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Introduction

In 2019, autonomous technology is omnipresent, and 
the speed of technological innovation is ever increasing. 
Keeping pace, medical advances over the last century have 
changed the way people are both diagnosed with and treated 
for a disease process. Medicine has benefitted greatly from 
this revolution. Lister and Pasteur brought medicine out 
of the dark ages in the late 19th century. Robotics appears 
poised to revolutionize medicine in the 21st. 

The field of spinal surgery has greatly benefited 
from these advancements, as constant improvements in 
diagnostic imaging, surgical magnification and illumination, 
and stereotaxis have allowed for safer, more efficacious 
operations. In the recent decades, a variety of minimally 
invasive surgical techniques have been introduced to 
minimize approach-related tissue trauma while optimizing 
peri-operative care and long-term functional outcomes 
(1,2). The goal of minimally invasive spine (MIS) surgery 
is to provide adequate decompression of neural elements 
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and realign the spinal column where appropriate, while 
minimizing soft-tissue trauma. While few randomized 
controlled trials have been designed to compare MIS 
surgery to traditional, open surgery, there are many 
retrospective and prospective studies suggesting equal 
efficacy and safety between both approaches. Consistently, 
however, the MIS cohorts in these studies have less blood 
loss, less iatrogenic muscle injury, less peri-operative pain, 
and a decreased length of stay (3-7). 

The history of MIS surgery dates back 80 years when 
Love published the first intralaminar approach to treat 
lumbar herniated discs. Later, in 1977, Yasargil and Caspar  
popularized the use of a microscope in operations to resect 
disc herniations (8). The first percutaneous transpedicular 
vertebroplasty and kyphoplasty were reported in 1984 
and 2001 respectively (9,10). Arthroscopy for lumbar 
disc disease was first described by Forst and Hausma in 
1983 and was further developed by Kambin years later. 
Kambin subsequently defined “Kambin’s triangle” as 
a safe posterolateral triangular working zone in 1996. 
Shortly thereafter, Foley and Smith reported their early 
experiences with tubular micro-endoscopic nerve root 
decompression in 1999 (11). With time, tubular and micro-
endoscopic techniques gained popularity. Zucherman 
reported laparoscopic-assisted anterior lumbar interbody 
fusion (ALIF) surgeries in the 1990’s (12). Though the 
laparoscopic ALIF did not offer significant benefit over the 
open approach, it served as a gateway for other minimally 
invasive interbody fusion techniques in the lumbar spine. 
In 2002, percutaneous trans-pedicular screw-rod fixation 
was introduced by Foley as the Medtronic Sextant system, 
which allowed for multi-level instrumentation through two 
small paramedian incisions (13). Recently, image-guided, 
3D, CT-based navigated systems have become more 
prevalent as these systems offer superior precision, safety, 
shorter operative time, and decreased radiation exposure for 
the operative team (14-17). 

In the past decade, robotic surgical systems have 
been adopted in various surgical specialties to replace or 
complement traditional laparoscopic/endoscopic techniques 
(18-23). The term, “robot,” implies a machine capable 
of carrying out a complex series of actions automatically. 
A true spinal surgery robot has yet to be created. Rather, 
“cobots”—machines designed to interact and assist 
humans—have been created in an attempt to make spine 
surgery safer and more efficient. 

Robotics in spinal surgery has evolved relatively quickly 
over the past decade. In 2004, the Mazor SpineAssist 

device was the first FDA approved robot used to guide 
the placement of pedicle screws. Newer robotic devices 
including the Mazor X (Medtronic and Mazor Robotics, 
Memphis, TN, USA), ExcelsiusGPS (Globus Medical, 
Inc., Audubon, PA, USA), and ROSA (Medtech Surgical, 
Inc., New York, NY, USA) have since been developed and 
FDA cleared for use in the spine (Figures 1 and 2). Each 
new device builds on the basic tenant that pedicle screw 
insertion should be safer, easier, and more efficient. 

The utility of robotic technology in spinal surgery 
is currently under investigation and has yet to achieve 
widespread adoption. Multiple studies have reported early 
experiences with robot-assisted pedicle screw placement and 
the outcomes are promising (24-36). Nonetheless, the role 
of robotics in a routine spinal practice remains somewhat 
unclear. 

Although there is ample evidence proving the benefits 
of MIS surgery in specific instances, there is a paucity of 
data on the benefits and or detriments of robotics in MIS 
surgery. 

