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Introduction

With an ever expanding armamentarium of molecularly 
targeted therapies that provide clinical benefit in a small 
subset of patients, the use of predictive biomarkers to 
appropriately select those who will benefit is crucial. 
Though the characterization of some predictive markers 
entails simple testing that can be completed in most labs, 
such as immunohistochemistry (IHC), other testing can 
be much more complex (1). The United States Food 
and Drug Administration (FDA) has recognized the 
importance of companion diagnostic testing and in 2014 
released a position statement highlighting the need for the 
development and approval of companion in vitro diagnostic 
tests contemporaneously in order to ensure FDA approval 
of novel agents (2).

While the pairing of targeted therapies with biomarkers 
provides an opportunity for personalized care, it also 
presents significant challenges. As more complex biomarkers 
emerge, significant variation in assay methodology leads 
to difficulties in standardizing diagnostic tests and their 
results. Institutions and funding agencies often struggle 
with choosing the most cost efficient but clinically useful 
test from a myriad of competing platforms. The rapid 
advancement in molecular diagnostics has also resulted in 
many assays becoming obsolete shortly after adoption as 
they are replaced with more sensitive or comprehensive 
tests. Despite these challenges, recent advances have 
resulted in companion diagnostics with improved clinical 
performance. Here we review currently available and 
investigational molecular pathology assays of importance to 
the treatment of metastatic colorectal cancer (mCRC) and 
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provide insights into future opportunities. We will focus on 
biomarkers with current or anticipated future actionability 
(see Figure 1).

Current standard of care companion diagnostic 
tests

KRAS/NRAS

Overview and clinical significance
In mCRC, the use of monoclonal antibodies (cetuximab 
and panitumumab) to target the epidermal growth factor 
receptor (EGFR) has proven to be an effective treatment 
strategy (3-9). These agents bind the extra-cellular domain 
of EGFR and prevent downstream signaling. Correlative 
studies identified Kirsten rat sarcoma viral oncogene (KRAS) 
mutations as an important driver of tumor resistance (9). 
Although initially only KRAS exon 2 (codons 12 and 13) 
mutations were evaluated as a biomarker for anti-EGFR 
resistance, recent data has shown that mutations in KRAS 
exon 3 (codons 59 and 61), exon 4 (codons 117 and 146) 
or neuroblastoma rat sarcoma viral oncogene (NRAS) exon 2 
(codons 12 and 13), 3 (codons 59 and 61), and 4 (codons 
117 and 146) are also associated with anti-EGFR resistance 
(10,11). Together these extended RAS mutations are present 

in up to 56% of mCRC (12). Due to the strength of RAS 
testing as a predictive biomarker, guidelines suggest that all 
patients with mCRC should have extended RAS mutation 
testing and must not have mutations in RAS if receiving 
EGFR directed therapy (13-15).

Given the importance to RAS testing, optimizing 
molecular detection of mutations is of utmost importance. 
At present, no one methodology is preferred and all assays 
appear to have similar cost implications in large health 
care systems (16). Laboratories must either validate their 
own independent test or adopt a commercially available 
kit. Concordance between primary tumors and metastatic 
lesions is high, ranging between 90% and 100% in most 
studies, suggesting that testing can be completed on 
whichever lesion is easiest to biopsy, or on archival tissue 
(17-22). While highly conserved between liver metastasis 
and primary, some studies have suggested a higher level 
of discordance (up to 32%) between primary and lung or 
lymph node metastasis, which may complicate mutation 
analysis in patients with metastases beyond the liver (23,24). 
Most samples assessed for RAS status will be formalin-
fixed paraffin embedded archival tissue, however in patients 
without sufficient tissue, cytological samples have been 
shown to be sufficient for determining RAS and BRAF 

Figure 1 Prevalence of common biomarkers in metastatic colorectal cancer. WT, wild type; MT, mutant; MSI, microsatelite instable; MSS, 
microsatelite stable.
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(v-raf murine sarcoma viral oncogene B1) status with high 
concordance to primary lesions (17,19,25-27).

