Molecular spectrum of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC somatic gene mutations in Arab patients with colorectal cancer: determination of frequency and distribution pattern

Humaid O. Al-Shamsi ${ }^{1,2,3}$, Jeremy Jones ${ }^{4}$, Yazan Fahmawi ${ }^{1}$, Ibrahim Dahbour ${ }^{1}$, Aziz Tabash ${ }^{1}$, Reham Abdel-Wahab ${ }^{1,5}$, Ahmed O. S. Abousamra ${ }^{1}$, Kenna R. Shaw ${ }^{3}$, Lianchun Xiao ${ }^{1}$, Manal M. Hassan ${ }^{1}$, Benjamin R. Kipp ${ }^{6}$, Scott Kopetz ${ }^{1}$, Amr S. Soliman ${ }^{7}$, Robert R. McWilliams ${ }^{4}$, Robert A. Wolff ${ }^{1}$
${ }^{1}$ Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA; ${ }^{2}$ Khalifa Bin Zayed Al Nahyan Foundation, Abu Dhabi, United Arab Emirates; ${ }^{3}$ Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA; ${ }^{4}$ Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA; ${ }^{5}$ Clinical Oncology Department, Assiut University, Assiut, Egypt; ${ }^{6}$ Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA; ${ }^{7}$ Department of Epidemiology, the University of Nebraska Medical Center, Omaha, Nebraska, USA
Contributions: (I) Conception and design: HO Al-Shamsi, J Jones, S Kopetz, RA Wolff, AS Soliman; (II) Administrative support: Y Fahmawi, A Tabash; (III) Provision of study materials or patients: S Kopetz, KR Shaw, BR Kipp, RR McWilliams; (IV) Collection and assembly of data: HO AlShamsi, J Jones, Y Fahmawi, A Tabash; (V) Data analysis and interpretation: HO Al-Shamsi, Y Fahmawi, R Abdel-Wahab, L Xiao; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.
Correspondence to: Humaid O. Alshamsi, MD. Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA. Email: halshamsi@mdanderson.org.

Abstract

Background: The frequency rates of mutations such as KRAS, NRAS, BRAF, and PIK3CA in colorectal cancer (CRC) differ among populations. The aim of this study was to assess mutation frequencies in the Arab population and determine their correlations with certain clinicopathological features. Methods: Arab patients from the Arab Gulf region and a population of age- and sex-matched Western patients with CRC whose tumors were evaluated with next-generation sequencing (NGS) were identified and retrospectively reviewed. The mutation rates of $K R A S, N R A S, B R A F, P I K 3 C A, T P 53$, and $A P C$ were recorded, along with clinicopathological features. Other somatic mutation and their rates were also identified. Fisher's exact test was used to determine the association between mutation status and clinical features.

Results: A total of 198 cases were identified; 99 Arab patients and 99 Western patients. Fifty-two point seven percent of Arab patients had stage IV disease at initial presentation, 74.2% had left-sided tumors. Eighty-nine point two percent had tubular adenocarcinoma and 10.8% had mucinous adenocarcinoma. The prevalence rates of KRAS, NRAS, BRAF, PIK3CA, TP53, APC, SMAD, FBXW7 mutations in Arab population were $44.4 \%, 4 \%, 4 \%, 13.1 \%, 52.5 \%, 27.3 \%, 2 \%$ and 3% respectively. Compared to $48.4 \%, 4 \%, 4 \%, 12.1 \%$, $47.5 \%, 24.2 \%, 11.1 \%$ and 0% respectively in matched Western population. Associations between these mutations and patient clinicopathological features were not statistically significant. Conclusions: This is the first study to report comprehensive hotspot mutations using NGS in Arab patients with CRC. The frequency of KRAS, NRAS, BRAF, TP53, APC and PIK3CA mutations were similar to reported frequencies in Western population except SMAD4 that had a lower frequency and higher frequency of $F B X W 7$ mutation.

Keywords: Somatic mutations; colorectal cancer (CRC); next-generation sequencing (NGS); Arab population

Submitted Jul 14, 2016. Accepted for publication Sep 07, 2016.
doi: 10.21037/jgo.2016.11.02
View this article at: http://dx.doi.org/10.21037/jgo.2016.11.02

Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed cancer in males and the second most common in females, worldwide (1). CRC incidence has been increasing in Arab countries such as Kuwait and Saudi Arabia (2,3). In Saudi Arabia, the incidence of CRC accounted for 10.4% of all cancers in 2010; it was the most common cancer in males and the third most common in females, after breast and thyroid cancers (4). In the Kuwaiti population, CRC was the most common cancer in males (11.3%) and the second most common in females (9.1%) in 2000-2009 (5). Gene mutation and defective cell regulation are important processes in the development of CRC (6). Accumulation of these mutations, including mutations in KRAS, NRAS, BRAF and PIK3CA, activate multiple signaling pathways, such as RAS-RAF-MAPK and PI3K-PTEN-AKT, that play a major role in regulating cell proliferation, angiogenesis, cell motility and apoptosis (7-9).

Assessment of genetic mutations is an essential element in the modern era of personalized cancer treatment. In the past years, our understanding of some of these mutations and their predictive and prognostic potential has revolutionized the treatment for various malignancies, with improved outcome and patient care [e.g., targeting wildtype $R A S$ in metastatic colon cancer (10), targeting HER2 in gastric adenocarcinoma] (11).

Anti-EGFR medications such as cetuximab and panitumumab are used for treatment of wild-type $R A S$ metastatic CRC, but patients with mutations in the extended RAS family are resistant to these medications. Similarly, the patients with BRAF and the PIK3CA mutation have shown negative response to treatment with $E G F R$ inhibitors (12-18).

The frequency rates of these mutations in CRC differ between populations. Zhang et al. have reported differences in the genetic profiles of KRAS, NRAS, PIK3CA, and $B R A F$ at mutation hotspots between CRC patients from China and those from Western countries. The rate of these mutations in Arab patients with CRC is not well defined (9). The evaluations of the rates of these mutations in Arab population with CRC have been limited to few mutations including $K R A S$ and $B R A F(19,20)$.

The standard definition of the Arab world comprises the 22 countries and territories of the Arab League. The Arab Gulf countries which are also part of the Arab League are: Saudi Arabia, United Arab Emirates, Kuwait, Qatar, Bahrain and Oman.

The rate of some mutations of CRC in the Arab
population from the Arabian Peninsula has been reported previously. A study by Siraj et al. reported a BRAF mutation rate of 2.5% in a Saudi Arabian population (19).

The rate of KRAS in Arab population from outside the Arab Gulf population has been reported, Elbjeirami et al. reported a KRAS mutation rate of 44% in a Jordanian population (20). The ratio of patients with mutated versus wild-type $K R A S$ in the Jordanian study was similar to that reported in Western countries. Studies from Egypt showed high proportion (35%) of young onset CRC in patients under age 40 . The studies also showed distinct KRAS and microsatellite instability (MSI) profiles between young and old CRC patients in Egypt $(21,22)$. DNA methylation was also different in tumors of CRC patients from Egypt, Jordan, and Turkey (23).

The largest study, which included 500 patients from Saudi Arabia, assessed KRAS and BRAF using polymerase chain reaction (PCR) and DNA sequencing; the reported frequency rates were 30.1% and 2.4%, respectively (24). However, no studies have utilized next-generation sequencing (NGS) to assess in-depth mutations in Arab patients with CRC.

In the present study, we aimed to evaluate hotspot mutations by NGS in an Arab population from the Gulf countries with CRC and explored correlations of the mutations with clinicopathological features in this understudied population.

Methods

Objectives

The primary objective of the study was to determine the frequencies of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC mutations, as well as other somatic mutations, in CRC tumors from 99 Arab patients from the Gulf countries and to compare the results with 99 Western matched patients from our database at MD Anderson Cancer Center and with the frequencies among other populations. The secondary objective was to determine the relationships between these mutations and clinicopathological features of these patients.

Study design

We conducted a retrospective case-case study of Arabpatients from the Gulf countries who were treated in the U.S. at MD Anderson Cancer Center and the Mayo Clinic in Rochester, Minnesota. The electronic databases at both institutions were searched for all patients with a diagnosis
of CRC from 2010 to 2014 who had standardized hotspot mutation testing using a 46 - or 50 -gene multiplex platform by NGS. The electronic records then were searched manually with various criteria to identify patients from the Arabian Peninsula using country of origin, primary language (Arabic), and sponsoring country that covering the medical expenses for the patient and matched Western patients that were treated at MD Anderson Cancer Center. We identified 99 Arab patients with CRC and there were matched (age, sex and type of testing 46- or 50 -gene, see below for testing details) with 99 Western patients who had the same testing during the same period. The study was approved by institutional ethics board of MD Anderson Cancer Center (NCT01772771) and Mayo Clinic (15-000563).

Clinicopathological information was abstracted from the medical records for the following variables: age (≤ 50 or >50 years), sex (male or female), tumor site (right colon, left colon, or rectum), histological type, differentiation, MSI, and TNM stage.

We also conducted a comprehensive literature search for all studies that reported mutation rates in CRC tumors in populations around the world (Middle Eastern, Western, and Asian population). The method of detecting these mutations and the result for each population were recorded. The results were then pooled by region and compared with those from other regions and from our current study population.

Mutations assessments

All the samples (60% primary tumor and 40% other metastatic lesions) were originally evaluated using hematoxylin and eosin staining for tumor cellularity. DNA was extracted, purified, and quantified after hematoxylin and eosin staining. Genomic analysis samples were evaluated using NGS using the Ion AmpliSeq Cancer Panel (Life Technologies, Grand Island, NY, USA) test to assess hotspot mutations in 46 genes (38 patients). Testing later expanded to 50 genes by adding $E Z H 2, I D H 2, G N A 11$, and GNAQ (61 patients). Table S1 lists all tested genes.

Statistical analysis

Fisher's exact test was used to determine the association between mutation status and clinical factors, as well as the association between markers.

The analysis determined the association between mutation status of each marker (i.e., KRAS, NRAS, BRAF,

PIK3CA, TP53, APC) with clinicopathological features, especially histopathological type, tumor differentiation, tumor site, patients' age, and sex and the association between markers. For all statistical analysis, we used IBM SPSS version 21.0 (IBM Corp., Armonk, NY, USA), and the P value was considered to be significant if it was less than 0.05 .

Results

Study population

A total of 198 cases were identified; 99 Arab patients and 99 age- and sex-matched Western patients. Of the 99 Arab patients, 74 (74.7%) patients were from MD Anderson and 25 (25.3%) were from the Mayo Clinic. All of Western patients were treated at MD Anderson Cancer Center. The majority of Arab patients were from Saudi Arabia (38.3\%) and the United Arab Emirates (34.3\%). The major ethnicity of Western patients were White (79%) followed by Black Afro-American (11\%) and Hispanic (10\%).

Clinicopathological features

The demographic characteristics and clinicopathological variables for the Arab and Western population are given in Table 1. The mean age of Arab and Western patients was 50.8 and 48.03 years respectively. Of the 99 Arab patients identified, 52.7% had stage IV disease at their initial presentation. Seventy-four point two percent had left-sided tumors including rectum, sigmoid colon and splenic flexure compared to 25.8% had right sided tumors including cecum, hepatic flexure, and transverse colon. Furthermore, the histology of tubular adenocarcinoma (89.2%) was higher than mucinous adenocarcinoma (10.8%). In addition, the percentage of patients with moderately differentiated histology and poorly differentiated histology were 71% and 23.7%, respectively. The clinicopathological variables of the Western population are given in Table 1.