In this review we aim to present various applications of 
robotics in MIS surgery and potential future applications.

Robotic learning curve

As with learning any new skill or task, whether in or out 
of the operating room, there is a relatively steep learning 
curve with both MIS surgery and robotic spine surgery. 
There are numerous examples throughout the spine 
literature espousing the difficulty of becoming proficient 
at performing a minimally invasive transforaminal lumbar 
interbody fusion (MIS TLIF). Lee et al. documented 
significantly shorter operative times, less blood loss, and 
less fluoroscopy time after a surgeon’s 44th MIS TLIF (37). 
Another study claimed a 50% improvement in efficiency 
after a surgeon’s twelfth MIS TLIF and a 90% improvement 
by the 39th case (38).

Similar findings have been reported with robotic surgery. 
One study compared the proficiency of junior and senior 
residents at placing robotically-guided pedicle screws in 
the lumbar spine. While the result did not prove significant 
given the sample size, there was an obvious trend implying 
more experienced residents could place screws faster. In 
addition, the time to place a single screw decreased as the 
volume of screws increased (39).

Another study by Hu and Lieberman examined 150 
consecutive, robot-assisted procedures done by the lead 
author to quantify the learning curve. The accuracy of screw 
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placement seemed to increase up to and plateau after the 
thirtieth case. In this series, intraoperative screw revision 
decreased from 17% to 7% after the thirtieth case (40). 

Schatlo et al. reviewed 1,265 robotically-assisted pedicles 
screws placed by 13 different surgeons. In this series the 
authors found that the number of misplaced screws drops 
significantly after the twentieth case. Based on their data, 
the authors suggest that surgeons new to robotics be 
proctored for their first 25 robotic procedures (41). 

Radiation in MIS surgery

Free hand pedicle screw placement has a known inaccuracy 
rate that likely contributed to a rise in the use of 
fluoroscopic image guidance to assist in screw insertion. 
The advent of minimally invasive surgery only served to 
increase the use of fluoroscopy thus increasing surgeon 
radiation exposure even further (42). Newer technology, 
such as robotic guides and CT-guided 3D navigation 
systems, allow for the placement of pedicle screws with 
potential for significant reductions in radiation exposure for 
both the operative staff and surgeons. 

Kantelhardt et al. reported a decrease in radiation time 
from 77 seconds/screw in conventional, open operations 
down to 43 seconds/screw and 27 seconds/screw in robot-
guided open surgery and robot-guided percutaneous surgery, 
respectively (26). Another paper reported similar results with 
mean radiation time per screw in the conventional group 
being over double that in the robot-guided cohort (25). 

Percutaneous pedicle screws

Percutaneous transpedicular instrumentation was first 
introduced in 1977 by Magerl to provide temporary external 
stabilization and fixation of spinal fractures (43). Since then, 
the technique has been described in several clinical studies 
that prove the efficacy, safety, and accuracy of this type of 
instrumentation (13,44-46). Studies examining the use of 
percutaneous screws demonstrate numerous, significant 
benefits when compared to open pedicle screw insertion, 
including a decrease in operative time, post-operative 
pain, blood loss, infection rate, and hospital length of stay 
(47-50). A retrospective analysis of percutaneous screw 
placement using fluoroscopy in vertebral levels T2 to S1 by 
Winder et al. revealed a 4.1% (25/614 screws) breach rate; 
with thoracic screws carrying a significantly higher rate of 
misplacement (51). The accuracy rates are better with 3D 
intra-operative navigation. A recent meta-analysis of 68 
pertinent studies, including 3,442 patients, 60 cadavers and 
43,305 pedicle screws, reported improvement in pedicle 
screw accuracy (defined as <2 mm breach) from 91.4% with 
fluoroscopy to 97.3% with CT-navigation (52).

There is a dearth of literature describing the use of 
robotics for the placement of percutaneous pedicle screws. 
Pechlivanis et al. published the first paper describing their 
experience with robotic placement of percutaneous pedicle 
screws. They found that the robotic system they used could 

Figure 1 The ExcelsiusGPS surgical system (Globus Medical, Inc., 
Audubon, PA, USA). This system guides pedicle screw insertion 
via a patient-mounted reference array.

