Prognostic value of diffuse versus intestinal histotype in patients with gastric cancer: a systematic review and meta-analysis

Fausto Petrelli¹, Rosa Berenato², Luca Turati³, Alessia Mennitto², Francesca Steccanella³, Marta Caporale², Pierpaolo Dallera³, Filippo de Braud², Ezio Pezzica⁴, Maria Di Bartolomeo², Giovanni Sgroi³, Vincenzo Mazzaferro⁵, Filippo Pietrantonio², Sandro Barni¹

¹Medical Oncology Unit, Oncology Department, ASST Bergamo Ovest, Treviglio (BG), Italy; ²Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; ³Surgical Oncology Unit, Surgery Department, ⁴Pathology Unit, Oncology Department, ASST Bergamo Ovest, Treviglio (BG), Italy; ⁵Hepatobiliopancreatic Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy

Contributions: (I) Conception and design: All authors; (II) Administrative support: All authors; (III) Provision of study materials or patients: All authors; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Dr. Fausto Petrelli. ASST Bergamo Ovest; 24047 Treviglio (BG), Italy. Email: faupe@libero.it.

Background: There are two distinct types of gastric carcinoma (GC), intestinal, more frequently sporadic and linked to environmental factors, and diffuse (undifferentiated) that is highly metastatic and characterized by rapid disease progression and a poor prognosis. However, there are many conflicting data in the literature concerning the association between histology and prognosis in GC. This meta-analysis was performed to provide demonstration if histology according to Lauren classification is associated with different prognosis in patients with GC.

Methods: We searched PubMed, the Cochrane Library, SCOPUS, Web of Science, CINAHL, and EMBASE for all eligible studies. The combined hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) in terms of overall survival (OS) were evaluated.

Results: A total of 73 published studies including 61,468 patients with GC were included in this meta-analysis. Our analysis indicates that GC patients with diffuse-type histology have a worst prognosis than those with intestinal subgroup in all studies (HR 1.23; 95% CI, 1.17–1.29; P<0.0001), in both loco-regional confined (HR 1.21; 95% CI, 1.12–1.30; P<0.0001) and advanced disease (HR 1.25; 95% CI, 1.046–1.50; P=0.014), in Asiatic (HR 1.2; 95% CI, 1.14–1.27; P<0.0001) and Western patients (HR 1.3; 95% CI, 1.19–1.41; P<0.0001), and in those not exposed (HR 1.15; 95% CI, 1.07–1.24; P<0.0001) or exposed (HR 1.27; 95% CI, 1.17–1.37; P<0.0001) to (neo)adjuvant therapy.

Conclusions: Our results indicated that histology might be a useful prognostic marker for both early and advanced GC patients, with intestinal-type associated with a better outcome. This information could be used for stratification purpose in future clinical trials.

Keywords: Gastric cancer (GC); prognostic factor; Lauren classification; diffuse histology; meta-analysis

Submitted Oct 06, 2016. Accepted for publication Nov 23, 2016. doi: 10.21037/jgo.2017.01.10 View this article at: http://dx.doi.org/10.21037/jgo.2017.01.10

Introduction

Despite its incidence in Western countries had a steady decline over the last decade, gastric cancer (GC) still represents one of the major causes of cancer mortality worldwide (1). The prognosis of GC is mostly related to disease extension according to the seventh TNM classification (2). Currently, the clinical or pathological stage is the only validated tool available in the clinical practice to drive treatment decision-making. However, it

must be pointed out that the individual risk of recurrence significantly varies within the same stage, and overall survival (OS) profoundly depends on additional prognostic factors (3,4).

The diffuse and intestinal types of GC describe two histological entities that are different with regard to epidemiology, pathogenesis, biological features and clinical behavior. Currently, there is no difference in the clinical management of these two main histotypes identified by both World Health Organization and Lauren's classification systems (5,6). It is generally recognized that GC with a differentiated histology or intestinal-type shows a better prognosis than individual with a poorly differentiated histology or a diffuse-type (7). However, most available studies were limited by the small sample size and retrospective nature, with consequent methodological limitations and barriers in validating the histotype as an independent prognostic factor.

In this systematic review and meta-analysis, we aimed at clarifying the prognostic value of Lauren's classification in patients with surgically resected GC.

Methods

Search strategy

The search was performed searching the electronic database PubMed, the Cochrane Library, SCOPUS, Web of Science, EMBASE and CINAHL up to December 2015. Searches included the terms ("gastric cancer" or "gastric carcinoma") and ("Lauren" or intestinal or diffuse) and (multivariate or multivariable or cox regression) and (hazard ratio). Manual selection of relevant studies was carried out based also on the related articles function. The citation lists of all retrieved articles were analyzed to identify other potentially relevant reports.

Study selection and data extraction

The following criteria for eligibility among studies were set before collecting articles: (I) histology according to Lauren classification was evaluated in primary GC tissue (biopsies or surgical specimen of primary tumor); (II) survival information (median OS) at specific follow-up was reported in the article as HR according to multivariate analysis, after histology classification resulted significantly in univariate analysis; (III) articles were published in English language; (IV) when several articles were published by the same authors or group, the newest or most informative single article was selected. Exclusion criteria were the following: (I) no information on OS was provided; (II) letters to editor/commentary, reviews, and articles published in a book or papers; (III) clinical studies with chemotherapy or concurrent chemoradiotherapy treatment investigating response rates only.

Two authors (FaP and RB) did the search and identification independently, and selection of an article was reached by consensus with a third author (FiP). The following information was extracted from each report by the two authors independently: year of publication, country, patient size, type of study, histology (intestinal *vs.* diffuse disease rates), disease stage (locoregional tumors *vs.* stage IV), surgery (rate), type and rate of (neo)adjuvant therapy, survival data (HRs) and covariates indagates in multivariate analysis.