Distribution of KRAS, NRAS, TP53, BRAF, PIK3CA, and APC in the 99 Arab patients with CRC

The rate of mutations in the 99 Arab patients and 99 Western matched patients with CRC using 46 -gene (38 patients) and 50 -gene (61 patients) panels in each cohort are given in Table 2.

Of the 4% of Arab patients with NRAS mutation, none

Table 1 Demographic characteristics and clinicopathological variables of 99 Arab patients with colorectal cancer a matched 99 Western patients

Characteristic	Arab patients $(\mathrm{N}=99)(\%)$	Western patients $(\mathrm{N}=99)(\%)$
Sex (\%)	$60(60.6)$	$61(61.6)$
Male	$39(39.4)$	$38(38.4)$
Female		
Testing type (\%)	$38(38.4)$	$38(38.4)$
46 genes	$61(61.6)$	$61(61.6)$

Age at diagnosis (mean \pm SD) [range]		
All	$50.80 \pm 13.62[20-77]$	$48.03 \pm 12.50[20-79]$
Male	52.70 ± 14.60	50.10 ± 13.30
Female	47.80 ± 11.50	44.60 ± 10.30
Age* (years) (\%)		
≤ 50	$47(47.5)$	$47(47.5)$
>50	$52(52.5)$	$52(52.5)$

The distribution of patients from the six Arab Gulf countries (\%)

Saudi Arabia	39	-
United Arab Emirates	34	-
Kuwait	11	-
Qatar	7	-
Bahrain	2	-
Oman	2	-
Not available	5	-

Race among Western patients (\%)

White	-	$79(79.8)$
Black African American	-	$11(11.1)$
Hispanic	-	$9(9.1)$

Primary tumor site (side of body)** (\%)

Left sided	$69(69.7)$	$64(64.6)$
Right sided	$24(24.2)$	$35(35.4$
Unknown (missing data)	$6(6.1)$	-

Primary tumor site (specific location)** (\%)

Ascending colon	$9(9.1)$	$7(7.1)$
Cecum	$7(7.1)$	$18(18.2)$
Hepatic flexure	$1(1.0)$	$4(4.0)$
Splenic flexure	$1(1.0)$	$2(2.0)$
Transverse colon	$5(5.0)$	$4(4.0)$
Descending colon	$6(6.0)$	$15(15.2)$
Sigmoid colon	$27(27.3)$	$18(18.2)$
Rectum	$37(37.4)$	$31(31.3)$
Unknown (missing data)	$6(6.1)$	-

Table 1 (continued)

Table 1 (continued)

Characteristic	Arab patients (N=99) (\%)	Western patients (N=99) (\%)
Histological type** (\%)		
Tubular adenocarcinoma	83 (83.8)	93 (94.0)
Mucinous adenocarcinoma	10 (10.1)	6 (6.0)
Unknown (missing data)	6 (6.1)	-
Tumor differentiation** (\%)		
Well	5 (5.1)	2 (2.1)
Moderate	66 (66.6)	79 (84.1)
Poor	22 (22.2)	13 (13.8)
Unknown (missing data)	6 (6.1)	-
TNM stage** (\%)		
1	0	3 (3.1)
11	3 (3.0)	6 (6.1)
III	41 (41.4)	15 (15.3)
IV	49 (49.5)	74 (75.5)
Unknown (missing data)	6 (6.1)	-
KRAS mutation (\%)		
Positive	44 (44.4)	48 (48.4)
Negative	55 (55.6)	51 (51.6)
NRAS mutation (\%)		
Positive	4 (4.0)	4 (4.0)
Negative	95 (96.0)	95 (96.0)
$B R A F$ mutation (\%)		
Positive	4 (4.0)	4 (4.0)
Negative	95 (96.0)	95 (96.0)
TP53 mutation (\%)		
Positive	52 (52.5)	47 (47.5)
Negative	47 (47.5)	52 (52.5)
APC mutation (\%)		
Positive	27 (27.3)	24 (24.2)
Negative	72 (72.7)	75 (75.8)

*, for 1 patient (1\%), age of diagnosis was not available; **, for 6 patients (6.1\%), data were not available for the primary tumor site, histological type, tumor differentiation, and TNM stage.
had KRAS mutation, in keeping with previous reports that these mutations are mutually exclusive (25). BRAF mutation was found in four Arab patients and was mutually exclusive of KRAS or NRAS mutations. Eight tumors of Arab patients had both KRAS and PIK3CA mutations. PIK3CA mutations were present in $8(8.1 \%)$ Arab patients with KRAS mutations, compared with only 5 Arab patients (5%) with

Table 2 The rate of mutations in 99 Arab patients and matched 99 Western cohort with CRC using 46 genes (38 patients) and 50 genes (61 patients) in each cohort		
CRC somatic mutation	No. of Arab patients with the mutation (\%)	No. of Western matched patients with the mutation (\%)
KRAS	$44(44.4)$	$48(48.4)$
NRAS	$4(4.0)$	$4(4.0)$
BRAF	$4(4.0)$	$4(4.0)$
PIK3CA	$13(13.1)$	$12(12.1)$
TP53	$52(52.5)$	$47(47.5)$
APC	$27(27.3)$	$24(24.2)$
FBXW7	$3(3.0)$	$11(11.1)$
SMAD4	$2(2.0)$	$1(1.0)$
GNAS	$2(2.0)$	$2(2.0)$
AKT1	$2(2.0)$	$1(1.0)$
PDGFRA	$2(2.0)$	$1(1.0)$
ATM	$3(3.0)$	$3(3.3)$
KIT1	$2(2.0)$	

CRC, colorectal cancer.
wild-type $K R A S$. This finding suggests that PIK3CA and $K R A S$ gene mutations represent overlapping subgroups in CRC.

Correlation of gene mutations with clinicopathological findings

A summary of the relationships among the gene mutations and clinicopathological features in Arab CRC patients is provided in Tables 3,4.

The associations between $K R A S, N R A S, B R A F$, PIK3CA, TP53 and APC mutations and Arab population clinicopathological features such as age, gender, family history, personal history of familial adenomatous polyposis (FAP), tumor site, tumor histology, differentiation, and stage were not statistically significant. An exception was a statistically significant association of TP53 mutation with age >50 years $(\mathrm{P}=0.009)$. PIK3CA and TP53 were statistically significantly associated with absence of an $A P C$ gene mutation $(\mathrm{P}=0.039$ and $\mathrm{P}=0.04)$, respectively.

Discussion

Here we present a large retrospective, two-center study that
evaluated the frequencies of $K R A S, N R A S, B R A F, T P 53$, $A P C$, and PIK3CA somatic mutations in a cohort of 99 Arab CRC patients. This is the first study that comprehensively evaluated hotspot somatic mutations in Arab patients with CRC.

The majority of the population from the current study was from Saudi Arabia and the United Arab Emirates, however, all the gulf countries share common tribal genetic origin of the population from the Arabian peninsula (26).

Our study utilized comprehensive NGS platform to analyze the mutational profile of Arab CRC patients and assess the frequency. The frequencies of $K R A S, N R A S$, $B R A F, T P 53$, and $A P C$ mutations. We were able to demonstrate similar mutational frequencies to those in most target genes compared with the Western population with the exception; however, PIK3CA which occurred at a lower frequency in the Arab population patients than in Western patients.

We performed a comprehensive literature review for somatic mutations testing in patients with CRC. The total number of cases were 2,981 in Middle Eastern countries (16 studies), 22,441 cases in Western countries (43 studies), and 8,053 in Asian countries (27 studies). Rate of mutations in each study, method of testing, pooled mutation rates based on geographical distribution and total pooled mutation rates from all reported studies to date are summarized in Table 5.

Wild-type $K R A S$ and $N R A S$ oncogenes encode a family of small proteins with homology to G-proteins that regulate cellular signal transduction (106). The $K R A S$ mutation frequency rate differs throughout the world. Soliman et al. reported that mutation of the $K R A S$ gene was uncommon in Egyptian CRCs in general (11% of patients), in contrast to Western cases (28% in sporadic CRCs), and was only identified in patients older than 40 years (21). The study by Elbjeirami et al. reported $K R A S$ mutation (44\%) in a Jordanian population (20). The ratio of patients with mutated versus wild-type $K R A S$ in our current study was similar to that reported in Western countries but differed from Egypt (107), which is a neighboring Middle Eastern country but similar to the Jordanian study (20). Other studies from Saudi Arabia reported rates of KRAS mutation to be 42.2% (108), 28.6% (19), 56% (33), and 30.1% (109). The results of our study are in line with all of the other Arab studies. The data from our study did not show statistical significance between $K R A S$ gene mutation in the Arab population and any covariate such as age or gender, which is consistent with the results of a similar study in a Western population (110). Unlike $K R A S$ mutation frequency rates,

Table 3 Correlation between $K R A S, N R A S$, and $B R A F$ mutation status and clinicopathological features in Arab CRC patients

Clinicopathological features	KRAS status			NRAS status			BRAF status		
	Wild type (\%)	Mutant type (\%)	P	Wild type (\%)	Mutant type (\%)	P	Wild type (\%)	Mutant type (\%)	P
Age (years)			0.8			0.3			1
>50	28 (53.8)	24 (46.2)		51 (98.1)	1 (1.9)		50 (96.2)	2 (3.8)	
≤ 50	26 (56.5)	20 (43.5)		43 (93.5)	3 (6.5)		44 (95.7)	2 (4.3)	
Sex			0.5			1			0.6
Female	20 (51.3)	19 (48.7)		38 (97.4)	1 (2.6)		37 (94.9)	2 (5.1)	
Male	35 (58.3)	25 (41.7)		57 (95.0)	3 (5.0)		58 (96.7)	2 (3.3)	
Family history			0.7038			0.3			1
No	46 (53.5)	40 (46.5)		83 (96.5)	3 (3.5)		83 (96.5)	3 (3.5)	
Yes	3 (42.9)	4 (57.1)		6 (85.7)	1 (14.3)		7 (100.0)	-	
Personal history of FAP			1			1			1
No	48 (52.2)	44 (47.8)		88 (95.7)	4 (4.3)		89 (96.7)	3 (3.3)	
Yes	1 (100.0)	-		1 (100.0)	-		1 (100.0)	-	
Primary tumor site			1			0.5693			1
Left sided	36 (52.2)	33 (47.8)		65 (94.2)	4 (5.8)		67 (97.1)	2 (2.9)	
Right sided	13 (54.2)	11 (45.8)		24 (100.0)	-		23 (95.8)	1 (4.2)	
Tumor differentiation			0.5			0.2			0.2
Well	4 (80.0)	1 (20.0)		4 (80.0)	1 (20.0)		4 (80.0)	1 (20.0)	
Moderate	33 (50.0)	33 (50.0)		64 (97.0)	2 (3.0)		64 (97.0)	2 (3.0)	
Poor	12 (54.5)	10 (45.5)		21 (95.5)	1 (4.5)		22 (100.0)	-	
MSI			0.09			1			0.6
High	-	1 (100.0)		1 (100.0)	-		1 (100.0)	-	
Intact	4 (100.0)	-		4 (100.0)	-		4 (100.0)	-	
Stable	10 (43.5)	13 (56.5)		22 (95.7)	1 (4.3)		23 (100.0)	-	
Unknown	20 (40.0)	30 (60.0)		47 (94.0)	3 (6.0)		47 (94.0)	-	
Histological type			0.3			1			1
Tubular adenocarcinoma	42 (50.6)	41 (49.4)		79 (95.2)	4 (4.8)		80 (96.4)	3 (3.6)	
Mucinous adenocarcinoma	7 (70.0)	3 (30.0)		10 (100.0)	-		10 (100.0)	-	
TNM stage at diagnosis			0.1			0.2			0.6
1	1 (100.0)	-		1 (100.0)	-		1 (100.0)	-	
II	1 (50.0)	1 (50.0)		2 (100.0)	-		2 (100.0)	-	
III	26 (63.4)	15 (36.6)		41 (100.0)	-		39 (95.1)	-	
IV	21 (42.9)	28 (57.1)		45 (91.8)	4 (8.2)		48 (98.0)	-	
Clinical status			0.2			0.07			0.2
Alive	20 (55.6)	16 (44.4)		36 (100.0)	-		36 (100.0)	-	
Dead	16 (42.1)	22 (57.9)		34 (89.5)	4 (10.5)		35 (92.1)	3 (7.9)	
Unknown	13 (68.4)	6 (31.6)		19 (100.0)	-		19 (100.0)	-	

FAP, familial adenomatous polyposis; MSI, microsatellite instability; CRC, colorectal cancer.