While conventional assays identify patients as RAS mutant 
when a mutation is detected in >10% of reads sequenced, 
sensitivities approaching 0.1% are now possible (28). This 
heightened sensitivity allows for greater characterization of 
sub-clonal populations that may result in early treatment 
resistance. Multiple studies have described early treatment 
failure and lack of benefit from EGFR directed therapy 
in patients with low frequency RAS mutations that would 
not be detected using standard clinical assays (29-32). 
It remains to be seen, however, whether these higher 
sensitivity assays will result in improved patient selection 
and outcomes. Recently drafted guidelines recommend that 
assay sensitivity should be at least 5%, although the outcome 
data supporting this recommendation is limited. Important 
considerations during assay selection include workload, 
turnaround time, equipment costs, assay costs, sensitivity 
and comprehensiveness of assays. Table 1 summarizes some 
key differences between available platforms. While some 
assays may allow for detection of only targeted “hot-spot” 
mutations, others are much more comprehensive and may 
detect mutations of unclear significance. Sanger sequencing 
is the gold standard and most techniques are compared to 

this, however, there are many options available.

Direct sequencing techniques
Sanger sequencing and pyrosequencing are methods of 
direct DNA sequencing which use detection of fluorescent 
nucleotides or photon emission during nucleotide 
incorporation to elicit DNA sequence information and 
provide information about an entire sequenced region 
(46,47). Direct sequencing is able to determine mutations 
at all base-pairs throughout an entire gene, but Sanger 
sequencing has difficulty assessing low frequency mutations 
or samples with tumor content below 20–30% (48-50). 
Unlike Sanger sequencing, pyrosequencing allows detection 
of low level mutations because of its ability to sequence 
numerous templates concurrently, however it can be 
limited by the ability to only sequence short templates, 
which can make detection of uncharacterized mutations 
more challenging (47,51). Pyrosequencing is more sensitive 
than Sanger sequencing and comparable in sensitivity to 
Therascreen, which has been established as a regulatory 
approved companion biomarker for anti-EGFR inhibitors 
(33,52). Pyrosequencing is available via independently 
developed assays or commercially available kits such as 
PyroMark (Qiagen, Hilden, Germany).

Table 1 Comparison of select tissue sequencing platforms for RAS/BRAF status

Assay
Mutant allele frequency 
threshold required for 
detection

Full gene or targeted
Estimated 
turnaround time (28)

Cost

Sanger/direct 
sequencing

10–20% (30) Full gene Days to weeks Low cost per sample but high 
equipment cost to start

Pyrosequencing 2.5–5% (33,34) Full gene Few days Low cost per sample but high 
equipment cost to start

Allele specific 
PCR

1–5% (30,35-38) Targeted, Cobas: 18 mutations 
in codons 12, 13, and 61 
of KRAS. Therascreen: 7 
mutations in codons 12 and 
13 (G12A, G12D, G12R, G12C, 
G12S, G12V, G13D)

Rapid Low cost per sample

High resolution 
melting

2.5–10% (37,39,40) Full gene or targeted Days to weeks Low cost per sample but high 
equipment cost to start

NGS 1% (28,41-43) Full gene or targeted Days to weeks Varied-moderate to high

Multiplex 
mutation assays

3–5% (44,45) Targeted Days to weeks Low cost per sample but 
high equipment and assay 
validation cost to start

PCR, polymerase chain reaction; NGS, next generation sequencing.
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Mutant allele specific polymerase chain reaction (PCR)
Mutant allele specific PCR uses probes for mutated and 
non-mutated alleles and allows for enrichment of mutant 
transcripts in samples with low frequency mutations (35). 
Probes for each allele are labeled with fluorescent reporter 
dyes that allow detection and quantification. There are 
a number of modifications to the principle of mutant 
allele specific PCR that can enhance assay performance, 
such as peptide-nucleic acid linking or locked nucleic 
acid incorporation (53). These assays are able to detect 
mutant allele frequencies that are much lower than Sanger 
sequencing (as low as 1%) but do not detect mutations 
outside of those selected for inclusion as primers in the 
assay (35,36,54). This enhanced sensitivity can result in the  
re-classification of up to 20% of patients compared to Sanger 
sequencing or Therascreen and is clinically relevant (30,55).  
Patients defined as wild-type by PCR based assays have been 
shown to have improved response rates, progression free, 
and overall survival (OS) compared to Sanger sequencing 
defined wild type populations (30,56).

