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Introduction

Since 1911, lumbar fusion has proven to have excellent 
clinical outcomes in treating several pathological spine 
conditions, such as spinal stenosis, spondylolisthesis, 
recurrent herniated nucleus pulposus, degenerative disc 
disease, spinal deformity, and trauma (1,2) .The first 
lumbar fusions were achieved using tibial bone graft and 
wiring techniques, which then evolved to posterolateral 
fixation techniques including facet screws followed by more 
advanced pedicle screws and rods. In 1988, the first “load 
sharing” fusion took place with the use of an interbody 
device with supplemental posterolateral fixation (1). Since 
their introduction, interbody devices have revolutionized 
lumbar fusion surgery by enhancing mechanical stability, 
optimizing sagittal parameters, and maximizing fusion 
potential.

There are several lumbar interbody fusion approaches 
available for varying pathologic etiologies, surgical index 
levels, or due to surgeon preference. Successful interbody 

fusion not only results in restoration of lordosis and 
correction of deformity, but allows for decompression of 
neural elements both directly and indirectly depending on 
the approach (3,4). The common surgical approaches for 
lumbar interbody fusion include posterior lumbar interbody 
fusion (PLIF), transforaminal lumbar interbody fusion 
(TLIF), lateral lumbar interbody fusion (LLIF), oblique 
lumbar interbody fusion/anterior to psoas (OLIF/ATP), and 
anterior lumbar interbody fusion (ALIF) (3,4). The anterior 
and lateral approaches grant surgeons with a direct midline 
or lateral view of the disc space, which ultimately allows for 
a more thorough endplate preparation and maximization 
of implant size (3-6). Conversely, the posterior approaches 
provide excellent visualization of the nerve roots and spinal 
canal for direct decompression, however, they have a narrow 
surgical corridor which requires interbody devices with a 
smaller footprint (3-5). 

With the advancement of spinal instrumentation 
and interbody devices, a variety of cage materials and 
dimensions have been engineered to accommodate various 
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lumbar fusion approaches. The efficacy of a fusion is 
dependent on the shape, size, and material makeup of that 
interbody device. Since there are numerous cages available 
in today’s market, it is important to find the optimal cage 
to best accommodate specific lumbar fusion cases. As such, 
this review will explain the properties of various interbody 
devices available for lumbar fusions. 

Fundamentals of interbody fusion

The main objective of interbody fusion is to distract the 
intervertebral space enough to implant a cage that will 
stabilize adjacent vertebral bodies until complete fusion 
occurs. The stretching of the annulus and supporting 
ligaments provides optimal stability and maintenance of 
proper disc height and lordosis (7). In general, interbody 
devices consist of a hollow center, which may be filled 
with bone grafts and other osteobiologics for fusion 
enhancement. Additionally, some cages have porous 
structure which increases osteoconductive properties (8). 
The time for fusion varies, but is 6–12 months at minimum, 
therefore immediate stabilization is required (9,10). As 
such, posterolateral pedicle screws and rods are required for 
most cages for maintenance of spinal stability until fusion 
occurs. However, some interbody devices used during 
anterior and lateral approaches may be combined with plate 
fixation or contain integrated screws or wedges that allow 
for immediate stabilization and avoid the need for patient 
repositioning for pedicle screw and rod placement (9,10). 
Although the basic concept of interbody cages remains the 
same, the design may vary in terms of material, shape, size, 
and whether it has static or expandable dimensions.

Interbody device materials

Interbody devices are mainly made of titanium alloys, 
polyetheretherketone (PEEK), or from biologic sources 
(11,12). The ideal interbody device is one that is rigid 
enough to maintain stability, but with a similar elastic 
modulus of bone to prevent subsidence and stress-shielding. 
Additionally, osteoconductive properties vary by material 
and other factors such as radiolucency allow for convenience 
during fusion assessments (11). 

Traditionally, interbody devices have been made from 
metals such as titanium alloys due to their durability and 
strength (12). The benefits of titanium cages are their 
biocompatibility and resistance to corrosion. Moreover, 
they are associated with the highest osteoconductive 

potential, leading to the optimum fusion rates (13,14). 
However, titanium cages have a relatively high modulus of 
elasticity compared to bone, which often results in endplate 
trauma and subsidence (15,16). Additionally, titanium 
implants cause a distortion on magnetic resonance imaging 
(MRI) and computer tomography (CT) (12,17,18).

Interbody devices are also made from PEEK, which 
has an elastic modulus comparable to bone, allowing 
for relatively lower subsidence rates (16,19,20). Unlike 
titanium cages which are biocompatible, PEEK cages 
have a hydrophobic surface and therefore may limit 
osseointegration (19,21,22). Additionally, need for greater 
endplate preparation and problems with overdistraction 
compromise the effectiveness of PEEK cages (19,23). 
A major advantage of PEEK implants, however, is their 
radiolucent properties, which allow for better fusion 
assessment on imaging (19). For purposes of identification, 
these radiolucent cages often have metallic markers. Despite 
these differences, fusion rates between PEEK cages are 
comparable to titanium cages (24).

In order to procure the benefits of both materials, some 
devices have a hybrid cage design comprising of a PEEK 
body with titanium articulating edges. This combines the 
advantageous elastic modulus and radiolucent properties of 
PEEK with the biocompatibility and durability of titanium 
(25,26). Ultimately, this novel combination may potentially 
reduce stress-shielding and subsidence associated with 
titanium cages, while maintaining similar fusion rates 
to either titanium or PEEK materials (25,26). As hybrid 
implants grow in popularity, future studies may potentially 
reveal their efficacy.