Figure 2 The Mazor X surgical system (Medtronic, Memphis, 
TN, USA). This system uses either an intraoperative CT scan or a 
preoperative CT scan with calibrated fluoroscopic registration to 
guide its robotic arm.
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place screws within two millimeters of the surgeon’s plan 
91% of the time in the longitudinal plane and 98.3% in the 
axial plane (32). Another study compared the accuracy of 
robot-guided percutaneous screws to open robot-guided 
screws. As expected, there was no significant difference 
in accuracy between the open and percutaneously placed 
pedicle screws. However, they did note that following 
percutaneous screw placement, patients required less 
opioids, had a shorter length of stay, and had fewer adverse 
events than did comparable patients who underwent open 
robot-assisted instrumentation (26). 

Hyun et al. completed a randomized, controlled trial 
evaluating minimally invasive, robotic-guided pedicle 
screw placement versus open, fluoroscopic-guided spinal 
instrumentation (25). They noted that the utilization of 
robot-guided percutaneous pedicle screws significantly 
reduced both radiation exposure as well as the length 
of stay compared to the control, fluoroscopy-guided 
instrumentation group. Importantly, they also found that 
there was a significantly increased distance between the 
proximal pedicle screw and the proximal facet in the robot-
guided group. This might not acutely make a difference in 
patient reported outcomes, but over the long term, violation 
of the suprajacent facet leads to increased morbidity and a 
higher likelihood of adjacent segment disease. Preoperative 
planning of pedicle trajectory allows the surgeon to stay 
completely out of the facet (Figure 3). In addition, the 
workflow involved in placing robotic-guided screws does 
not allow for “stabbing” the facet capsule will trying to 

approximate a good fluoroscopic trajectory. This differs 
greatly when compared to the placement of fluoroscopy-
guided screws with a Jamshidi needle. The facet capsule can 
be repeatedly violated when utilizing this technique. Patel 
et al. investigated the rate of facet violation in a cadaveric 
study and reported a 58% rate of facet capsule violation 
during fluoroscopy-assisted percutaneous pedicle screw 
insertion (53). Although likely unnoticed at the time of 
index surgery, this unperceived iatrogenic facet injury could 
possibly accelerate adjacent level facet degeneration and 
thus adjacent segment disease. 

Robotics and bony decompression

Spine surgery is  a  physical ly demanding surgical 
subspecialty. Ergonomics have been widely studied in 
industry, the military, and in athletes. Researchers are now 
beginning to analyze ergonomics in the operating room 
(54,55). The incidence of neck and shoulder pain amongst 
surgeons have been reported to approach 40% (56). 
Moreover, with aging, a surgeon’s dexterity, precision, and 
stamina can become compromised. While current literature 
investigating possible correlation between aging and 
surgical outcome is conflicting, it is known that technical 
precision decreases with age (57-60). Spine surgeons 
rely on precision, dexterity, and control as they operate 
in the vicinity of critical neural elements and therefore 
are prone to age-related physical limitations. A review 
of other surgical subspecialties such as cardiac surgery, 
urology, and gynecology reveals that robotic surgery 
could potentially play a role in improving ergonomics and 
surgical outcomes (61-63). Ponnusamy et al. designed a 
porcine model to evaluate the role of the da Vinci Surgical 
Robot in performing posterior approaches to the spine 
including laminotomy, laminectomy, and dural closure (64). 
Unfortunately, at least in this study, the use of the robot 
required an open dissection of the spine, rendering some of 
the benefits of true MIS surgery moot. They did, however, 
show that the ergonomics provided by the robot decreased 
both mental and physical fatigue allowing the surgeon to 
operate for a longer duration with less fatigue. No other 
reports exist in the literature evaluating the use of robotics 
for spinal decompression signifying a marked void in need 
of future study. 