Table 4 Correlation between PIK3CA, TP53, and APC mutation status and clinicopathological features in Arab CRC patients

Clinicopathological features	PIK3CA status			TP53 status			$A P C$ status		
	Wild type (\%)	Mutant type (\%)	P	Wild type (\%)	Mutant type (\%)	P	Wild type (\%)	Mutant type (\%)	P
Age (years)			0.08			0.009			0.5
>50	42 (80.8)	10 (19.2)		31 (59.6)	21 (40.4)		36 (69.2)	16 (30.8)	
<50	43 (93.5)	3 (6.5)		15 (32.6)	31 (67.4)		35 (76.1)	11 (23.9)	
Sex			1			0.07			1
Female	34 (87.2)	5 (12.8)		14 (35.9)	25 (64.1)		28 (71.8)	11 (28.2)	
Male	52 (86.7)	8 (13.3)		33 (55.0)	27 (45.0)		44 (73.3)	16 (26.7)	
Family history			1			0.3			1
No	74 (86.0)	12 (14.0)		40 (46.5)	46 (53.5)		65 (75.6)	21 (24.4)	
Yes	6 (85.7)	1 (14.3)		5 (71.4)	2 (28.6)		5 (71.4)	2 (28.6)	
Personal history of FAP			1			1			0.2
No	79 (85.9)	13 (14.1)		45 (48.9)	47 (51.1)		70 (76.1)	22 (23.9)	
Yes	1 (100.0)	-		-	1 (100.0)		-	1 (100.0)	
Tumor site			1			0.3			0.2
Left	80 (86.0)	13 (14.0)		31 (44.9)	38 (55.1)		49 (71.0)	20 (29.0)	
Right	21 (87.5)	3 (12.5)		14 (58.3)	10 (41.7)		21 (87.5)	3 (12.5)	
Differentiation			1			0.5			0.6
Well	5 (100.0)	-		1 (20.0)	4 (80.0)		5 (100.0)	-	
Moderate	56 (84.8)	10 (15.2)		33 (50.0)	33 (50.0)		49 (74.2)	17 (25.8)	
Poor	19 (86.4)	3 (13.6)		11 (50.0)	11 (50.0)		16 (72.7)	6 (27.3)	
MSI			0.2			0.6			0.9
High	1 (100.0)	-		1 (100.0)	-		1 (100.0)	-	
Intact	2 (50.0)	2 (50.0)		1 (25.0)	3 (75.0)		3 (75.0)	1 (25.0)	
Stable	21 (91.3)	2 (8.7)		11 (47.8)	12 (52.2)		19 (82.6)	4 (17.4)	
Unknown	41 (82.0)	9 (18.0)		27 (54.0)	23 (46.0)		38 (76.0)	12 (24.0)	
Tumor histology			1			1			0.4416
Tubular adenocarcinoma	71 (85.5)	12 (14.5)		40 (48.2)	43 (51.8)		61 (73.5)	22 (26.5)	
Mucinous adenocarcinoma	9 (90.0)	1 (10.0)		5 (50.0)	5 (50.0)		9 (90.0)	1 (10.0)	
TNM stage at diagnosis			0.23			0.2			0.04
1	1 (100.0)	-		-	1 (100.0)		-	1 (100.0)	
11	1 (50.0)	1 (50.0)		1 (50.0)	1 (50.0)		1 (50.0)	1 (50.0)	
III	34 (82.9)	7 (17.1)		24 (58.5)	17 (41.5)		35 (85.4)	6 (14.6)	
IV	44 (89.8)	5 (10.2)		20 (40.8)	29 (59.2)		34 (69.4)	15 (30.6)	
Clinical status			0.2			0.1			0.6
Alive	28 (77.8)	8 (22.2)		13 (36.1)	23 (63.9)		26 (72.2)	10 (27.8)	
Dead	34 (89.5)	4 (10.5)		23 (60.5)	15 (39.5)		28 (73.7)	10 (26.3)	
Unknown	18 (94.7)	1 (5.3)		9 (47.4)	10 (52.6)		16 (84.2)	3 (15.8)	

FAP, familial adenomatous polyposis; MSI, microsatellite instability; CRC, colorectal cancer.
Table 5 Worldwide distribution pattern of KRAS, NRAS, BRAF, PIK3CA, APC, and TP53 mutations

Region	Year	Method and codons studied	Number of patients tested	Number of patients with mutations in the indicated gene (\%)						References	
				KRAS	NRAS	BRAF	PIKЗCA	APC	TP53		
Middle Eastern countries			2,981	691/2,052 (33.70)	4/99 (4.0)	76/1,647 (4.60)	51/418 (12.00)	59/177 (33.0)	208/541 (38.40)		
Arabian Peninsula	2015	Next-generation sequencing	99	44 (44.00)	4 (4.0)	4 (4.00)	13 (13.00)	27 (27.3)	52 (52.00)	Current study	
Egypt	2001	PCR and SequiTherm EXCEL $\\|^{T M}$ DNA sequencing; codons: 12, 13, immunohistochemistry for TP53, exons: 5-9	59	5/47 (11.00)	Not done	Not done	Not done	Not done	26/56 (46.00)	(22)	
Saudi Arabia	2008	PCR amplification and direct sequencing, exons: 9,20 , exons: 5-8	448	Not done	Not done	Not done	51/418 (12.00)	Not done	130/386 (33.70)	(27)	
Tunisia	2008	PCR, codons: 1240-1513	48	Not done	Not done	4/48 (8.00)	Not done	25/48 (52.0)	Not done	(28)	
Iran	2011	PCR-RFLP, codon: 600	110	24/86 (28.00)	Not done	0	Not done	Not done	Not done	(29)	
Jordan	2012	Hybridization-based strip assay, RT-PCR-based assay, Sanger sequencing, codons: 12, 13	100	44 (44.00)	Not done	(20)					
Iraq	2012	PCR and reverse hybridization	50	24 (48.00)	Not done	(30)					
Turkey	2013	AutoGenomics INFINITI ${ }^{\oplus}$ assay, codons: 12, 13, 61	53	26 (49.05)	Not done	0	Not done	Not done	Not done	(31)	
Saudi Arabia	2014	LCD-array kit	83	35/83 (42.20)	Not done	(32)					
Saudi Arabia	2014	Direct DNA sequencing, codons: 12, 13, codon: 600	770	216/755 (28.60)	Not done	19/757 (2.50)	Not done	Not done	Not done	(19)	
Saudi Arabia	2014	PCR, codons: 12, 13	150	84/150 (56.00)	Not done	(33)					
Iran	2014	PCR-RFLP, codon: 600	80	Not done	Not done	37/80 (46.25)	Not done	Not done	Not done	(34)	
Iran	2014	Direct DNA sequencing, codons: 653-885, 853-1242, 1213-1482, and 1404-1613 of exon 15	30	Not done	Not done	Not done	Not done	7 (23.3)	Not done	(35)	
Saudi Arabia	2015	PCR, codons: 12, 13, codon: 600	770	150/498 (30.10)	Not done	12/500 (2.40)	Not done	Not done	Not done	(24)	
Turkey	2015	Pyrosequencing with PCR, codons: 12, 13, 61	31	7/31 (22.00)	Not done	(36)					
Iran	2015	PCR and direct sequencing by Sanger method	100	32 (32.00)	Not done	(37)					

[^0]Table 5 (continued)

Region	Year	Method and codons studied	Number of patients tested	Number of patients with mutations in the indicated gene (\%)						References
				KRAS	NRAS	BRAF	PIK3CA	APC	TP53	
Western countries			22,441	7,497/21,212	183/4,781	1,011/11,100	1,336/9,696	626/1,540	169/308	
				(35.30)	(3.8)	(9.10)	(13.80)	(40.6)	(54.90)	
Norway	2002	PCR, codons: 653-2843	218	Not done	Not done	Not done	Not done	144 (66.0)	Not done	(38)
United Kingdom	2002	Direct sequencing, codons: 12 , 13, 61, denaturing HPLC "WAVE" analysis, codons: 1028-1712	106	29/106(27.40)	Not done	Not done	Not done	60/106 (56.0)	65/106 (61.30)	(39)
Portugal	2005	PCR-SSCP automated sequencing, exon: 9; PCR automated sequencing, exon: 20	150	31 (20.70)	Not done	18 (12.00)	14 (9.30)	Not done	Not done	(40)
Netherlands	2005	Nested PCR, followed by direct sequencing, exon: 1 , codons: 1286-1520	656	235/656 (35.80)	Not done	Not done	Not done	245 (37.3)	Not done	(41)
USA	2007	PCR, codons: 1286-1585	90	29 (32.20)	Not done	18 (20.00)	Not done	31 (34.4)	41 (45.60)	(42)
Germany	2007	PCR, codons: 1260-1547, exons: 5-8 (TP53)	99	Not done	Not done	Not done	Not done	49 (49.0)	52 (52.00)	(43)
France	2008	PCR then direct sequencing, exon: 2, exons: 1, 2, 9, 20 (PIK3CA)	586	198 (33.80)	Not done	78 (13.30)	98 (16.70)	Not done	Not done	(44)
Hungary	2008	PCR and SSCP/heteroduplex analysis, codons: 1285-1465	70	Not done	Not done	Not done	Not done	15 (21.4)	Not done	(45)
USA	2008	PCR, exon: 2 , exons: 11, 15, DNA sequencing using a BigDye ${ }^{\oplus} .1$ Terminator kit	62	24 (38.70)	Not done	4 (5.60)	2 (3.20)	Not done	Not done	(46)
Italy	2008	HRM analysis, exon: 2 , exon: 15, exons: 9,20	116	50 (43.00)	Not done	11 (9.50)	20 (17.20)	Not done	Not done	(47)
Italy	2009	PCR, codons: 12, 13, exons: 11,15 , exons: 9,20	32	7/29 (24.10)	Not done	3/31 (9.67)	4/31 (12.90)	Not done	Not done	(48)
USA	2009	PCR and pyrosequencing, codons: 12, 13, codon: 600, exons: 9,20	450	160/448 (35.70)	Not done	69/438 (15.80)	82 (18.20)	Not done	Not done	(49)
United Kingdom	2009	PCR, then Sequenom massspectrometric genotyping, (first sample), PCR, then Sanger sequencing (second sample), exon: 2 , exon: 15 , exons: 9,20	168	62 (36.90)	Not done	13 (7.70)	26 (15.47)	Not done	Not done	(50)