Patented mutant allele specific PCR detection kits, such 
as the Roche Cobas KRAS mutation kit (Roche Molecular 
Systems, Inc., Branchburg, NJ, USA) or the Qiagen 
Therascreen kit (Qiagen, Hilden, Germany), are available and 
perform well. Cobas uses TaqMelt real-time PCR. Following 
amplification, samples are heated and mutations are detected 
by discrepancies between wild type and mutant amplicon 
melting temperatures. Compared to Sanger sequencing and 
Therascreen, the Cobas assay has demonstrated superior 
detection rates, which were in line with pyrosequencing and 
high resolution melting (HRM) assays (34,37,57). A limitation 
of the Cobas assay is the inability to confirm which specific 
mutation is present in a sample. Therascreen uses an allele 
specific amplification refractory mutation system (ARMS) and 
incorporates a fluorescent probe (Scorpion) during real-time  
PCR when a mutation is present in template material. It 
detects the seven most common mutations in KRAS exon 2 
(codon 12 and 13) and has been shown to result in equivalent, 
if not better sensitivity compared to direct sequencing and 
HRM, with the ability to detect mutant allele frequencies of 
1% (38,49,58,59). The assay identifies the specific mutation 
which is present in a sample but does not offer extended RAS 
coverage outside of exon 2 (59).

HRM analysis 
HRM analysis uses PCR amplification followed by 
monitoring for fluorescence changes during heated 
denaturation to detect mutant alleles. The inclusion of a 

fluorescent dye or probe that emits more strongly when 
bound to dsDNA than ssDNA allows detection of variants. 
Minimum mutant allele frequency required for detection 
ranges between 2.5% and 10%, making the assay more 
sensitive than direct sequencing (37,39,40,60). Some reports 
suggest that HRM RAS detection may result in excessive 
false positive results but this has not been universally noted 
and validity was comparable to pyrosequencing and standard 
sequencing in other studies (59,61). An advantage to HRM 
is the ability to detect all mutations within multiple genes 
concurrently (i.e., RAS and BRAF), however the assay is 
unable to report the specific mutation present in a sample (61).

Gel electrophoresis methods
Single strand conformation polymorphism analysis and 
denaturing gradient gel electrophoresis both use fluorescent 
labeling PCR reactions followed by gel electrophoresis 
with amplified wild-type RAS co-run across gel matrices. 
Templates with mutations will assume different structures and 
migrate at different speeds. Mutations are detected by noting 
when additional bands are present in the gel beyond the wild 
type band (47,62). Single strand conformation polymorphism 
analysis, HRM PCR, and Therascreen show similar 
sensitivities, and appear more sensitive for low frequency 
mutations than pyrosequencing (62). Gel electrophoresis 
methods can detect an array of mutations across entire genes 
but do not identify the specific gene mutation present (63). 
The Ampli-set-K-RAS commercial kit (Bird, Siena, Italy) 
uses restriction fragment length polymorphism PCR and 
has been shown to have similar sensitivity and specificity to 
Therascreen and multiplex assays (64).

Next generation sequencing (NGS)
NGS uses massively paralleled sequencing technology 
to perform sequencing with significant depth and 
covering many genes with similar time and resource costs 
compared to sequencing a single mutation with Sanger 
sequencing (65). It can utilize highly selective hot-spot 
panels with significant depth at each mutation site or more 
comprehensive sequencing such as whole-exome or whole-
genome analysis. With more comprehensive sequencing, 
data management and informatics pipelines becomes 
increasingly important to deal with the massive amounts 
of information generated. The costs of NGS are falling 
significantly and costs to sequence a single genome are 
now on the scale of a few thousand dollars, with targeted 
panels available for several hundred dollars a sample. Both 
Haley et al. and Altimari et al. demonstrated that NGS had 



203Journal of Gastrointestinal Oncology Vol 8, No 1 February 2017

© Journal of Gastrointestinal Oncology. All rights reserved. J Gastrointest Oncol 2017;8(1):199-212jgo.amegroups.com

better sensitivity and specificity than Sanger sequencing, 
pyrosequencing and ARMS-Scorpion PCR assays for the 
detection of known KRAS mutations (41,42). NGS has a 
sensitivity as low as 1% mutant allele frequency and had 
100% concordance with a panel of KRAS mutant patients 
compared to 98% with Therascreen (43). Other major 
benefits of NGS will be discussed later when we address the 
roll of multiplex panels in mCRC.

