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Introduction 

Biliary cancers (BCs) are rare but heterogeneous, and 
comprised of intrahepatic cholangiocarcinoma (IHCC), 
extrahepatic cholangiocarcinoma (EHCC) and gallbladder 
cancers. They may arise along any portion of the bile duct 
system, from the neoplastic proliferation of cholangiocytes, 
the epithelium of the bile ducts. While all three anatomic 
groups fall under BC, our increased understanding has 
allowed us to rationalize that each may be in fact distinct 
diseases, with differences in patterns of recurrence and 
prognosis (1). Pre-clinical studies have reinforced this 
thought process, where immunohistochemical studies from 
BC samples revealed phenotypic traits of cholangiocytes 
and progenitor cells consistent with their anatomic sites 
of origin, confirming the heterogeneity between the three 
groups (2). Progenitor cells from the canals of Hering have 

been identified in IHCC, while those within the peribiliary 
glands have been identified in EHCC and gallbladder 
cancers, respectively (2-5). Furthermore, the increased 
availability of next-generation sequencing panels has 
facilitated this thought process by allowing us to understand 
the tumor somatic variants and genomic heterogeneity 
between the three groups. Herein, we will the current 
treatment in BC, genomic landscape in BC and its role in 
treatment selection and integration in clinical trials. 

Therapeutic regimens for biliary tract cancer

Chemotherapeutic treatment options

In patients who are diagnosed with early stage disease, 
surgical resection, regardless of anatomic location, is the 
sole curative treatment option (6). Unfortunately, most 
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patients present with advanced disease at diagnosis, where 
no curative treatments exist and are primarily supportive. 
Based on ABC-02, a large, randomized stage III trial 
conducted by Valle et al., the combination of gemcitabine 
and platinum based chemotherapy has become the standard 
approach in treating advanced BC, for all anatomic groups. 
The combination demonstrated superior clinical efficacy 
when compared to single-agent gemcitabine (7). Patients 
who received the combination experienced an absolute 
3.6 months survival benefit in comparison to gemcitabine 
monotherapy with similar rates of adverse events. Eighty 
percent of patients experienced disease control. Despite this, 
the vast majority of patients develop treatment resistance 
after few months on therapy and the overall survival (OS) 
remains at less than 1 year (7). Outcomes in second-line 
therapies after gemcitabine platinum-based therapy failure 
result in dismal outcomes with progression-free survival 
(PFS) only several months, highlighting the need to develop 
new and effective therapies in BTC (Table 1) (8-14).

Targeted therapies and the role of cancer genomics in its 
treatment selection process

Over the past two decades, the discovery and successful 
targeting of genes involved in oncogenesis has helped 
increase our understanding of targeted management of 
solid tumor malignancies. Pre-clinical studies revealing a 
high proportion of genomic alterations in critical signaling 
pathways involved in tumor proliferation, growth and 
treatment resistance has led to an interest in developing 
clinical trials investigating novel targeted therapies in BC. 

While early studies investigating novel agents targeting 
relevant signaling pathways demonstrated interesting anti-
tumor activity in a small proportion of patients, the overall 

results have been disappointing, with outcomes largely 
similar to chemotherapy agents in the refractory setting 
(Table 2) (15-25). This may be in part due to the utilization 
of non-selected trials, where patients are eligible for 
enrollment regardless of their tumor genomic alterations. 
Furthermore, the challenge to have sufficient enrollment 
and timely completion of clinical trials has led to lumping 
all sites of BC into its eligibility, irrespective of anatomic 
subtype. 

Through the availability and implementation of next 
generation sequencing technologies, recent reports have 
allowed us to understand the genomic landscape present 
in BC, as well as understand and identify actionable 
molecular alterations in this disease. While studies have 
identified common mutations in KRAS (up to 20%), BRAF 
(5%) and epidermal growth factor receptor (EGFR) (3%) 
in gallbladder, IHCC and EHCCs, targetable mutations 
are enriched in IHCC that have only been identified in 
this anatomic group, suggesting differing influences in 
pathogenesis and reinforcing the thought process that BC 
is comprised of three heterogenous diseases. Herein, we 
briefly discuss common targetable mutations, while focusing 
on recently identified genes that may be treated with novel, 
targeted therapies. 

ErbB family signaling pathway in BC

Four receptors belong to the ErbB family of receptor 
tyrosine kinases: EGFR, ErbB-2 (HER-2 or HER-2/neu), 
ErbB-3 (HER-3) and ErbB-4 (HER-4). ErbB receptors 
and the binding to its ligands are integral to biliary 
carcinogenesis. Anti EGFR and HER-2 therapies have 
demonstrated interesting anti-tumor activity in preclinical 
studies (27), resulting in their investigation in clinical trials.