Biologic implants are allogenic bone grafts derived 
from cadaveric specimen, which include femoral rings or 
cortical bone dowels (27). Femoral ring grafts have ridges 
that enhance their grips onto vertebral bodies and may 
be packed with autograft before interbody placement. In 
relation, threaded cortical bone dowels derived from the 
femur or tibia may be stand-alone options used in lieu of 
traditional cages. These biologic implants offer similar elastic 
modulus to bone with radiolucent properties for better fusion 
assessments (28). Disadvantages of biologic implants are the 
potential risk for fracture upon insertion (29).

Dimension of interbody devices

The cage shape also varies in terms of surgical approach 
and must allow for optimal positioning between adjacent 
vertebral endplates in order to enhance fusion (30). Varying 
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shapes of cages include cylindrical, threaded, mesh, 
trapezoidal, rectangular, or banana-shaped.

The first-generation interbody devices were cylindrical 
titanium cages with a threaded body which could be 
screwed into position in either anterior or posterior 
approaches. However, their thick, titanium walls produce 
severe artifacts on MRI or CT (31). In relation, the second-
generation cages maintained a threaded configuration, but 
had thinner walls which reduced imaging artifacts (31).  
A threaded design has advantages such as a quicker fusion 
time and immediate stability, however, it also has decreased 
maximum distractive height, is less stable in flexion and 
extension, and is associated with higher rates of subsidence 
compared to other designs (31,32). Titanium mesh cages 
have an open configuration for housing bone graft. The 
unique structural design of the mesh cages offers enhanced 
load sharing (30,33). Trapezoidal cages, made of either 
titanium or PEEK, are commonly used during ALIF 
procedures (34,35). The wide design and tapered shape 
maximizes surface area for fusion and restores sagittal 
alignment (34,35). Rectangular cages are designed for 
posterior and lateral approaches and are typically made of 
PEEK or PEEK reinforced with carbon-fiber. The greatest 
disadvantage of rectangular cages includes segmental 
kyphosis due to their long, flat profiles (36,37). Lastly, 
banana-shaped cages have a biconvex surface and are mostly 
reserved for transforaminal approaches. These devices have 
a large opening for graft insertion and transverse placement 
within the disc space allows for greater stability (37). However, 
since banana-shaped cages are positioned more medial 
and posterior, they may be associated with higher rates of 
subsidence when compared to straight-shaped cages (38).

An optimized fit for an interbody device depends on 
factors such as surgical approach, index level of procedure, 
and intervertebral anatomy (39). A larger footprint will 
enhance segmental stability and will equalize the stress 
distribution along the vertebral endplate (28,39). Cages 
too large increase the chance of damage to surrounding 
structures and nerve roots, but ones that are too small 
may lead to instability (28). Since disc height changes 
depending on the individual and index level, there are 
several height options available (28). It is important to 
choose a cage height that maintains disc space and lordosis. 
Overdistraction may cause endplate trauma and increase 
risk of adjacent segment disease, while cages that are too 
thin may lead to cage migration and fusion failure (2). 
Lastly, interbody devices may also come in varying angles 
for meeting specific sagittal parameter goals (28). Thus, 

surgeons should carefully select appropriate interbody 
dimensions on a case by case basis (2).

Static versus expandable interbody devices

Anterior approaches often have higher intervertebral 
exposure when compared to posterior approaches. 
Therefore, a wider implant is suitable for anterior fusion 
procedures (40,41). The size is limited in posterior and 
transforaminal approaches due to a smaller surgical 
corridor. However, advancements in spinal instrumentation 
technology have overcome this limitation through the 
development of expandable cages, which allow for in situ 
expansion within the disc space (40). Expandable cages may 
be deployed within the plane of the intervertebral space 
to provide a larger footprint or be mechanically distracted 
to increase height and lordotic angle (40,42). Controlled 
expansion prevents iatrogenic endplate damage during the 
procedure, most commonly from trialing and impaction 
seen with static devices (42). Despite these added features, 
current literature demonstrates that both static and 
expandable cages are associated with similar improvements 
in sagittal parameters and fusion outcomes (42,43). 

Bone grafts and osteobiologics

The center of an interbody device is hollow and is often 
filled with bone grafts to enhance fusion. These bone grafts 
can be autogenic, allogenic, or synthetic. Autogenous bone 
grafts may be either derived locally from morselizing extracted 
bony elements during decompression or harvested from the iliac 
crest. Iliac crest bone graft (ICBG) has traditionally been the 
preferred graft material to enhance fusion, however, it has been 
associated with donor site morbidity and is limited in supply 
(14,44,45). Recent advances have given rise to alternatives, 
such as allograft or synthetic grafts and bone morphogenetic 
protein-2 (BMP-2), which have grown in popularity for 
lumbar fusion procedures (46,47). Demineralized bone 
matrix (DBM) is allograft cortical bone with the calcium 
and phosphate removed via an extraction process (48,49). 
DMB comes in a powder form that is mixed with a putty 
or paste carrier for use as a graft extender. In relation, 
ceramics are composed of calcium phosphate substrates 
that emulate the physical properties of bone. When used 
together with BMP-2, these alternative options allow for 
shorter operation times and avoid donor site morbidity 
compared to ICBG harvesting (13,50,51). However, there 
is no significant difference in fusion and clinical outcomes 
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between ICBG and BMP-2 (18,52).

Conclusions

This in-depth review covers the properties of interbody 
devices and demonstrates that a variety of interbody devices 
can be utilized in each type of lumbar fusion procedure. 
Surgeons should thoroughly examine the characteristics 
associated with each device and determine their selection 
based on type of procedure, availability, price, and their 
experience with the device. Interbody device technology has 
demonstrated promising advances in spine surgery. Future 
advancements in design will hopefully lead to the reduction 
of subsidence and stress-shielding, while increasing 
arthrodesis rates and overall clinical outcomes.
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