Emerging biomarkers in colorectal cancer

BRAF

Overview and clinical significance
BRAFV600E mutations are found in 8–10% of mCRC and are 
strongly associated with RAS wild-type and microsatellite 
instable (MSI) tumors (66). BRAF mutant tumors associated 
with MSI result from high level CpG island hypermethylation 
[CpG island hypermethylation phenotype (CIMP)+] (67). This 
CIMP+ phenotype accounts for almost all cases of BRAFV600E 
mutant metastatic CRC. Testing for BRAFV600E mutation is 
recommended for its prognostic and potentially predictive 
role (68). Results of biomarker analysis from the PRIME 
randomized trial comparing the efficacy of panitumumab plus 
oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) with 
FOLFOX4 alone, revealed that the presence of BRAFV600E 
mutation in RAS wild-type tumors portends poor prognosis, 
regardless of treatment (4). The median progression-free 
survival (PFS) and OS in BRAF mutant patients compared 
to wild type patients was 6.1 vs. 10.8 months and 10.5 vs. 
28.3 months, respectively (69). Due to their poor prognosis, 
these patients need to be identified early and considered for 
clinical trials assessing BRAF inhibitors (70). Additionally, 
BRAFV600E mutation is strongly associated with MLH1 
promoter methylation and can therefore distinguish between 
sporadic and hereditary (Lynch-related) MLH1-deficient  
MSI CRC (71).

BRAFV600E mutation assays
BRAFV600E mutation testing is performed commonly 
using PCR based methods. In a study comparing PCR-
Sequencing (Sanger sequencing) with a real time PCR 
(allelic discrimination) assay, real time PCR was found to 
be more sensitive for detection of BRAF mutations in CRC, 
especially in cases with an allelic frequency of less than 
20% (72). NGS platforms can also be used for detecting 
BRAFV600E mutations and offers the advantage of testing 
multiple genes for mutations of interest. In a prospective 

comparison, the performance of the Ion Torrent NGS assay 
was found comparable to Sanger sequencing and detected 
similar proportions of BRAF mutant cases (73). Since 
these methods require DNA extraction, they are resource 
intensive, and often inaccessible. Notably, BRAFV600E 
mutation testing can facilitate screening of Lynch syndrome 
related MSI CRCs (74,75). Emerging data has shown that 
BRAFV600E mutation in plasma cfDNA can be tested using 
PCR based tests, has moderate concordance (concordance 
rate of 74%) with standard tumor tissue testing and may 
have prognostic and predictive significance (76).

Human epidermal growth factor receptor 2 (HER2)

Overview and clinical significance
HER2 amplifications are found in 3–4% of all CRC and are 
strongly associated with RAS and BRAF wild-type tumors. 
In patients harboring wild-type RAS/BRAF genes, HER2 
amplifications are seen in 5–6% cases (66,77). Presence 
of HER2 amplification has been implicated in resistance 
to anti-EGFR monoclonal antibodies (78). In the clinical 
setting, HER2 gene copy number status significantly 
correlated with differential response rate (RR), PFS and 
OS. Patients with HER2 amplification have shorter PFS 
on treatment with anti-EGFR based therapies compared 
to HER2 non-amplified cases (79). HER2 amplification has 
been validated as a negative predictive biomarker for anti-
EGFR antibody therapy in metastatic CRC. Patients with 
HER2 amplification had significantly shorter PFS (median: 
2.9 vs. 8.1 months) compared to HER2 non-amplified 
patients on anti-EGFR based therapy (80). Furthermore, 
these patients can derive benefit from dual-anti-HER2 
inhibition using trastuzumab in combination with lapatinib 
(HERACLES study) or trastuzumab and pertuzumab (My 
Pathway study) and should be referred for clinical trials 
assessing HER-2 directed therapy (81-83).