[^1]Table 5 (continued)

Region	Year	Method and codons studied	Number of patients tested	Number of patients with mutations in the indicated gene (\%)						References
				KRAS	NRAS	BRAF	PIK3CA	APC	TP53	
Belgium	2010	Mass spectrometry genotyping	1,022	299/747 (40.00)	17/644 (2.6)	36/761 (4.70)	108/743 (14.50)	Not done	Not done	(13)
Germany	2010	Two multiplex PCRs: the first for BRAF exon 15 and KRAS exons 2 and 3 and the second for PIK3CA exons 9 and 20 and NRAS exons 2 and 3	294	119/245 (48.60)	6/294 (2.0)	13/245 (5.30)	32/245 (13.10)	Not done	Not done	(51)
France	2010	KRAS: allelic discrimination assay; checked by direct sequencing of exon 2, BRAF(V600E): allelic discrimination assay; checked by direct sequencing; PIK3CA: direct sequencing, then DNA analyzer automated sequencer	42	19 (45.20)	Not done	1 (2.38)	6 (14.28)	Not done	Not done	(52)
USA	2011	Pyrosequencing, codons: 12, 13, 61, codons: 595-600; PCR, then Sanger sequencing (PIK3CA), codons: 532-554 of exon 9, 1011-1062 of exon 20	504	69/367 (18.80)	2/31 (6.0)	31/361 (8.60)	54 (11.00)	Not done	Not done	(53)
Italy	2012	HRM analysis and direct sequencing, exon: 2 , exon: 15, exon: 20	209	90 (43.00)	Not done	13/117 (11.10)	7 (3.30)	Not done	Not done	(54)
Sardinia	2012	Automated DNA sequencing, exons: 2, 3, exon: 15, exons: 9, 20	478	145/478 (30.30)	Not done	1/384 (0.26)	67/384 (17.44)	Not done	Not done	(55)
USA	2013	Pyrosequencing, codons: 12, 13, codon: 600, exons: 9, 20	964	336/959 (35.00)	Not done	131/959 (13.70)	161/964 (16.70)	Not done	Not done	(56)
Portugal	2013	HRM, then DNA sequencing, exons: 3, 4 (KRAS), exons: 11, 15, exons: 9, 20 (PIKЗCA)	201	26 (12.90)	Not done	11 (5.50)	22 (10.90)	Not done	Not done	(57)
Russia	2013	HRM and sequencing COLD-PCR/ sequencing, allele-specific PCR	195	70 (35.90)	8 (4.1)	8 (4.10)	24 (12.30)	Not done	Not done	(58)
Australia	2013	Direct sequencing, exons: 9,20	757	215 (28.40)	Not done	120 (15.90)	105 (14.00)	Not done	Not done	(59)
France	2013	PCR amplification followed by direct sequencing, exons: 2,3 , exon: 15 , exons: 9, 20	98	23 (23.50)	Not done	2 (2.00)	4 (4.00)	Not done	Not done	(60)

[^2]Table 5 (contimued)

Region	Year	Method and codons studied	Number of patients tested	Number of patients with mutations in the indicated gene (\%)						References
				KRAS	NRAS	BRAF	PIK3CA	APC	TP53	
Germany	2013	Pyrosequencing, exon: 2, exon: 15, exons: 9, 20	171	70 (40.90)	Not done	19 (11.10)	20 (18.70)	Not done	Not done	(61)
Albania	2014	Direct sequencing, codons: 12,13 , 61, 146, codon: 600	159	28 (17.60)	Not done	10 (6.30)	Not done	Not done	Not done	(62)
United Kingdom	2013	Pyrosequencing (KRAS), codons: 12 , 13, Sequenom, Sanger sequencing, codons: 12, 13, codon: 600	1,976	836 (42.30)	71 (3.6)	178 (9.00)	251 (12.70)	Not done	Not done	(18)
Greece	2014	PCR, mutation analysis methodology of increased sensitivity and conventional genomic dideoxy sequencing (PIK3CA)	171	92 (53.80)	Not done	4/171 (2.30)	6/171 (3.50)	Not done	Not done	(63)
Brazil	2014	Direct sequencing, codons: 12,13	8,234	2,627 (31.90)	Not done	(64)				
Chile	2014	PCR, codons: 12, 13	262	98 (37.00)	Not done	(65)				
Italy	2015	Pyrosequencing, codons: 12, 13, 61, 146, codon: 600, exons: 9, 20	194	92 (47.40)	7/194 (3.6)	10 (19.40)	32 (16.50)	Not done	Not done	(66)
USA	2014	Not reported	484	240 (49.60)	32 (7.4)	10 (4.10)	Not done	Not done	Not done	(67)
Greece	2015	PCR, codons: 12, 14, 61, 146, codon: 600, bidirectional sequence analysis	322	118 (36.60)	Not done	17/188 (9.00)	Not done	Not done	Not done	(68)
Italy	2015	Mass spectrometry-based single-base extension technique, codons (KRAS): 12, 13, 59, 61, 117, 146, codons (NRAS): 12, 13, 18, 59, 61, 117, 146, codons (BRAF): 594, 600, 601	175	25 (14.00)	4 (3.0)	13 (7.00)	Not done	Not done	Not done	(69)
Brazil	2015	Pyrosequencing method improved by nested PCR, codons: 12,13	422	139/421 (33.00)	Not done	(70)				
Belgium	2015	RT-PCR and Sequenom, exons: 2-4	193	53/165 (32.10)	4 (2.4)	26/165 (15.80)	22/165 (13.30)	Not done	Not done	(71)
USA	2015	PCR, codons: 12, 13	331	91 (27.50)	Not done	(72)				
Italy	2015	Pyrosequencing, exon: 2, codon: 600	309	143/307 (46.60)	17/307 (5.5)	12 (4.00)	Not done	Not done	Not done	(73)
France	2015	Next-generation sequencing	13	7 (53.80)	Not done	Not done	Not done	13/13 (100.0)	11/13 (84.60)	(74)

[^3]Table 5 (continued)

Region	Year	Method and codons studied	Number of patients tested	Number of patients with mutations in the indicated gene (\%)						References
				KRAS	NRAS	BRAF	PIKЗCA	APC	TP53	
Germany	2015	PCR, codons: 12, 13, codon: 600	99	33 (33.30)	Not done	9 (9.00)	Not done	Not done	Not done	(75)
France	2015	PCR, codons: 12, 13, codon: 600	180	93 (51.70)	Not done	19 (10.60)	Not done	Not done	Not done	(76)
France	2015	Direct Sanger sequencing and PCR, codons: 12, 13, codon: 600, exons: 9, 20	826	301/817 (37.00)	Not done	85/780 (11.00)	113 (14.00)	Not done	Not done	(77)
USA	2015	Next-generation sequencing	353	175/288 (49.60)	15/288 (4.3)	18/288 (5.10)	56/288 (13.90)	69/288 (24.0)	Not done	(78)
Asian countries			8,053	2,797/7,973 (35.10)	$\begin{gathered} 108 / 3,041 \\ (3.6) \end{gathered}$	292/5,922 (4.90)	362/4,238 (8.50)	85/262 (32.4)	244/608 (40.10)	
Japan	2002	PCR-SSCP method, codons: 12, 14, codons: 582-1580, codons: 33-367	61	22/61 (36.00)	Not done	Not done	Not done	29/61 (47.5)	35/61 (57.40)	(79)
South Korea	2008	WAVE DHPLC system, codon: 12, codons: 1202-1674, exons: 4-9	78	23 (29.50)	Not done	Not done	Not done	26 (33.3)	27 (34.60)	(80)
China	2010	Multiplex PCR for TP53 and PTEN amplification; singleplex PCR using HotStarTaq (QIAGEN) to amplify PIK3CA, KRAS, and BRAF amplicons, codons: 12, 13, 61 (KRAS), codon: 600 (BRAF)	181	58 (32.00)	Not done	29 (16.00)	7 (3.00)	Not done	92 (52.00)	(81)
China	2010	Pyrosequencing using a PyroMark ID system (Biotage AB, Sweden), codons: 12, 13, codon: 600	61	12 (19.70)	Not done	3 (4.90)	3 (4.90)	Not done	Not done	(82)
Korea	2011	Direct sequencing and peptide nucleic acid-mediated PCR	92	19 (20.70)	Not done	3 (3.30)	1 (1.10)	Not done	Not done	(83)
Japan	2011	Direct sequencing	134	41 (30.60)	Not done	1 (0.75)	18 (13.40)	Not done	Not done	(84)
Taiwan (China)	2012	Direct sequencing; HRM analysis, codon: 600, exons: 9, 20 (PIK3CA)	182	61 (33.50)	Not done	2 (1.10)	13 (7.10)	Not done	Not done	(85)
China	2012	PCR-based direct DNA sequencing, codons: 12, 13	331	137/311 (44.10)	Not done	9/156 (5.80)	4/156 (2.60)	Not done	Not done	(86)
China	2012	Automated sequencing analysis, codons: 12-14, codon: 600, codons: 542, 545, 1047	69	25/57 (53.90)	Not done	15/59 (25.40)	5/56 (8.90)	Not done	Not done	(87)

Table 5 (continued)
Table 5 (continued)

Region	Year	Method and codons studied	Number of patients tested	Number of patients with mutations in the indicated gene (\%)						References
				KRAS	NRAS	BRAF	PIKЗCA	APC	TP53	
Japan	2013	Multiplex kit (Luminex xMAP tests) and direct sequencing methods, codons: 61, 146, codon: 600, codons: 542, 545, 546, 1047	82	21 (25.60)	2 (2.4)	4 (4.90)	4 (4.90)	Not done	Not done	(88)
Malaysia	2013	Direct DNA sequencing, quantitative real-time PCR, codons: 12, 13, 61, codon: 600	44	11 (25.00)	Not done	1 (2.30)	33/43 (76.70)	Not done	Not done	(89)
Japan	2013	Direct sequencing	254	85 (33.50)	Not done	17 (6.70)	Not done	Not done	Not done	(90)
Japan	2013	Automated CEQ 2000XL DNA analysis system	43	12 (27.90)	Not done	2 (4.70)	2 (4.70)	Not done	Not done	(91)
Taiwan (China)	2013	Primer extension analysis, codons: 12, 13, HRM analysis, codon: 600, direct sequencing (for TP53), exons: 5-8	165	61/165 (36.97)	Not done	7/165 (4.24)	Not done	Not done	62/165 (37.58)	(92)
India	2013	PCR, exon: 2 (KRAS)	1,323	271 (20.50)	Not done	(93)				
India	2013	PCR-RFLP and direct sequencing	62	41 (66.10)	Not done	(94)				
India	2013	PCR-restriction digestion to detect KRAS mutations, PCR-SSCP followed by DNA sequencing to detect mutations in APC and TP53 genes	30	8 (26.70)	Not done	Not done	Not done	14 (46.7)	6 (20.00)	(95)
India	2014	Nested PCR, codons: 12, 13; PCR and direct sequencing, codon: 600; hemi-nested and nested PCR, exons: 9, 20	204	48 (23.50)	Not done	20 (9.80)	12 (5.90)	Not done	Not done	(96)
Pakistan	2014	PCR, codons: full coding region of KRAS	150	20/150 (13.00)	Not done	(97)				
China	2014	Torrent AmpliSeq Cancer Panel	93	47 (50.50)	3 (3.2)	1 (1.10)	10 (10.80)	16 (17.2)	22 (23.70)	(98)
Japan	2015	Denaturing gradient gel electrophoresis; PCR (for BRAF)	813	312/812 (38.00)	Not done	40/811 (5.00)	Not done	Not done	Not done	(99)
China	2015	Sanger sequencing; mutation system PCR (nine patients), codons: 12, 13, codon: 600	535	185/488 (37.90)	Not done	20/450 (4.40)	Not done	Not done	Not done	(100)