Robot-assisted TLIF

TLIF is a common approach for treatment of degenerative 

Figure 3 The Mazor X preoperative planning software (Medtronic, 
Memphis, TN, USA). The software allows a surgeon to pre-
plan trajectories for all screws to allow for easy intraoperative 
rod placement and also to ensure good, anatomical placement of 
all instrumentation. Osteotomies and interbody fusions can also 
be preplanned. The software will then simulate the anticipated 
correction given the specific operative plan.
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spinal pathology introduced by Harms and Rolinger in 
1982 to address some of the limitations associated with 
posterior lumbar interbody fusions (PLIF) (65). The main 
advantages of TLIF over a PLIF include a reduction in 
thecal sac and nerve root retraction, avoidance of midline 
scar tissue in revision cases, and circumferential fusion from 
a unilateral approach (66-68). In 2003, Foley et al. published 
their initial experience using tubular, minimally invasive 
retractor to perform a TLIF (69). Since then, multiple 
studies have reported reduced blood loss, less post-operative 
pain, decreased narcotic use, and shorter length of stay 
when using this minimally invasive approach as opposed 
to the traditional open approach (66,69,70). Chenin and 
Snyder reported their surgical experiences utilizing ROSA 
(Medtech Surgical, Inc., New York, NY, USA) spine robot 
and intraoperative O-arm CT navigation for minimally 
invasive TLIFs (71,72). This was not a controlled study, but 
rather a report of feasibility and integration of robotics into 
the TLIF workflow.

In another study, 96 patients with adult degenerative 
scoliosis underwent robot-assisted minimally invasive TLIF 
combined with the use of a gelatin sponge impregnated 
with a mixture of steroid, anesthetic, and a neuropathic 
drug. The MAZOR robot was used to instrument the spine 
in this series (73). 

A retrospective study by Cui et al. investigated the 
efficacy of a robot-assisted MIS TLIF versus a traditional 
open approach for treatment of spondylolisthesis. The 
robot-assisted approach had less blood loss, shorter 
hospital length of stay, shorter time to first ambulation, 

less pain on post-operative day 3, and more precise pedicle 
screw placement. However, the robot-assisted cohort 
was subjected to longer operations and more radiation  
exposure (74). This method proved to be feasible and safe in 
another study and was associated with short length of stay 
and short-term analgesia effect though this study failed to 
include a control cohort for comparison (73). 

There are unpublished reports of using a robot to guide a 
surgeon on the placement of pre-planned bony osteotomies 
for a precise facetectomy. This method allows for an exact 
detachment of the superior articular process just above 
the pedicle for optimal decompression and subsequent 
visualization during a TLIF (Figure 4). 

Robotically-guided facet decortication

Currently, in spinal surgery, robots serve simply as guides to 
aid in pedicle screw insertion. However, their applications 
in spinal surgery will continue to grow. Robotic spinal 
decompression has been studied in a porcine model, proving 
its efficacy (64). Spinal robots can provide precise guidance 
to any area of the spine that has been appropriately imaged 
and registered. In minimally invasive fusion operations, 
surgeons frequently attempt to decorticate the facets to 
provide another potential site of arthrodesis. Using the 
guidance of the robot, a surgeon can very easily access 
and decorticate a facet as seen in Figure 5. Utilizing the 
preoperative plan, the robotic arm simply swings in to 
position as if a pedicle screw were being inserted. However, 
rather than inserting a pedicle screw or tap, a large burr is 

A B C

Figure 4 Robot-assisted transforaminal lumbar interbody fusion (TLIF). (A) Preoperative plan for an L3–4 TLIF. Note the white arrow 
pointing to the line cranial to the L4 pedicle. This line represents the planned osteotomy and was used by the surgeon intraoperatively to 
precisely execute an osteotomy of the superior articular process. (B) The intraoperative plan simulating the placement of the interbody cage 
and the expected correction. (C) Intraoperative fluoroscopic X-ray showing placement of instrumentation mirroring the preoperative plan. 
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inserted through the guide to facilitate facet decortication. 

Robotics and navigation

In  Sep tember  2018  Medt ron ic  a cqu i red  Mazor 
Robotics. Soon thereafter, Medtronic announced they 
had developed a new robotics platform that combined 
their intraoperative CT-based spinal navigation system 
with the Mazor X robotic guidance platform. As seen in  
Figure 6, the combination of these technologies allows 
for real time instrument tracking while also still utilizing 
the pre-planned, robotically-guided pedicle screws. This, 
theoretically, adds another layer of safety to robotic pedicle 
screw instrumentation as any deviation from the planned 
trajectory would appear as a deviation from the plan on the 
navigation screen.