HER2 amplification testing
No consensus exists regarding methodology for HER2 
amplification testing in CRC. The HERACLES study used 
HER2 IHC for patient selection (82). Using this cohort, 
the investigators proposed a criterion for HER2-IHC 
positivity to identify HER2 amplification in CRC. IHC 
was performed using both HercepTest antibody and Bench 
Mark Ultrasystem using the VENTANA 4B5 antibody. In 
this cohort, none of the IHC 0 or 1+ cases were amplified. 
Furthermore, there was complete concordance between 
silver in situ hybridization (SISH) and fluorescent in situ 
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hybridization (FISH) (84). However, in the absence of 
prospective validation, the application of this algorithmic 
interpretation of IHC and ISH in CRC is incomplete. 
In another systematic analysis of 2,573 CRC cases using 
HER2 IHC and in situ hybridization (ISH), the diagnostic 
sensitivity and specificity of HER2 IHC was 71% and 96%, 
respectively. HER2 IHC scores of 0 or 1+ exhibited good 
agreement with ISH (concordance rate of 97%). However, 
the concordance rates of HER2 IHC 2+ and 3+ were (38% 
and 78%, respectively) low, necessitating the additional need 
for ISH analysis to confirm HER2 status in these cases (85). 
Although, not validated in CRC, NGS assay can accurately 
identify HER2 amplifications in breast cancer samples (86). 
HER2 amplifications in plasma cfDNA can be identified 
using digital PCR. In mCRC patients who developed 
resistance to anti-EGFR antibodies, 22% (4/18) of patients 
were found to have HER2 amplifications (87), although this 
methodology requires tissue concordance validation studies 
before it is ready for clinical implementation.

PIK3CA

Overview and clinical significance
Phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3CA) 
is a key enzyme in the MTOR signaling pathway. Mutations 
in exon 9 and 20 have been reported in 14–32%, and had 
been reported to associate with resistance to EGFR directed 
therapy (88-91). However, these early studies may have been 
confounded by the frequent co-mutation of both PIK3CA 
and KRAS in CRC tumors, and subsequent studies have not 
demonstrated a role for PIK3CA as an independent predictive 
biomarker for EGFR antibodies. Exon 20 mutations appear to 
be more strongly associated with EGFR resistance, however 
a recent meta-analysis suggests the prognostic significance 
of PIK3CA mutations is unclear at this point (92,93).  
PIK3CA mutations have been noted to be a potential 
biomarker for benefit from ASA or COX-2 inhibition in the 
adjuvant setting after several studies demonstrated improved 
outcomes in patients with PIK3CA mutations taking ASA 
after a colorectal cancer diagnosis (94,95). At this point in 
time there is no proven therapeutic intervention directed at 
PIK3CA mutations in mCRC. Due to this, testing for these 
mutations is not indicated outside of a clinical trial.

Mutation detection
Similar to KRAS and BRAF, PIK3CA mutations are 
highly conserved between primary and metastasis, with a 
concordance of over 90% (19). There is no preferred assay 

to detect PIK3CA mutations and individual reports suggest 
NGS platforms, gel electrophoresis, and PCR sequencing all 
have excellent sensitivities, while Sanger sequencing is less 
sensitive. HRM has been shown to have similar sensitivity to 
Sanger sequencing, while pyrosequencing appears to be more 
sensitive than Sanger sequencing (96-100).

Microsatellite instability (MSI)