[^4]Table 5 (contimued)

Region	Year	Method and codons studied	Number of patients tested	Number of patients with mutations in the indicated gene (\%)						References
				KRAS	NRAS	BRAF	PIKЗCA	APC	TP53	
Japan	2015	Luminex xMAP technology, codons: 61, 146, codon: 600, codons: 542, 545, 546, 1047; Scorpion assay, codons: 12, 13	264	100/264 (37.90)	11/264 (4.2)	14/264 (5.40)	17/264 (6.40)	Not done	Not done	(101)
Singapore	2015	Direct sequencing	45	15 (33.30)	Not done	0	1 (2.20)	Not done	Not done	(102)
China	2015	RT-PCR and Sanger sequencing, codons: 12, 13, 61, 117, 146, codon: 600, codon: 1047	1,110	504/1,110 (45.40)	43/1,110 (3.9)	34/1,110 (3.10)	39/1,110 (3.50)	Not done	Not done	(9)
South Korea	2015	Not reported	100	26 (26.00)	Not done	(103)				
Japan	2015	PCR and direct sequencing, exon: 2	55	30 (54.40)	Not done	(104)				
Taiwan (China)	2015	PCR and Sequenom	1,492	602 (40.30)	49 (3.3)	70 (4.70)	193 (12.90)	Not done	Not done	(105)
Pooled results for all studies from all regions			33,475	$\begin{gathered} 10,985 / 31,237 \\ (35.20) \end{gathered}$	$\begin{gathered} 295 / 7,921 \\ (3.7) \end{gathered}$	$\begin{gathered} 1,379 / 18,669 \\ (7.40) \end{gathered}$	$\begin{gathered} 1,749 / 14,352 \\ (12.20) \end{gathered}$	$\begin{gathered} 770 / 1,980 \\ (38.9) \end{gathered}$	$\begin{gathered} 621 / 1,457 \\ (42.60) \end{gathered}$	

[^5] strand conformation polymorphism; HRM, high-resolution melting; COLD, co-amplification at lower denaturation temperature; DHPLC, denaturing high-performance liquid chromatography.

NRAS mutation was not previously reported in an Arab population. In Western populations the mutation frequency rates were low; in one study that used NGS, the rate was 5.1% (78). In the present study, NRAS mutation was detected in 4% of Arab patients, which is similar to the Western cohort and consistent with the pooled frequency rates in Asian countries and Western countries (3.6\% and 3.8%, respectively).

The $B R A F$ gene encodes a protein that is part of the Ras-Raf-MEK-ERK, or MAPK signaling pathway (111). Activation of this pathway results in cellular growth and proliferation. Siraj et al. reported the frequency of $B R A F$ mutation as 2.5% in 770 Saudi patients. In our study, the $B R A F$ frequency rate was 4% in Arab patients, which is lower than the Western cohort and the estimated frequency in Western countries (9.2%) but similar to the frequency reported in Asian (4.9\%) and Middle Eastern countries (4.6\%). This difference in $B R A F$ mutational frequency may be attributable to the use of different methods/assays to assess for the mutations. Interestingly, the Western populationbased studies reported that $B R A F$-mutant CRC was significantly more likely to occur in females (108); however, in our study there was no statistically significant association between the $B R A F$ mutation and gender. In contrast to Zhang et al.'s study, which showed a significant association between $B R A F$ mutation and right-sided colon cancer, we did not find any significant association between $B R A F$ mutation and tumor site (9) yet the findings of our study is limited by the small number of patients with $B R A F$ mutation (only four patients).

The PIK3CA gene encodes the catalytic subunit of PI3K, which is an intracellular central mediator of cell survival signals (112). Very few studies describe the frequency of PIK3CA mutations in an Arab population. Abubaker et al. reported a PIK3CA frequency rate of 12.2% in a Saudi population (27), which is consistent with the frequency found in our Arab patients population (13\%) and the Western patients cohort (12.1\%). However, the frequency rate of PIK3CA mutations in Asian countries (8.5\%) appear to be lower compared with Middle Eastern and Western countries. This difference could be attributable to either environmental or genetic factors. Our study found no significant differences between Western and Arab populations with regard to PIK3CA gene mutations and other clinical characteristics (109).

The tumor suppressor gene $A P C$ plays an important role in CRC development. Absence of the $A P C$ protein leads to accumulation of beta-catenin in the cytoplasm, resulting in
constitutive transcriptional activation of TCF-responsive genes, which may contribute to tumor progression (113). The frequency from the pooled results in Middle Eastern countries is (33%), which is consistent with the frequency rate in Asian countries (32.4%), but it is lower than the frequency rate in Western countries (44.8\%). In the current study the frequency was (27.3%) in Arab patients and (24.2%) in Western patients. These differences between the frequencies in our population study and pooled frequencies in Middle Eastern countries, Asian countries and Western countries may be attributable to environmental factors.

Loss of TP53 function is one of the major events in the development of CRC. TP53 mutations are thought to occur late in pathogenesis of CRC (39). The TP53 mutation rate in our study was 52% in Arab patients and 47.5% in our Western cohort, which they are significantly higher than the pooled frequency rates encountered in Middle Eastern (38.4\%) and Asian countries (40.1\%). This difference between our study and the Middle Eastern countries frequency rate may be attributable to different sample selection. Abubaker et al. reported a trend of TP53 mutations towards old age (>50 years old) (27). In the present study, there was a significant association between TP53 mutations and age (>50 years old). This finding is in contrast to previous studies in Western countries $(110,114)$.

Mutations in the $F B X W 7$ gene are thought to impair cyclin E degradation resulting in unchecked cellular growth, and subsequently in progression of CRC (115-117). The frequency of $F B X W 7$ mutation in the present study was 3% in Arab patients, none were found in the matched Western cohort. This is the first report of $F B X W 7$ gene mutation in an Arab population and potential association.

Fleming et al. reported the frequency of SMAD4 mutation in 744 patients with sporadic CRC at 8.6% (118). Mutations in SMAD4 are thought to promote tumorigenesis by allowing CRC cells evade the inhibitory effect of TGF-beta, thus contributing to progression of CRC $(119,120)$. In the present study, the rate of SMAD4 mutation in the Arab patients was 2% where 11.1% in the matched Western cohort. This difference in the frequency rates may be attributable to differences in sample size, ethnicities, and geographical distribution. This is the first report of SMAD4 gene mutation in the Arab population.
$E G F R$ signaling plays a significant role in CRC development and progression. Gene mutations in the EGFR signaling proteins, such as $K R A S, N R A S, B R A F$, and TP53, are vital factors in evaluating $E G F R$ targeted treatment resistance in patients with CRC $(7,107)$. KRAS-mutant CRC
do not respond to anti-EGFR agents such as cetuximab (14). However, only $40-60 \%$ of type patients with wild-type KRAS respond to $E G F R$ targeted therapies (121). Therefore, it is very important to identify other molecular alterations that may affect anti-EGFR treatment. De Roock et al. demonstrated that BRAF, NRAS, and PIK3CA mutations affect the anti- $E G F R$ treatment outcome in chemotherapyresistant metastatic CRC patients (13).

Many environmental factors such as lifestyle and diet are implicated as risk factors for CRC. Subjects consuming a diet rich in meat and fat and poor in fiber have a higher risk for CRC (122-124). Decreased physical activity and obesity also put the subjects in a greater risk for CRC $(125,126)$. Westernization of the developing countries along with changes in diet and lifestyle have been associated with the increasing incidence of CRC in developing countries $(127,128)$. The increased incidence of CRC in Arabian Peninsula is parallel to similar increase incidence of CRC in Westernized countries. The results of the present study report the frequency of $K R A S, N R A S, B R A F, T P 53$, and $A P C$ mutations similar to the frequencies in Western population. Many studies have previously indicated that the differences in the incidence of CRC are probably due to environmental and not genetic factors (129). In our study, we found that there was no association between incidence of CRC and clinicopathological factors except the association of TP53 mutation and advanced age. Two studies from Qatar and Jordan have shown associations between CRC and diet with low fiber, sedentary life and obesity in Qatari and Jordanian populations $(130,131)$. A study by Bener et al. evaluated the association of family history, lifestyle and dietary factors with developing CRC in Arab patients. Multivariate stepwise logistic regression analysis showed that family history, BMI, smoking, consuming bakery and soft drinks were significant predictors of development of CRC. Age, gender, a sedentary lifestyle, and being overweight were positively linked with CRC risk (130). Also, there is a recent trend for left-sided CRC in Arabs, probably related to their changing lifestyles (132). All these results may influence CRC screening and diagnostic methodologies with cancer preventive lifestyle recommendations in Arab population.

A possible limitation of current study is the relatively small sample size which, which could potentially limit the generalizability of our findings. We have attempted to decrease this risk by including patients from at least six Arab Gulf countries, which were recruited from two large U.S. institutions.

Conclusions

This is the first study to report comprehensive hotspot somatic mutations using NGS in Arab patients with CRC. The frequency of KRAS, NRAS, BRAF, TP53, APC and PIK3CA mutations were similar to reported frequencies in Western population except SMAD4 that had a lower frequency but higher rate of $F B X W 7$ mutation. Identification of molecular markers can provide insights into the pathogenic process and help optimize personalized cancer therapy in this poorly studied population.

Acknowledgements

The authors thank Sunita Patterson for providing medical editorial assistance with this article. The study was supported by the Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, Houston, Texas, USA and Khalifa Bin Zayed Al Nahyan Foundation, Abu Dhabi, United Arab Emirates. Names of the institutions at which the work was performed: MD Anderson Cancer Center; Mayo Clinic, Rochester.

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

Ethical Statement: The study was approved by institutional ethics board of MD Anderson Cancer Center (NCT01772771) and Mayo Clinic (15-000563).