Table 1 Clinical trials for patients refractory to prior gemcitabine/platinum therapy

Author Treatment Phase No. of patients PFS (months) OS (months) ORR (%)

He et al. (8) FOLFOX-4 II 37 3.1 NR 21.6

Paule et al. (9) Gemcitabine/oxaliplatin + cetuximab II 9 4.0 7.0 22.0

Sasaki et al. (10) Irinotecan II 13 1.8 6.7 7.7

Suzuki et al. (11) S-1 II 40 2.5 6.8 7.5

Croitoru et al. (12) Gemcitabine/5-FU II 17 3.2 13.2 17.6

Fornaro et al. (13) Gemcitabine combination Retrospective 174 3.0 6.6 10.2

PFS, progression-free survival; OS, overall survival; ORR, overall response rate.



295Journal of Gastrointestinal Oncology Vol 8, No 2 April 2017

© Journal of Gastrointestinal Oncology. All rights reserved. J Gastrointest Oncol 2017;8(2):293-301jgo.amegroups.com

EGFR signaling pathway

Preclinical work has identified EGFR to be aberrantly 
activated in BC, across all three anatomic groups (28,29). 
The EGFR signaling pathway is integral in epithelial cell 
growth and proliferation, where preclinical studies have 
shown tumor regression with EGFR inhibition (28,30), 
forming the rationale for targeting EGFR for treatment. 
While initial small studies demonstrated promising anti-
tumor activity with anti-EGFR therapy in combination with 
gemcitabine-based chemotherapy (31,32), these findings 
were unable to translate into a significant clinical benefit in 
larger randomized clinical trials (33,34). 
One rationale for the limited clinical activity seen with anti-
EGFR therapies may be due to the activation of downstream 
effectors, including the PI3K/Akt and mitogen activated 
protein kinase (MAPK) pathways. The MAPK pathway 
is a downstream signaling pathway, where upstream 
receptor tyrosine kinases (EGFR, TGF-β, etc.) result in the 
phosphorylation, activation and signal transduction via Ras, 
Raf, MEK and ERK. Activated ERK (pERK) translocates to 
the nucleus and affects many cellular responses. In the PI3K/
Akt pathway, PI3K activates Akt (pAkt), which mediates its 
effects through various downstream substrates. Activation of 
Akt and ERK contribute to tumor proliferation, invasiveness 
and chemotherapy resistance, representing rational 
therapeutic targets against these pathways (35,36). 

Both pathways  are  frequent ly  act ivated,  of ten 
concomitantly in all subtypes of BC (37-39). While 
the overall results of several studies investigating were 
unimpressive, interesting clinical activity was observed in 
several patients with advanced, refractory BC who received 
MEK and Akt inhibitors (15,16,40). The clinical benefit 
from targeting single signaling pathways is often short lived 
due to mechanisms of resistance including communication 
between parallel signaling pathways, activation of 
downstream effectors and negative loop feedback inhibition.

HER-2/neu gene

Human growth factor receptor 2, also known as HER-2/neu 
or ERBB2, is an oncogene encoded by the ERBB2 gene, and 
is a member of the human EGFR family. Its amplification 
or overexpression has been shown to play an important 
role in the development and progression of several solid 
tumor malignancies, and is an effective therapeutic target 
in breast and gastric cancer (41-43). Studies evaluating  
HER-2 overexpression in BC have identified HER-2 
mutations in gallbladder (about 10%) and EHCCs (up to 
25%), and have been associated with a more aggressive 
phenotype (27,44). While small case series demonstrated 
anti-tumor activity with anti HER-2 directed therapy in 
patients whose tumors expressed HER-2 overexpression or 
amplification, these findings did not translate in BC patients 

Table 2 Results from clinical trials with select molecularly targeted agents

Author Treatment Target
Percent of patients in 
refractory setting (%)

PFS 
(months)

OS 
(months)

ORR 
(%)