While MSI is a long standing prognostic biomarker in early 
stage CRC, interest in this biomarker in the metastatic 
setting has been renewed with the advent of immune 
checkpoint inhibitors (101-103). The use of pembrolizumab 
in MSI-high CRCs has been associated with significant 
response rates (104). A plausible hypothesis is that deficient 
DNA repair results in higher mutational burden in MSI-high 
tumors, and the resultant increase in neo-antigens provides 
an immunogenic environment. Notably, level of mutational 
burden correlates with response to immune checkpoint 
inhibitors in other tumor sites (105,106). MSI is present in 
15–20% of all CRCs and about 4% of mCRC and arises 
from either germline mutations in mismatch repair (MMR) 
proteins (MSH2, MSH6, MLH1, PMS2) or from somatic 
hypermethylation of the MLH1 promoter (107,108). Loss of 
these MMR proteins results in expansions of short repetitive 
sequences throughout the genome called microsatellites 
that can be detected via PCR-based assays which target 
standard DNA sequences containing these repeats. A 
simpler way to infer MMR function is IHC to detect loss 
of expression in the four key MMR proteins. IHC has been 
shown to have similar sensitivity to PCR based MSI testing, 
however is not able to distinguish germ line mutations from 
somatic hypermethylation of MLH1 (1). While this deficit 
has implications for hereditary screening programs, it does 
not impact the phenotypic behavior of tumors. Besides MSI 
status, other markers such as tumor infiltrating lymphocytes 
and mutational burden have not been clinically validated in 
colorectal cancer.

Novel assay methodologies

Cell free DNA (cfDNA), circulating tumor DNA (ctDNA), 
and circulating tumor cells

There are a number of novel assays capable of assessing 
RAS and BRAF status from plasma or serum. The ability to 
ascertain this information from a “liquid biopsy” reduces 
complications associated with biopsy procedures and 
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provides another means to assess response to therapy and 
detect emergence of resistance. ctDNA genotyping of RAS 
and BRAF has been shown to have similar, if not better, 
ability to detect low frequency mutations compared to 
tissue based assays in known RAS/BRAF mutant patients 
and allows monitoring of clonal dynamics (109,110). While 
many studies report rates of discordance between 20% and 
30% in RAS and nearing 10% in BRAF for cfDNA, ctDNA, 
and CTC based assays, it is difficult to interpret whether 
this demonstrates inadequacies in an assay or temporal 
clonal dynamics (111-115). A recent phase II trial of 
irinotecan and cetuximab demonstrated that cfDNA KRAS 
mutation status was often discordant compared to archival 
tissue, but was actually more predictive of patient response 
and survival than archival status. This work highlights how 
plasma assays may actually provide a better representation 
of the current mutational burden of a patient (116). The 
ability to follow these clonal dynamics has also been shown 
to offer potential re-treatment options. Siravegna et al. 
demonstrated emergence of a RAS resistant clone after 
treatment that subsequently diminished upon cessation of 
EGFR directed therapy. These patients were able to be  
re-challenged with cetuximab/panitumumab and achieved 
responses prior to the re-emergence of the prior clone (109).

Multigene panels

As we move towards the increasing use of molecularly 
targeted agents, it is becoming crucial to assess samples 
for multiple biomarkers concurrently. Utilizing multiple 
different assays to test for individual targets is challenging 
due to time constraints, cost, and pathologic specimen 
exhaustion. At this time, whole genome and whole exome 
sequencing are still out of reach for clinical utilization, 
however the use of NGS targeted gene panels allows a 
focused assessment of key genes and have been adopted 
at many institutions. By inserting a barcode into sample 
template material, a multiplexed platform that can sequence 
multiple samples concurrently is possible, facilitating 
increased throughput. Once barcoded, oligonucleotides 
are hybridized to a solid matrix with mutation specific 
sequences followed by PCR amplification to create clonal 
clusters. DNA synthesis of sequences complementary to the 
clonal clusters is detected by a marker such as pH change 
or fluorescence emission, depending on the platform used, 
and this information is computationally merged across all 
of the concurrent reactions to create the full output of the 
sequencing.

Multiplex assays allow assessment of numerous genes 
within one reaction and have similar or better sensitivity 
to direct sequencing methods (58,117,118). They are 
cheaper than direct sequencing and are better able to deal 
with degraded or poor quality DNA. Typically, a panel is 
designed to detect “hot-spot” mutations that have been 
previously described with clinical significance, however 
mutation coverage can differ based on the specific assay. 
The decision concerning how much of a gene or the 
number of genes to include on a panel must be balanced 
with the depth of coverage desired. By limiting the size of 
a panel, increasing depth at each mutation is possible with 
similar cost. Mutant allele frequency required for detection 
is reported in the range of 3–5% and with significant depth 
of coverage or paired reads that span breakpoints, copy 
number variation (CNV) can be detected with sensitivities 
nearing 100% (44,45,86,119,120). This does require that 
the break point and adjacent territory both have adequate 
coverage which may not always be present depending on the 
particular panel. Detection of gene fusions is difficult unless 
the panel is designed to include targets for a known fusion. 
Most novel fusions are detected using WGS or RNA-Seq 
technology (121,122).