References

1. Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87-108.
2. Elbasmi A, Al-Asfour A, Al-Nesf Y, et al. Cancer in Kuwait: magnitude of the problem. Gulf J Oncolog 2010;(8):7-14.
3. Ibrahim EM, Zeeneldin AA, El-Khodary TR, et al. Past, present and future of colorectal cancer in the Kingdom of Saudi Arabia. Saudi J Gastroenterol 2008;14:178-82.
4. Alsanea N, Abduljabbar A, Alhomoud S, et al. Colorectal cancer in Saudi Arabia: incidence, survival, demographics and implications for national policies. Ann Saudi Med 2015;35:196-202.
5. El-Basmy A, Al-Mohannadi S, Al-Awadi A. Some
epidemiological measures of cancer in Kuwait: national cancer registry data from 2000-2009. Asian Pac J Cancer Prev 2012;13:3113-8.
6. McCubrey JA, Steelman LS, Chappell WH, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 2007;1773:1263-84.
7. Peyssonnaux C, Eychene A. The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell 2001;93:53-62.
8. Calistri D, Rengucci C, Seymour I, et al. Mutation analysis of TP53, K-ras, and BRAF genes in colorectal cancer progression. J Cell Physiol 2005;204:484-8.
9. Zhang J, Zheng J, Yang Y, et al. Molecular spectrum of KRAS, NRAS, BRAF and PIK3CA mutations in Chinese colorectal cancer patients: analysis of 1,110 cases. Sci Rep 2015;5:18678.
10. Bokemeyer C, Van Cutsem E, Rougier P, et al. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer 2012;48:1466-75.
11. Wei Q, Shui Y, Zheng S, et al. EGFR, HER2 and HER3 expression in primary colorectal carcinomas and corresponding metastases: Implications for targeted radionuclide therapy. Oncol Rep 2011;25:3-11.
12. Wilson PM, Labonte MJ, Lenz HJ. Molecular markers in the treatment of metastatic colorectal cancer. Cancer J 2010;16:262-72.
13. De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 2010;11:753-62.
14. De Roock W, Lambrechts D, Tejpar S. K-ras mutations and cetuximab in colorectal cancer. N Engl J Med 2009;360:834; author reply 835-6.
15. Laurent-Puig P, Cayre A, Manceau G, et al. Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J Clin Oncol 2009;27:5924-30.
16. Sartore-Bianchi A, Di Nicolantonio F, Nichelatti M, et al. Multi-determinants analysis of molecular alterations for predicting clinical benefit to EGFR-targeted monoclonal antibodies in colorectal cancer. PLoS One 2009;4:e7287.
17. Shen Y, Wang J, Han X, et al. Effectors of epidermal growth factor receptor pathway: the genetic profiling of KRAS, BRAF, PIK3CA, NRAS mutations in colorectal cancer characteristics and personalized medicine. PLoS One

2013;8:e81628.
18. Smith CG, Fisher D, Claes B, et al. Somatic profiling of the epidermal growth factor receptor pathway in tumors from patients with advanced colorectal cancer treated with chemotherapy $+/-$ cetuximab. Clin Cancer Res 2013;19:4104-13.
19. Siraj AK, Bu R, Prabhakaran S, et al. A very low incidence of BRAF mutations in Middle Eastern colorectal carcinoma. Mol Cancer 2014;13:168.
20. Elbjeirami WM, Sughayer MA. KRAS mutations and subtyping in colorectal cancer in Jordanian patients. Oncol Lett 2012;4:705-10.
21. Soliman AS, Bondy ML, Levin B, et al. Colorectal cancer in Egyptian patients under 40 years of age. Int J Cancer 1997;71:26-30.
22. Soliman AS, Bondy ML, El-Badawy SA, et al. Contrasting molecular pathology of colorectal carcinoma in Egyptian and Western patients. Br J Cancer 2001;85:1037-46.
23. Chan AO, Soliman AS, Zhang Q, et al. Differing DNA methylation patterns and gene mutation frequencies in colorectal carcinomas from Middle Eastern countries. Clin Cancer Res 2005;11:8281-7.
24. Beg S, Siraj AK, Prabhakaran S, et al. Molecular markers and pathway analysis of colorectal carcinoma in the Middle East. Cancer 2015;121:3799-808.
25. Atreya CE, Corcoran RB, Kopetz S. Expanded RAS: refining the patient population. J Clin Oncol 2015;33:682-5.
26. Nebel A, Landau-Tasseron E, Filon D, et al. Genetic evidence for the expansion of Arabian tribes into the Southern Levant and North Africa. Am J Hum Genet 2002;70:1594-6.
27. Abubaker J, Bavi P, Al-Harbi S, et al. Clinicopathological analysis of colorectal cancers with PIK3CA mutations in Middle Eastern population. Oncogene 2008;27:3539-45.
28. Bougatef K, Ouerhani S, Moussa A, et al. Prevalence of mutations in APC, CTNNB1, and BRAF in Tunisian patients with sporadic colorectal cancer. Cancer Genet Cytogenet 2008;187:12-8.
29. Naghibalhossaini F, Hosseini HM, Mokarram P, et al. High frequency of genes' promoter methylation, but lack of BRAF V600E mutation among Iranian colorectal cancer patients. Pathol Oncol Res 2011;17:819-25.
30. Al-Allawi NA, Ismaeel AT, Ahmed NY, et al. The frequency and spectrum of K-ras mutations among Iraqi patients with sporadic colorectal carcinoma. Indian J Cancer 2012;49:163-8.
31. Ozen F, Ozdemir S, Zemheri E, et al. The proto-oncogene KRAS and BRAF profiles and some clinical characteristics in colorectal cancer in the Turkish population. Genet Test

Mol Biomarkers 2013;17:135-9.
32. Bader T, Ismail A. Higher prevalence of KRAS mutations in colorectal cancer in Saudi Arabia: Propensity for lung metastasis. Alexandria Journal of Medicine 2014;50:203-9.
33. Zahrani A, Kandil M, Badar T, et al. Clinico-pathological study of K-ras mutations in colorectal tumors in Saudi Arabia. Tumori 2014;100:75-9.
34. Asl JM, Almasi S, Tabatabaiefar MA. High frequency of BRAF proto-oncogene hot spot mutation V600E in cohort of colorectal cancer patients from Ahvaz City, southwest Iran. Pak J Biol Sci 2014;17:565-9.
35. Hasanpour M, Galehdari H, Masjedizadeh A, et al. A unique profile of adenomatous polyposis coli gene mutations in Iranian patients suffering sporadic colorectal cancer. Cell J 2014;16:17-24.
36. Siyar Ekinci A, Demirci U, Cakmak Oksuzoglu B, et al. KRAS discordance between primary and metastatic tumor in patients with metastatic colorectal carcinoma. J BUON 2015;20:128-35.
37. Omidifar NM, Geramizadeh BM, Mirzai MM. K-ras mutation in colorectal cancer, a report from southern Iran. Iran J Med Sci 2015;40:454-60.
38. Løvig T, Meling GI, Diep CB, et al. APC and CTNNB1 mutations in a large series of sporadic colorectal carcinomas stratified by the microsatellite instability status. Scand J Gastroenterol 2002;37:1184-93.
39. Smith G, Carey FA, Beattie J, et al. Mutations in APC, Kirsten-ras, and TP53--alternative genetic pathways to colorectal cancer. Proc Natl Acad Sci U S A 2002;99:9433-8.
40. Velho S, Oliveira C, Ferreira A, et al. The prevalence of PIK3CA mutations in gastric and colon cancer. Eur J Cancer 2005;41:1649-54.
41. Lüchtenborg M, Weijenberg MP, Wark PA, et al. Mutations in APC, CTNNB1 and K-ras genes and expression of hMLH1 in sporadic colorectal carcinomas from the Netherlands Cohort Study. BMC Cancer 2005;5:160.
42. Samowitz WS, Slattery ML, Sweeney C, et al. APC mutations and other genetic and epigenetic changes in colon cancer. Mol Cancer Res 2007;5:165-70.
43. Prall F, Weirich V, Ostwald C. Phenotypes of invasion in sporadic colorectal carcinomas related to aberrations of the adenomatous polyposis coli (APC) gene. Histopathology 2007;50:318-30.
44. Barault L, Veyrie N, Jooste V, et al. Mutations in the RAS-MAPK, $\mathrm{PI}(3) \mathrm{K}$ (phosphatidylinositol-3-OH kinase) signaling network correlate with poor survival in a population-based series of colon cancers. Int J Cancer 2008;122:2255-9.
45. Kámory E, Olasz J, Csuka O. Somatic APC inactivation mechanisms in sporadic colorectal cancer cases in Hungary. Pathol Oncol Res 2008;14:51-6.
46. Freeman DJ, Juan T, Reiner M, et al. Association of K-ras mutational status and clinical outcomes in patients with metastatic colorectal cancer receiving panitumumab alone. Clin Colorectal Cancer 2008;7:184-90.
47. Simi L, Pratesi N, Vignoli M, et al. High-resolution melting analysis for rapid detection of KRAS, BRAF, and PIK3CA gene mutations in colorectal cancer. Am J Clin Pathol 2008;130:247-53.
48. Perrone F, Lampis A, Orsenigo M, et al. PI3KCA/PTEN deregulation contributes to impaired responses to cetuximab in metastatic colorectal cancer patients. Ann Oncol 2009;20:84-90.
49. Ogino S, Nosho K, Kirkner GJ, et al. PIK3CA mutation is associated with poor prognosis among patients with curatively resected colon cancer. J Clin Oncol 2009;27:1477-84.
50. Souglakos J, Philips J, Wang R, et al. Prognostic and predictive value of common mutations for treatment response and survival in patients with metastatic colorectal cancer. Br J Cancer 2009;101:465-72.
51. Lurkin I, Stoehr R, Hurst CD, et al. Two multiplex assays that simultaneously identify 22 possible mutation sites in the KRAS, BRAF, NRAS and PIK3CA genes. PLoS One 2010;5:e8802.
52. Perkins G, Lievre A, Ramacci C, et al. Additional value of EGFR downstream signaling phosphoprotein expression to KRAS status for response to anti-EGFR antibodies in colorectal cancer. Int J Cancer 2010;127:1321-31.
53. Janku F, Lee JJ, Tsimberidou AM, et al. PIK3CA mutations frequently coexist with RAS and BRAF mutations in patients with advanced cancers. PLoS One 2011;6:e22769.
54. Bozzao C, Varvara D, Piglionica M, et al. Survey of KRAS, BRAF and PIK3CA mutational status in 209 consecutive Italian colorectal cancer patients. Int J Biol Markers 2012;27:e366-74.
55. Palomba G, Colombino M, Contu A, et al. Prevalence of KRAS, BRAF, and PIK3CA somatic mutations in patients with colorectal carcinoma may vary in the same population: clues from Sardinia. J Transl Med 2012;10:178.
56. Nishihara R, Lochhead P, Kuchiba A, et al. Aspirin use and risk of colorectal cancer according to BRAF mutation status. JAMA 2013;309:2563-71.
57. Guedes JG, Veiga I, Rocha P, et al. High resolution melting analysis of KRAS, BRAF and PIK3CA in KRAS exon 2 wild-type metastatic colorectal cancer. BMC Cancer 2013;13:169.
58. Yanus GA, Belyaeva AV, Ivantsov AO, et al. Pattern of clinically relevant mutations in consecutive series of Russian colorectal cancer patients. Med Oncol 2013;30:686.
59. Rosty C, Young JP, Walsh MD, et al. PIK3CA activating mutation in colorectal carcinoma: associations with molecular features and survival. PLoS One 2013;8:e65479.
60. Derbel O, Wang Q, Desseigne F, et al. Impact of KRAS, BRAF and PI3KCA mutations in rectal carcinomas treated with neoadjuvant radiochemotherapy and surgery. BMC cancer 2013;13:200.
61. Neumann J, Wehweck L, Maatz S, et al. Alterations in the EGFR pathway coincide in colorectal cancer and impact on prognosis. Virchows Arch 2013;463:509-23.
62. Martinetti D, Costanzo R, Kadare S, et al. KRAS and BRAF mutational status in colon cancer from Albanian patients. Diagn Pathol 2014;9:187.
63. Kosmidou V, Oikonomou E, Vlassi M, et al. Tumor heterogeneity revealed by KRAS, BRAF, and PIK3CA pyrosequencing: KRAS and PIK3CA intratumor mutation profile differences and their therapeutic implications. Hum Mutat 2014;35:329-40.
64. Gil Ferreira C, Aran V, Zalcberg-Renault I, et al. KRAS mutations: variable incidences in a Brazilian cohort of 8,234 metastatic colorectal cancer patients. BMC Gastroenterol 2014;14:73.
65. Hurtado C, Encina G, Wielandt AM, et al. KRAS gene somatic mutations in Chilean patients with colorectal cancer. Rev Med Chil 2014;142:1407-14.
66. Foltran L, De Maglio G, Pella N, et al. Prognostic role of KRAS, NRAS, BRAF and PIK3CA mutations in advanced colorectal cancer. Future Oncol 2015;11:629-40.
67. Morris VK, Lucas FA, Overman MJ, et al. Clinicopathologic characteristics and gene expression analyses of non-KRAS 12/13, RAS-mutated metastatic colorectal cancer. Ann Oncol 2014;25:2008-14.
68. Samara M, Kapatou K, Ioannou M, et al. Mutation profile of KRAS and BRAF genes in patients with colorectal cancer: association with morphological and prognostic criteria. Genet Mol Res 2015;14:16793-802.
69. Barresi V, Bonetti LR, Bettelli S. KRAS, NRAS, BRAF mutations and high counts of poorly differentiated clusters of neoplastic cells in colorectal cancer: observational analysis of 175 cases. Pathology 2015;47:551-6.
70. de Macêdo MP, de Melo FM, Lisboa BC, et al. KRAS gene mutation in a series of unselected colorectal carcinoma patients with prognostic morphological correlations: a pyrosequencing method improved by nested PCR. Exp Mol Pathol 2015;98:563-7.
71. Saridaki Z, Saegart X, De Vriendt V, et al. KRAS, NRAS, BRAF mutation comparison of endoscopic and surgically removed primary CRC paired samples: is endoscopy biopsy material adequate for molecular evaluation? Br J Cancer 2015;113:914-20.
72. Margonis GA, Kim Y, Spolverato G, et al. Association between specific mutations in KRAS codon 12 and colorectal liver metastasis. JAMA Surg 2015;150:722-9.
73. Schirripa M, Bergamo F, Cremolini C, et al. BRAF and RAS mutations as prognostic factors in metastatic colorectal cancer patients undergoing liver resection. Br J Cancer 2015;112:1921-8.
74. Vignot S, Lefebvre C, Frampton GM, et al. Comparative analysis of primary tumour and matched metastases in colorectal cancer patients: evaluation of concordance between genomic and transcriptional profiles. Eur J Cancer 2015;51:791-9.
75. Ilm K, Kemmner W, Osterland M, et al. High MACC1 expression in combination with mutated KRAS G13 indicates poor survival of colorectal cancer patients. Mol Cancer 2015;14:38.
76. Renaud S, Romain B, Falcoz PE, et al. KRAS and BRAF mutations are prognostic biomarkers in patients undergoing lung metastasectomy of colorectal cancer. Br J Cancer 2015;112:720-8.
77. Manceau G, Marisa L, Boige V, et al. PIK3CA mutations predict recurrence in localized microsatellite stable colon cancer. Cancer Med 2015;4:371-82.
78. Meric-Bernstam F, Brusco L, Shaw K, et al. Feasibility of large-scale genomic testing to facilitate enrollment onto genomically matched clinical trials. J Clin Oncol 2015;33:2753-62.
79. Miyaki M, Iijima T, Ishii R, et al. Increased frequency of TP53 mutation in sporadic colorectal cancer from cigarette smokers. Jpn J Clin Oncol 2002;32:196-201.
80. Jeon CH, Lee HI, Shin IH, et al. Genetic alterations of APC, K-ras, TP53, MSI, and MAGE in Korean colorectal cancer patients. Int J Colorectal Dis 2008;23:29-35.
81. Berg M, Danielsen SA, Ahlquist T, et al. DNA sequence profiles of the colorectal cancer critical gene set KRAS-BRAF-PIK3CA-PTEN-TP53 related to age at disease onset. PLoS One 2010;5:e13978.
82. Liao W, Liao Y, Zhou JX, et al. Gene mutations in epidermal growth factor receptor signaling network and their association with survival in Chinese patients with metastatic colorectal cancers. Anat Rec (Hoboken) 2010;293:1506-11.
83. Kwon MJ, Lee SE, Kang SY, et al. Frequency of KRAS,