Robotics and anterior spinal surgery

The original report of ALIF dates to the early 1930’s (75). 
Since then multiple different anterior approaches to the 
lumbar spine have been entertained. In 1963, Harmon 
described the retroperitoneal approach to the anterior 
lumbar spine (76). The first attempt to apply MIS principles 
to the exposure of the anterior spine occur in the mid-1990s 
when Mathews and Zucherman first introduced the idea 
of the laparoscopic ALIF (12,77). Despite early promising 
results, a high complication rate, high rate of laparoscopic 
to open conversion, and a longer operative time resulted in 
this surgical technique falling out of favor. In 1999 Regan 
et al. conducted a large multi-center study comparing 
laparoscopic and open ALIFs and reported shorter hospital 
stay and reduced operative blood loss in laparoscopic 
cohort. While the complication rate was comparable 
between the two approaches, laparoscopic cohort had a 
higher rate of re-operation at 6 months and 10% of patients 
required conversion to the open approach surgery (78). 
Based on preliminary results, it was felt that the laparoscopic 
approach did not offer enough of an advantage to justify 
the long learning curve and technical difficulty associated 
with the procedure (75). In 1997 Mayer became the first to 
popularize the muscle sparing, minimally invasive approach 
utilized by majority of surgeons today (79). The minimally 
invasive technique is associated with less blood loss, shorter 
operative time, and improved clinical outcomes (80). In 
another large series, 686 patients underwent the mini-open 
approach described by Mayer with exposure time between 
18.7 and 38.4 minutes depending on the disc level (81).

The da Vinci Surgical system is a telemanipulator 
robot that was FDA approved for laparoscopic surgery 

A B

Figure 6 Navigated robot. (A) Mazor X Stealth Edition (Medtronic, Memphis, TN, USA). The combination of Stealth Navigation via an 
intraoperative O-arm scan and the Mazor X System. (B) This combination of technologies allows for real time visual feedback during the 
placement of pedicle screws. This also allows the robot to potentially be used for other applications, such as decompressions or osteotomies, 
as the ability to actively navigate the robot allows for a second layer of safety.

Figure 5 Mazor X preoperative planning software showing 
preplanned trajectories into the facet joints. This technique allows 
the robot to guide precise decortication of the facet joints to 
facilitate arthrodesis in conjunction with pedicle screws and an 
interbody graft. 
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applications in 2000. The da Vinci system has been 
popularized and shown to be beneficial in numerous 
surgical specialties including gynecology, urology, and 
general surgery. This system is quite different from the 
current spinal robotic systems that act as pedicle insertion 
guides. The da Vinci system allows the robot to become an 
extension of the surgeon’s hands. It offers high definition, 
stereoscopic vision that can magnified up to 10× (82). Some 
surgeons have advocated for the use of the da Vinci Surgical 
systems robot to both expose the lumbar spine and help 
place instrumentation as an attempt to improve on the 
muscle sparing, retroperitoneal ALIF and the lackluster 
results of the laparoscopic approach.

Troude et al. performed an anatomical study proving 
the feasibility of using the da Vinci to perform either an 
anterior or oblique lumbar interbody fusion (83). Lee et al. 
retrospectively reviewed eleven cases in which they used the 
da Vinci robot to place anterior lumbar interbody grafts. 
All patients were noted to be fused on long term follow-up 
and there no major complications or conversions to open 
surgery. They did point out that mobilizing the vessels at 
L4–5 was quite difficult and time-consuming but could be 
done safely (82). 

Beutler et al. developed a transperitoneal approach to 
L5–S1 utilizing the da Vinci system. After refining their 
technique on both a porcine and human cadaveric model, 
they presented a single case of a single level, standalone 
interbody fusion. They postulate that many of the 
advantages of robot-assisted abdominal surgery as reported 
in the general surgery, gynecologic, and urologic literature 
would apply to robotic ALIFs. Per Beutler, one would 
expect “decreased hospitalization time, lower morbidity, 
lower blood loss, [and] lower complication rates” (84).

In the literature, there have not been many attempts 
to adapt the da Vinci system to posterior spine surgery. 
Currently, it is only FDA approved for abdominal surgery. 

Conclusions

Currently, the use of robots in spinal surgery is chiefly 
limited to the implantation of pedicle screws. However, 
many novel uses are likely on the horizon. With current 
technology, precise, robotically-guided facetectomies and 
facet decortication is possible. This implies a future in which 
surgeons utilize software to pre-plan minimally invasive 
decompressions and execute these plans with precision by 
utilizing a robotic arm for guidance. Technology does not 
currently allow for true, autonomous robotic spine surgery. 

Rather, ever-evolving cobots seem poised to make MIS 
surgery safer and more efficient. 
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