Between 29–72% of patients had potentially actionable 
targets after sequencing with multiplex panels in results from 
several large cohorts (123-126). The number of actionable 
targets is highly variable depending on the available 
compounds for treatment at a center and the number of 
mutations assessed in each panel. At this point in time, these 
panels are most effective in centers with large early drug 
development programs that can provide access to numerous 
investigational compounds. The Assessment of Targeted 
Therapies Against Colorectal Cancer (ATTACC) umbrella 
trial protocol at MD Anderson Cancer Center recently 
reported the results of the first 484 patients screened. Ninety-
five percent of patients had a biomarker identified, of which 
31.2% were enrolled onto one of the 18 companion trials 
available during the study (127). Other ongoing umbrella 
and basket studies, such as NCI-MATCH, will hopefully 
demonstrate the utility of multigene panels to complete 
accrual to trials of uncommon molecular subtypes (128).

With advances in NGS technology and reduction in 
cost, panels with a larger number of genes and/or hotspots 
are possible. Given the lack of targeted agents that have 
demonstrated clinical effectiveness in metastatic colorectal 
cancer at this point in time, there is no clinical indication 
to utilize larger panels beyond those that would include 
RAS and potentially BRAF mutations outside of a clinical 
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trial setting. One of the major reasons to include a larger 
number of genes within a panel is to create a platform that 
can be used across numerous tumor sites to save resources 
and allow batching of different histologies together.

Conclusions

Despite a lack of new agents available for the treatment 
of mCRC over the past decade, the refinement of current 
biomarkers to better select patients who will benefit from 
EGFR inhibition has been an important step towards 
improving outcomes. The current drug development 
pipeline includes exciting new targeted agents that may 
be available in the next few year, however these therapies 
are likely to provide benefit in only a subset of patients. 
In order for these agents to move into the clinic and 
receive regulatory approval, they will require tandem 
development of companion diagnostic tests. Current 
commonly assessed biomarkers are outlined in Table 2. 
Selection of the appropriate companion diagnostic in some 
settings may be dictated by regulatory authorities during 
drug approval, however in many situations institutions 
will need to select one of a variety of assays that may 
provide similar information. These decisions will be driven 
by assay performance, cost, and labor intensity. With 
the rapid improvement in NGS technology, significant 

reduction in sequencing cost, and ability to test specimens 
from many patients on the same assay, we expect future 
companion diagnostics will rely heavily on multiplex panels 
that can effectively screen patients for numerous agents 
concurrently. These assays not only benefit patients by 
providing information about multiple mutational targets 
concurrently, but better utilize pathologic specimens.
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Table 2 Commonly tested biomarkers in advanced colorectal cancer

Biomarker Commonly used assays Current status

KRAS (codon 12, 13, 59, 61, 
117, 146) and NRAS (codon 12, 
13, 59, 61, 117, 146) mutations

Direct sequencing, allele 
specific PCR, high resolution 
melting, multiplex panels

Prognostic and predictive

Predicts resistance to EGFR targeted therapy—standard of care

BRAFV600E mutation PCR Prognostic and predictive (investigational)

Suggests potential response to BRAF targeted agents—experimental

Microsatellite instability Microsatellite expansion 
PCR or IHC

Prognostic and predictive (investigational)

Suggests response to immunotherapy—experimental

Hereditary screening implications

Her2 amplification Combination of IHC and 
FISH

Predictive (investigational)

Suggests response to HER2 targeted therapy—experimental

PIK3CA mutation  
(exon 9 and 20)

No standard assay Unclear role

May suggest resistance to EGFR targeted therapy

May suggest sensitivity to ASA/COX-2 inhibitors in adjuvant setting

PCR, polymerase chain reaction; EGFR, epidermal growth factor receptor; IHC, immunohistochemistry; FISH, fluorescent in situ hybridization.
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