BRAF, and PIK3CA mutations in advanced colorectal cancers: Comparison of peptide nucleic acid-mediated PCR clamping and direct sequencing in formalin-fixed, paraffinembedded tissue. Pathol Res Pract 2011;207:762-8.
84. Aoyagi H, Iida S, Uetake H, et al. Effect of classification based on combination of mutation and methylation in colorectal cancer prognosis. Oncol Rep 2011;25:789-94.
85. Hsieh LL, Er TK, Chen CC, et al. Characteristics and prevalence of KRAS, BRAF, and PIK3CA mutations in colorectal cancer by high-resolution melting analysis in Taiwanese population. Clin Chim Acta 2012;413:1605-11.
86. Ling Y, Ying JM, Qiu T, et al. Detection of KRAS, BRAF, PIK3CA and EGFR gene mutations in colorectal carcinoma. Zhonghua Bing Li Xue Za Zhi 2012;41:590-4.
87. Mao C, Zhou J, Yang Z, et al. KRAS, BRAF and PIK3CA mutations and the loss of PTEN expression in Chinese patients with colorectal cancer. PLoS ONE 2012;7:e36653.
88. Bando H, Yoshino T, Shinozaki E, et al. Simultaneous identification of 36 mutations in KRAS codons 61 and 146, BRAF, NRAS, and PIK3CA in a single reaction by multiplex assay kit. BMC Cancer 2013;13:405.
89. Yip WK, Choo CW, Leong VC, et al. Molecular alterations of Ras-Raf-mitogen-activated protein kinase and phosphatidylinositol 3-kinase-Akt signaling pathways in colorectal cancers from a tertiary hospital at Kuala Lumpur, Malaysia. APMIS 2013;121:954-66.
90. Nakanishi R, Harada J, Tuul M, et al. Prognostic relevance of KRAS and BRAF mutations in Japanese patients with colorectal cancer. Int J Clin Oncol 2013;18:1042-8.
91. Soeda H, Shimodaira H, Watanabe M, et al. Clinical usefulness of KRAS, BRAF, and PIK3CA mutations as predictive markers of cetuximab efficacy in irinotecan- and oxaliplatin-refractory Japanese patients with metastatic colorectal cancer. Int J Clin Oncol 2013;18:670-7.
92. Chang YS, Chang SJ, Yeh KT, et al. RAS, BRAF, and TP53 gene mutations in Taiwanese colorectal cancer patients. Onkologie 2013;36:719-24.
93. Patil H, Korde R, Kapat A. KRAS gene mutations in correlation with clinicopathological features of colorectal carcinomas in Indian patient cohort. Med Oncol 2013;30:617.
94. Sinha R, Hussain S, Mehrotra R, et al. Kras gene mutation and RASSF1A, FHIT and MGMT gene promoter hypermethylation: indicators of tumor staging and metastasis in adenocarcinomatous sporadic colorectal cancer in Indian population. PLoS One 2013;8:e60142.
95. Malhotra P, Anwar M, Nanda N, et al. Alterations in K-ras, APC and TP53-multiple genetic pathway in colorectal
cancer among Indians. Tumour Biol 2013;34:1901-11.
96. Bisht S, Ahmad F, Sawaimoon S, et al. Molecular spectrum of KRAS, BRAF, and PIK3CA gene mutation: determination of frequency, distribution pattern in Indian colorectal carcinoma. Med Oncol 2014;31:124.
97. Murtaza BN, Bibi A, Rashid MU, et al. Spectrum of K ras mutations in Pakistani colorectal cancer patients. Braz J Med Biol Res 2014;47:35-41.
98. Cai ZX, Tang XX, Gao HL, et al. APC, FBXW7, KRAS, PIK3CA, and TP53 Gene Mutations in Human Colorectal Cancer Tumors Frequently Detected by Next-Generation DNA Sequencing. J Mol Genet Med 2014;8:145.
99. Kadowaki S, Kakuta M, Takahashi S, et al. Prognostic value of KRAS and BRAF mutations in curatively resected colorectal cancer. World J Gastroenterol 2015;21:1275-83.
100. Ye JX, Liu Y, Qin Y, et al. KRAS and BRAF gene mutations and DNA mismatch repair status in Chinese colorectal carcinoma patients. World J Gastroenterol 2015;21:1595-605.
101. Kawazoe A, Shitara K, Fukuoka S, et al. A retrospective observational study of clinicopathological features of KRAS, NRAS, BRAF and PIK3CA mutations in Japanese patients with metastatic colorectal cancer. BMC Cancer 2015;15:258.
102. Phua LC, Ng HW, Yeo AH, et al. Prevalence of KRAS, BRAF, PI3K and EGFR mutations among Asian patients with metastatic colorectal cancer. Oncol Lett 2015;10:2519-26.
103. Lee JW, Lee JH, Shim BY, et al. KRAS mutation status is not a predictor for tumor response and survival in rectal cancer patients who received preoperative radiotherapy with 5-fluoropyrimidine followed by curative surgery. Medicine (Baltimore) 2015;94:e1284.
104. Kawada K, Toda K, Nakamoto Y, et al. Relationship between 18F-FDG PET/CT scans and KRAS mutations in metastatic colorectal cancer. J Nucl Med 2015;56:1322-7.
105. Lan YT, Jen-Kou L, Lin CH, et al. Mutations in the RAS and PI3K pathways are associated with metastatic location in colorectal cancers. J Surg Oncol 2015;111:905-10.
106. Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 1991;349:117-27.
107. Harari PM, Allen GW, Bonner JA. Biology of interactions: antiepidermal growth factor receptor agents. J Clin Oncol 2007;25:4057-65.
108. Tran B, Kopetz S, Tie J, et al. Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer. Cancer 2011;117:4623-32.
109. Mao C, Yang Z, Hu X, et al. PIK3CA exon 20 mutations
as a potential biomarker for resistance to anti-EGFR monoclonal antibodies in KRAS wild-type metastatic colorectal cancer: a systematic review and meta-analysis. Annals of oncology 2012;23:1518-25.
110. Russo A, Bazan V, Iacopetta B, et al. The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of TP53 mutation: influence of tumor site, type of mutation, and adjuvant treatment. J Clin Oncol 2005;23:7518-28.
111. Dhomen N, Marais R. New insight into BRAF mutations in cancer. Curr Opin Genet Dev 2007;17:31-9.
112. Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 2009;9:550-62.
113. Béroud C, Soussi T. APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res 1996;24:121-4.
114. Samowitz WS, Curtin K, Ma KN, et al. Prognostic significance of TP53 mutations in colon cancer at the population level. Int J Cancer 2002;99:597-602.
115.Akhoondi S, Sun D, von der Lehr N, et al. FBXW7/ hCDC 4 is a general tumor suppressor in human cancer. Cancer Res 2007;67:9006-12.
116. Chang CC, Lin HH, Lin JK, et al. FBXW7 mutation analysis and its correlation with clinicopathological features and prognosis in colorectal cancer patients. Int J Biol Markers 2015;30:e88-95.
117. Grim JE. Fbxw7 hotspot mutations and human colon cancer: mechanistic insights from new mouse models. Gut 2014;63:707-9.
118. Fleming NI, Jorissen RN, Mouradov D, et al. SMAD2, SMAD3 and SMAD4 Mutations in Colorectal Cancer. Cancer Research 2013;73:725-35.
119. Markowitz S, Wang J, Myeroff L, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 1995;268:1336-8.
120. Woodford-Richens KL, Rowan AJ, Gorman P, et al. SMAD4 mutations in colorectal cancer probably occur before chromosomal instability, but after divergence of the microsatellite instability pathway. Proc Natl Acad Sci U S A 2001;98:9719-23.
121. Linardou H, Dahabreh IJ, Kanaloupiti D, et al. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol 2008;9:962-72.
122. Armstrong B, Doll R. Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices. Int J Cancer 1975;15:617-31.
123.McKeown-Eyssen G. Epidemiology of colorectal cancer revisited: are serum triglycerides and/or plasma glucose associated with risk? Cancer Epidemiol Biomarkers Prev 1994;3:687-95.
124. Prentice RL, Sheppard L. Dietary fat and cancer: consistency of the epidemiologic data, and disease prevention that may follow from a practical reduction in fat consumption. Cancer Causes Control 1990;1:81-97.
125. Friedenreich CM, Orenstein MR. Physical activity and cancer prevention: etiologic evidence and biological mechanisms. J Nutr 2002;132:3456S-3464S.
126. Calle EE, Rodriguez C, Walker-Thurmond K, et al. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. N Engl J Med 2003;348:1625-38.
127. Popkin BM. The nutrition transition in low-income countries: an emerging crisis. Nutr Rev 1994;52:285-98.
128. Siegel R, Ward E, Brawley O, et al. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 2011;61:212-36.
129. Fireman Z, Sandler E, Kopelman Y, et al. Ethnic differences in colorectal cancer among Arab and Jewish neighbors in Israel. Am J Gastroenterol 2001;96:204-7.
130. Bener A, Moore MA, Ali R, et al. Impacts of family history and lifestyle habits on colorectal cancer risk: a case-control study in Qatar. Asian Pac J Cancer Prev 2010;11:963-8.
131.Arafa MA, Waly MI, Jriesat S, et al. Dietary and lifestyle characteristics of colorectal cancer in Jordan: a case-control study. Asian Pac J Cancer Prev 2011;12:1931-6.
132. Rozen P, Rosner G, Liphshitz I, et al. The changing incidence and sites of colorectal cancer in the Israeli Arab population and their clinical implications. Int J Cancer 2007;120:147-51.