Bekaii-Saab et al. (15) Selumetinib MEK 39 3.70 9.80 12.0

Finn et al. (16) Binimetinib MEK 43 2.14 4.78 7.0

Ahn et al. (17) MK2206 Akt 100 0.50–6.60 2.20–20.20 0

Ramanathan et al. (18) Lapatinib HER-2 65 1.80 5.20 0

Peck et al. (19) Lapatinib HER-2 100 2.60 5.10 0

Philip et al. (20) Erlotinib EGFR 57 2.60 7.60 8.0

Lubner et al. (21) Erlotinib + bevacizumab EGFR + VEGFR 0 4.40 9.90 11.0

El-Khoueiry et al. (22) Sorafenib VEGFR, PDGFR, Raf 0 3.00 9.00 0

Bengala et al. (23) Sorafenib VEGFR, PDGFR, Raf 56 2.30 4.40 2.0

El-Khoueiry et al. (24) Erlotinib + sorafenib EGFR, VEGFR, 
PDGFR, Raf

0 2.00 6.00 6.0

Yi et al. (25) Sunitinib VEGFR, PDGFR, RET 100 1.70 4.80 8.9

Buzzoni et al. (26) Everolimus mTOR 100 3.20 7.70 5.1

PFS, progression-free survival; OS, overall survival; ORR, overall response rate; EGFR, epidermal growth factor receptor.
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(18,19,45,46). However, these studies were not limited 
to HER-2 overexpressing tumors and allowed all comers. 
Improved patient selection, in addition to dual anti HER-2 
targeted therapies may result in improved clinical efficacy, 
and are a consideration for future clinical trials.

Vascular endothelial growth factor (VEGF) 
pathway in BC

Angiogenesis is a mechanism by which tumor cells can 
proliferate and is controlled by VEGF. In addition to 
angiogenesis and vascular permeability, VEGF mediated 
signaling facilitates signaling in tumor cells that contribute 
to cholangiocarcinogenesis, including facilitating the 
function of tumor stem cells, tumor invasiveness and 
modulate regulatory T cells that can contribute to 
treatment resistance (47). It is highly expressed in BC, 
in up to 75%, and is associated with a more aggressive 
phenotype and poorer prognosis (48). Therapies targeting 
VEGF, including monoclonal antibodies against VEGF 
(bevacizumab) or multi-targeted small molecule inhibitors 
with activity against VEGFR have failed to demonstrate any 
significant clinical activity in randomized clinical trials in 
BC (21,49-52). While there is no indication for anti-VEGF 
therapies in BC at this time, given its activity in other solid 
tumors, it remains a therapeutic target of interest. The 
identification of prognostic and predictive biomarkers may 
improve patient selection and identify patients who are 
likely to benefit from anti-VEGF therapies.

Novel genomic alterations identified in IHCC

BRAF mutations 

As described above, the MAPK pathway regulates cellular 
proliferation, survival and migration and is constitutively 
activated in BC. Mutation of the BRAF  gene is  a 
mechanism of aberrant activation of the MAPK pathway 
and occurs in many solid tumors, including melanoma, 
colorectal cancer and non-small cell lung cancer (53-56). 
The most common BRAF mutation results in a single 
amino acid substitution of glutamic acid to valine at 
residue 600 (V600E). Larger studies suggest BRAF 
V600E mutations are exclusive to IHCC, with an 
incidence of 3–5% (57,58). The presence of a BRAF 
mutation has been associated with a more aggressive 
phenotype, with a higher tumor stage and likelihood 
of lymph node involvement at diagnosis (59). While 
inhibition of BRAF with small molecule inhibitors have 
demonstrated anti-tumor activity in various other BRAF-
mutated malignancies and have become a standardized 
treatment in BRAF-mutated melanoma, its therapeutic 
relevance in IHCC is unknown, but represents an intriguing 
therapeutic option for this disease (60-66). Ongoing early 
clinical trials are investigating the role of BRAF mutations 
as a potential targetable mutation in BC (Table 3).

Isocitrate dehydrogenase 1/2 (IDH1/2)

IDH1 and IDH2 function to encode metabolic enzymes 

Table 3 Ongoing clinical trials with select molecularly targeted agents

Target Agent Trial design NCT number Comment

IDH1 AG-120 Phase I NCT02073994 Tumors harboring IDH1 mutations with 
failure of prior standard therapy

IDH2 AG-221 Phase I/II NCT02273739 Tumors harboring IDH2 mutations including 
glioma and angioimmunoblastic T-cell 
lymphoma

FGFR2 BGJ398 Phase II NCT02150967 FGFR2 fusions or other FGFR mutations

Ponatinib Phase II NCT02265341 FGFR2 fusions

EGFR or VEGF Panitumumab or bevacizumab 
with chemotherapy

Phase II NCT01206049 KRAS wild type

ALK/ROS1 LDK378 Phase II NCT02374489 ROS1 or ALK overexpression

BRAF + MEK Dabrafenib + trametinib Phase II NCT02034110 BRAF V600E mutated cancers

IDH, isocitrate dehydrogenase; FGFR, fibroblast growth factor receptor; EGFR, epidermal growth factor receptor.
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that normally convert isocitrate, a metabolic intermediate, 
to α-ketoglutarate. Somatic mutations in IDH1/2 can 
occur in upwards of 20% of IHCC and result in abnormal 
enzymatic activity, allowing them to reduce α-ketoglutarate 
to 2-hydroxyglutarate, which has been identified as an 
“oncometabolite” that inhibits enzymatic activity dependent 
on α-ketoglutarate (67-69). This results in altered cell 
maturation, differentiation and survival. Pre-clinical 
studies have confirmed the role of IDH mutations in the 
pathogenesis of intrahepatic BC, where their mutations 
inhibit hepatocyte differentiation and induce proliferation 
of hepatic progenitors and the development of premalignant 
biliary lesions (70). Based on early promising results in 
preclinical studies, specific inhibitors for IDH1 and IDH2 
are currently under investigation in clinical trials (Table 3).

