems, though the resulting templates were 5× the price 
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of polymer based guides. Whilst cost is generally favourable 
in comparison to other techniques, the time taken to design 
and manufacture the guides was viewed as a negative. This 
limits the usefulness of this technology, for example it is 
not feasible in an emergency (30,37,40,42). Other concerns 
include deformation during the production, sterilisation or 
surgical procedure (37) as well as the long learning curve for 
software operation (30,40).

Whilst the use of 3DP surgical guides in spinal surgery 
is mainly limited to fixation screw placement, several other 
procedures have been found to benefit from the technology. 
Rong et al. (57) utilised 3DP to create guides for expansive 
open-door laminoplasty in cervical myelopathy. Trough 
preparation requires experience, and the authors reported 
positive results with high correlation of trough position to 
the ideal placement planned. Anchoring the drill template 
served to minimise any intra-operative movement, whilst 
depth control measures on the templates helped prevent 
iatrogenic injury to the spinal cord or nerve roots. Lin 
et al. (58) also prevented iatrogenic complications with a 
customized osteotomy tool guiding resection of a giant 
sacral schwannoma. As these tumours are clinically difficult 
to remove due to the extent of local invasion and the 
complexity of surrounding anatomy, complete removal 
without neurovascular complications or spinal instability is 
ideal, although difficult. In this case, more accurate intra-
operative localization of the resection margin allowed total 
resection, with no complications at 2-year follow-up. 

Customised implants

One of the most exciting applications of 3DP in spinal 
surgery is the ability to manufacture customised, patient-
specific implants. Patients being subjected to complex 
surgery with difficult anatomy and deformity, have an 
increased risk of implant failure, especially if the “off-the-
shelf” reconstructive option does not fit accurately into the 
reconstructive defect. Despite being a novel field of study, it 
is hoped that PSIs will prove to have better durability due to 
a more even load distribution and superior osseointegration. 
Currently, literature on PSIs in spinal surgery is limited 
to a select few case reports and case series, though this is 
predicted to expand rapidly over the next few years. 

The cases performed thus far are limited to anatomically 
challenging, rare pathologies where an individualized 
solution to restore patient-specific anatomy is a key 
prognostic factor (44,46-48,59,60). These range from 
customised fixation in the upper cervical and lower lumbar 

spine (44,48,59) to insertion of a 3DP vertebra (46) and 
sacral reconstructions (45,47). A summary of PSIs used 
in spinal surgery in the literature is shown in Table 3. 
The lack of specialised implants for reconstruction after 
tumour resection is evidenced by the majority of cases 
being oncological in nature (45-48). The remaining cases 
utilised 3DP PSIs due to unique anatomy associated with 
degenerative change and a congenital anomaly (44,48). 
All customised prostheses were made from titanium alloy 
(TiV6Al4) due to its biocompatibility and ability to enhance 
bone healing by porosity optimisation to match trabecular 
bone structure.

All the implants were reported to fit well, indicating the 
accuracy of the 3DP process. This increases the stability of 
the implant whilst minimising complications such as stress 
shielding and subsidence (45-47). Xu et al. (46) created a 
prosthesis with zero profile anteriorly for this purpose, 
minimising the risk of dysphagia in their patient. This case 
also noted the minimisation of other morbidities, such 
as pain and limited function, associated with bone grafts. 
Another benefit of customised implants is a reduction in 
operation time (44,46-48), with Mobbs et al. (48) noting 
the ability to avoid bone harvesting with intra-operative 
fashioning to fit complex defects. Wei et al. (45) produced 
three different sized prostheses to fit the intra-operative 
bone defect. Kim et al. (47) described a process of multiple 
pre-operative modifications made to the implant to ensure 
anatomical accuracy. Both these measures shifted the time 
from intra-operative to the pre-operative planning phase, 
a positive for minimising complications such as infections. 
The sacrum produced by Wei et al. (45) had pre-designed 
holes and screw heads to simplify the reconstructive 
method. The PSI employed by Phan et al. (44) was found 
to reduce the risk of neurovascular complications due to 
screw holes with pre-calculated angulation and depth in-
built. 

Negatives are similar to those for other 3DP applications 
in spinal surgery, with extra time and cost required to 
design these highly specialised PSIs (44). The sophisticated 
software and machinery necessary for creation of the 
implants is also a barrier (48). Wei et al. (45) reported an 
instrumental failure, indicating more direct comparison 
with standard of care implants is required to demonstrate 
the efficacy of these prostheses. Comparative studies would 
also serve to remove the inherent subjectivity of case reports 
on a new technology, where results are often positively 
skewed (5). There is also a lack of long-term data on the 
performance of these prostheses (44). It should be noted 
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that no regulatory framework exists for the use of PSIs in 
spinal surgery. A system for registration and approval for 
the production and implantation of these devices will be 
necessary in the future. Despite these factors, due to the 
positive patient outcomes and lack of serious complications 
shown thus far, it would appear that these techniques offer a 
viable future direction for spinal prostheses, particularly in 
complex cases. 

3D printing of “Off-the Shelf” implants

Whilst customisation to patient-specific data is one 
of the biggest drawcards of 3DP, the technique itself 
offers advantages compared to traditional manufacturing 
processes. Spinal prosthetic manufacturers, such as Stryker 
and 4Web Medical, are beginning to utilise the technology 
to optimise the properties of devices to be implanted 
(61-64). 3DP allows the manufacturing of previously un-
manufacturable geometries (61), including the ability to 
mimic the interconnected structure of cancellous bone. 
Through control of the porosity and surface roughness 
of implants, osseointegration can be optimized. When 
combined with an open architecture to allow maximum 
bone graft volume, implants can be created that make full 
use of the capabilities of 3DP, without all the planning 
associated with customisation. By offering a range of sizes 
of implants, including parameters such as widths, heights, 
lengths and angles, spinal instrumentation can be utilised 
in patients whilst minimising complications such as implant 
migration and stress-shielding (62-64). The use of 3DP in 
this setting is cost-effective and can produce the quantity of 
implants necessary to be competitive in the market place. In 
the future, it is predicted that more innovative features may 
be able to be incorporated, such as porous matrices where 
density, pore diameter and mechanical properties can differ 
in different regions of the implant (61). 

Future directions

As 3DP technology continues to become cheaper, faster 
and more accurate, its use in the setting of spinal surgery 
is likely to become routine, and in a greater number of 
procedures (1-4,6,42,44,65). Lower cost desktop 3D printers 
for everyday use could soon be a reality, aiding real-time 
model and implant creation for more personalised surgical 
care (46,48). A greater range of materials is also expected 
to open new avenues, with improved biocompatibility, 
osseointegration, biodegradability and load-bearing 

properties just some of the expected benefits (3,4,48,65). 
However, the greatest step forward is anticipated to be 
bioprinting, where cells, growth factors and biomaterial are 
used to create living tissue. This could conceivably be used 
for direct tissue repair, and even the printing of complex 
organs in the foreseeable future (6). 

Conclusions

3DP is rapidly becoming intimately integrated in both 
spinal surgical practice and the literature. It is currently 
used for surgical planning, intra-operative surgical guides, 
customised prostheses as well as “Off-the-Shelf” implants. 
The technology allows for enhanced implant properties, 
as well as decreased surgical time and improved patient 
outcomes. However, much of the data thus far is from 
low-quality studies with inherent biases linked with 
the excitement of a new field. As the body of literature 
continues to grow, larger scale studies and longer-term 
follow ups will enhance our knowledge of the effect 3DP 
has in spinal surgery.
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