Cite this article as: Al-Shamsi HO, Jones J, Fahmawi Y, Dahbour I, Tabash A, Abdel-Wahab R, Abousamra AO, Shaw KR, Xiao L, Hassan MM, Kipp BR, Kopetz S, Soliman AS, McWilliams RR, Wolff RA. Molecular spectrum of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC somatic gene mutations in Arab patients with colorectal cancer: determination of frequency and distribution pattern. J Gastrointest Oncol 2016;7(6):882-902. doi: 10.21037/jgo.2016.11.02

Table S1 Codons tested on AmpliSeq 46-gene (CMS46) and 50-gene (CMS50) assays

Gene	Codons tested in CMS46	Codons tested in CMS50
ABL1	237-260, 275-283, 303-319, 350-362, 387-412	232-260, 275-279, 314-360, 380-412
AKT1	16-59	16-52, 154-183
ALK	1172-1177, 1259-1277	1172-1204, 1270-1279
APC	$\begin{aligned} & \text { 865-886, 1105-1122, 1289-1322, 1349-1382, 1430-1467, } \\ & 1487-1509 \end{aligned}$	$\begin{aligned} & 860-891,1089-1125,1284-1326,1342-1384, \\ & 1426-1471,1483-1524,1543-1582 \end{aligned}$
ATM	```343-355, 395-412, 601-614, 837-862, 1307-1324, 1674-1693, 1733-1758, 1785-1802, 1935-1957, 2436-2445, 2650-2667, 2693-2715, 2721-2739, 2888-2891, 2937-2950, 2996-3016, 3037-3052```	$\begin{aligned} & 326-355,407-412,601-626,834-865,1292-1325, \\ & 1674-1707,1726-1757,1790-1815,1926-1946, \\ & 2436-2454,2650-2667,2682-2711,2718-2736, \\ & 2865-2891,2933-2950,2996-3026,3041-3057 \end{aligned}$
BRAF	439-471, 581-605	439-473, 581-611
CDH1	69-92, 351-373, 395-415	65-96, 337-374, 380-408
CDKN2A	51-76	51-90, 98-140
CSF1R	299-318, 952-973	297-319, 953-973
CTNNB1	12-45	9-48
EGFR	$\begin{aligned} & 89-125,280-297,575-601,698-722,729-761,766-790, \\ & 803-823,830-866 \end{aligned}$	$\begin{aligned} & 96-123,279-297,575-601,695-726,729-796,807-823, \\ & 855-875 \end{aligned}$
ERBB2	753-769, 772-797, 832-852, 875-883	752-797, 839-882
ERBB4	$\begin{aligned} & 136-141,177-186,234-247,272-289,303-322,343-363, \\ & 588-619,923-943 \end{aligned}$	$\begin{aligned} & 136-141,167-186,225-247,254-290,295-323, \\ & 333-367,580-623,919-948 \end{aligned}$
EZH2	-	625-649
FBXW7	264-279, 381-400, 450-472, 478-506, 566-583	264-287, 378-403, 434-473, 478-509, 567-594
FGFR1	121-139, 247-268	120-148, 247-273
FGFR2	250-268, 297-313, 367-395, 546-558	250-275, 296-313, 362-399, 546-558
FGFR3	247-268, 377-409, 634-653, 681-712, 790-807	247-277, 367-402, 631-653, 690-719, 771-807
FLT3	441-458, 569-575, 589-613, 662-682, 828-846	437-466, 570-610, 663-685, 828-847
GNA11	-	202-219
GNAQ	-	206-245
GNAS	196-218	196-240
HNF1A	198-217, 253-282	192-221, 253-282
HRAS	5-23, 48-79	5-35, 42-82
IDH1	118-134	101-135
IDH2	-	133-177
JAK2	604-622	603-622
JAK3	568-578, 709-729	128-140, 568-580, 709-733
KDR	$\begin{aligned} & 240-258,267-280,472-490,872-892,959-985,1138-1161, \\ & 1192-1216,1301-1321,1336-1356 \end{aligned}$	244-291, 471-480, 872-894, 961-988, 1135-1156, 1192-1221, 1283-1310, 1324-1357
KIT	$\begin{aligned} & 47-69,501-514,536-549,550-585,641-684,714-728 \text {, } \\ & 807-828,836-854 \end{aligned}$	$\begin{aligned} & 23-58,494-514,525-587,627-661,664-684,714-724, \\ & 802-828,832-858 \end{aligned}$
KRAS	5-28, 40-67, 136-150	5-66, 114-150
MET	160-187, 362-379, 992-1017, 1105-1126, 1247-1268	$\begin{aligned} & \text { 159-188, 339-378, 816-856, } 981-1012,1105-1132 \text {, } \\ & 1246-1274 \end{aligned}$
MLH1	373-393	373-415
MPL	499-522	501-522
NOTCH1	1566-1605, 1673-1697	1566-1602, 1673-1680, 2536-2476
NPM1	283-295	283-295
NRAS	6-22, 53-69	3-31, 43-69, 124-150
PDGFRA	552-570, 647-688, 819-847	552-583, 644-668, 671-709, 819-854
PIK3CA	$\begin{aligned} & \text { 77-98, 328-351, 418-422, 533-551, 688-716, 1019-1049, } \\ & 1065-1069 \end{aligned}$	$\begin{aligned} & 54-90,106-118,316-351,390-422,449-468,522-549, \\ & 677-720,898-924,1017-1051,1065-1069 \end{aligned}$
PTEN	5-24, 55-70, 167-184, 212-222, 240-266, 282-300, 316-342	$\begin{aligned} & 1-25,55-70,99-135,165-184,212-215,231-267, \\ & 282-300,312-342 \end{aligned}$
PTPN11	53-82, 486-506	46-82, 485-527
RB1	$\begin{aligned} & 132-154,195-203,350-371,549-565,566- \\ & 585,655-680,703-724,743-765 \end{aligned}$	$\begin{aligned} & 130-159,196-203,314-345,350-366,452-463, \\ & 547-582,655-691,703-724,743-770 \end{aligned}$
RET	609-627, 630-654, 762-774, 880-901, 914-931	608-654, 762-786, 875-924
SMAD4	$\begin{aligned} & \text { 109-128, 167-184, 228-247, 304-319, 330-363, 385-404, } \\ & 444-472,497-526 \end{aligned}$	$\begin{aligned} & 98-136,142-146,165-202,242-263,307-319,326-365, \\ & 384-424,443-474,494-532 \end{aligned}$
SMARCB1	39-55, 154-167, 182-203, 376-386	35-72, 144-206, 373-386
SMO	186-218, 310-340, 399-418, 516-542, 626-646	186-228, 307-331, 391-419, 511-542, 608-646
SRC	514-534	499-533
STK11	30-62, 174-199, 253-281, 325-360	22-64, 155-181, 191-207, 253-285, 317-361
TP53	$\begin{aligned} & 1-18,81-114,126-135,149-181,187-223,230-253,269-306, \\ & 332-344 \end{aligned}$	$\begin{aligned} & 1-20,68-113,126-138,149-223,225-258,263-307 \text {, } \\ & 332-367 \end{aligned}$
VHL	88-110, 120-149, 147-175	78-108, 114-150, 155-174

[^6]
[^0]: Table 5 (continued)

[^1]: Table 5 (continued)

[^2]: Table 5 (continued)

[^3]: Table 5 (continued)

[^4]: Table 5 (continued)

[^5]: PCR, polymerase chain reaction; RT-PCR, reverse transcription polymerase chain reaction; RFLP, restriction fragment length polymorphism; HPLC, high-performance liquid chromatography; SSCP, single-

[^6]: Reproduced with permission from Meric-Bernstam F, Brusco L, Shaw K, et al. Feasibility of Large-Scale Genomic Testing to Facilitate Enrollment Onto Genomically Matched Clinical Trials. J Clin Oncol 2015;33:2753-62.