Fibroblast growth factor receptor (FGFR)

The FGFR comprise a family of highly conserved tyrosine 
kinase receptors consisting of four members (FGFR1, 
2, 3 and 4). These receptors bind to one of 18 secreted 
glycoprotein ligands, or fibroblast growth factors (FGFs), 
to their extracellular domain (71). Several FGFR2 
chromosomal fusions, with several genomic partners, 
have been identified in IHCC (72-77). Preclinical studies 
have identified several FGFR2 fusions (FGFR2-PPHLN1, 
FGFR2-BICC1, FGFR2-TACC3, AHCYL1) specifically in 
intrahepatic BC, where genomic sequencing identified 
an incidence ranging up to 50% of intrahepatic BC 
patients. Upon its fusion, activation of the tyrosine kinase 
protein results in the activation of the FGFR2 receptor 
with autophosphorylation and activation of downstream 
signaling pathways, including Ras/MAPK, PI3K/Akt and the 
signaling transducer and activator of transcription (STAT) 
pathway, which play a critical role in the regulation of cell 
proliferation, differentiation, and survival (78). Additionally, 
identification of an association between the presence of 
KRAS mutations and FGFR2 fusions suggest a mutual role 
in driving oncogenesis. 

While pre-clinical studies and isolated case reports have 
demonstrated anti-tumor activity with FGFR inhibition in 
intrahepatic BC exhibiting FGFR2 fusions, its actual role 
in oncogenesis and its sensitivity as a targetable actionable 
mutation is unknown. Ongoing phase II studies, specifically 
in BC patients with FGFR2 mutations are ongoing and 
may reveal the potential therapeutic benefit from FGFR 
inhibition (Table 3).

ROS1 gene

ROS1 fusions, a proto-oncogene, have been identified in 
up to 9% of IHCC (79). Its role as an oncogenic driver 
and potential therapeutic target has been recently validated 
in preclinical studies, where its inactivation led to a 
potent anti-tumor effect (80). While its role as a potential 
therapeutic target has been confirmed in other solid tumor 
malignancies, notably non-small cell lung cancer (81), 
further validation will be required to assess its frequency 
in BC in addition to assessing its relevancy as a potential 
targetable mutation in patients exhibiting ROS1 fusions.

Notch pathway

The Notch signaling pathway plays an important role in 
embryogenesis and the proper structural development of 
the liver. It is also plays an important role in oncogenesis, 
where its dysregulation results in increased inflammation 
and development in intrahepatic BC. Mouse models with 
increased Notch1 expression resulted in the formation 
of intrahepatic BC, reinforcing its importance in tumor 
development and growth (82). Notch receptor 1–4 
upregulation has been identified in all anatomic subsets 
of BC, and in up to 80% of intrahepatic BC (83,84). In 
addition to its role in BC, Notch expression has also been 
implicated in the development of primary hepatocellular 
carcinomas (HCC). Interestingly, a study utilizing mouse 
models driven by Ras, demonstrated that the inhibition 
of specific Notch receptors resulted in reducing HCC 
like primary tumors, while leading to the development of 
primary BC like tumors (85). Thus, while targeting Notch 
represents an intriguing therapeutic option in BC, further 
studies are needed to validate its role in this disease.

Conclusions

BCs are a rare, heterogeneous disease group that have 
limited treatment options and are associated with universally 
poor outcomes. Recent advances in sequencing technologies 
have resulted in an increased understanding of the genomic 
alterations present in BC, and understand the differences in 
the genomic makeup in each anatomic subgroup. Through 
these efforts, the identification of targetable mutations has 
allowed us to develop and tailor novel therapeutic agents 
against these genes of interest. The completion of ongoing 
prospective trials may result in the shift in the treatment 
paradigm in BC, where patients will be able to receive 
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treatment tailored specifically based on each individual’s 
tumor genomic profile. Prospective correlative studies that 
include the utilization of a biorepository will allow us to 
understand mechanisms of treatment efficacy, study the 
process of treatment resistance, and importantly, identifying 
biomarkers of secondary resistance that may allow for 
development of alternate therapeutic options.
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