Statistical analysis

For analysis of survival results, HRs were pooled to provide an aggregate value. In this analysis, all HRs with 95% confidence intervals (CIs) adjusted for the maximum number of covariates (significantly associated with OS in univariate analysis) and available in the articles, were combined for obtaining a prognostic information of diffuse (vs. intestinal) histology, independent of other clinicopathological covariates. Subgroup analysis was performed according to race (Asiatic vs. non-Asiatic origin, localized vs. stage IV disease, and no systemic therapy vs. systemic therapy exposure). Data were entered into the Comprehensive Meta Analysis software v 3.3.070 (November 20^{th,} 2014). The Cochran's test was used to assess the heterogeneity of included studies. For heterogeneity tests, P<0.05 was considered to indicate significance. If the test of heterogeneity was significant (P<0.05 or $I^2 > 50\%$), the random-effect model was used. Otherwise, the fixed-effect model was used. By convention, an observed HR of >1 implied the worst survival for the group with diffuse histology.

We finally investigated publication bias for OS metaanalysis with a visual inspection of funnel plots and with the Begg-Mazumdar Kendall's tau and Egger's bias test (8,9). Moreover, in the presence of publication bias for the primary analyses, we conducted a trim-and-fill-adjusted analysis (10) to remove the most extreme small studies from the positive side of the funnel plot, and recalculated the effect size at each iteration, until the funnel plot was

Figure 1 Overview of trials search and selection.

symmetric about the (new) effect size.

Results

A total of 1,228 potentially relevant citations were reviewed (*Figure 1*). Among them, 23 reported OS data as risk ratio or odds ratio or did not report 95% CI for inclusion in the final analysis. Ultimately, 73 studies (*Table 1*) that reported the prognostic value of histology classification for OS were analyzed. The total number of patients included was 61,468, ranging from 41 to 11,189 patients per study (median, 274). The major characteristics are shown in *Table 1*.

In n=7 publications a retrospective analysis of prospective trials was presented, all other publications reported a retrospective analysis of surgically treated series of patients with GC. The majority (n=45) were Asiatic countries publications; the remaining n=28 publication were of Western origin (including n=3 multinational, n=5 US, n=1 Brazilian, n=16 European, n=1 Giordany, n=1 Tunisian and n=1 Turkish series). Surgery of the primary tumor was performed in all patients in n=68 studies. Chemotherapy, plus or minus radiotherapy was offered to many patients except in n=20 publication where no patients received systemic therapy (in n=18 studies this data was not reported). When reported, intestinal histology ranged from 8.5% to 83% of patients, diffuse subtype from 9.8% to 73.5% (only in n=6 studies rates of different histologies were not reported).

Meta-analysis of adjusted bazard ratios (HRs) for OS (all studies)

The effect of histology classification on OS was evaluated in all studies with a total of 61,468 patients analyzed. Overall, the HRs of each study (adjusted for the maximum number of the covariates available and with significant association in univariate analysis) were pooled using a random-effect model, and the final value (HR 1.23; 95% CI, 1.17–1.29; P<0.0001; I² 38%, P for heterogeneity 0.001; *Figure 2*), indicates that diffuse histology was an indicator of worst prognosis.

Subgroup analysis according to race, stage and systemic therapy

In studies selected for the country (Asiatic *vs.* non-Asiatic countries, only n=2 studies not included for mixed origins) the increased risk of death associated with diffuse histology was similar (HR 1.22; 95% CI, 1.15–1.29; P<0.0001 *vs.* HR 1.28; 95% CI, 1.19–1.38; P<0.0001 according to random

Table 1 Char	acteristics of in	ncluded studies									
Author, year	Country	Type of study	N pts	Follow up (months)	Stage (I–III vs. stage IV) (%)	Site	Primary surgery (%)	Ct (%)	Intestinal/ diffuse (%)	OS HR (diffuse vs. intestinal)	Variables used in MVA
An <i>et al.</i> , 2010 (11)	Korea	Retrospective series	251	40	91, 6 vs. 8.4	Cardia 100	100	N	50.2/45.8	0.951 (0.533–1.698)	Bormann, pT, pN, LVI
Atmaca <i>et al.</i> , 2012 (12)	German	Retrospective analysis of 4 prospective trials	357	18.2	0 vs. 100	Proximal GEJ 30%, other 70%	RN	Yes	39/48	1.1 (0.81–1.69)	EGFR, age, type of CT, site, sex, metachronous/ synchronous M+
Ben Ayed- Guerfali <i>et al.</i> , 2011 (13)	Tunisian	Retrospective series	79	RN	69 vs. 31	Cardia 10, other 90%	100	No	57/43	1.65 (0.346–7.894)	Sex, HP, site, TNM stage, EBV, CIMP, p16, RAR-beta, RASSF1A, DAPK, CDH1
Bani-Hani <i>et al.</i> 2005 (14)	, Giordany	Retrospective series	8	33.7	89 vs. 11	Upper 3rd-entire stomach 18%, other 82%	100	No	66/34	2.53 (0.89–7.20)	Age, sex, pN, HP, cyclin E, TNM stage, pT, site, G
Becker <i>et al.</i> , 2012 (15)	German	Retrospective series	428	33	100 vs. 0	Cardias, GEJ 55%; distal 45%	100	Neoadj CT	43.9/25	0.982 (0.786–1.226)	Diameter, LVI, R+, G, TRG, TNM stage
Bian <i>et al.</i> , 2012 (16)	China	Retrospective series	222	NR	85 vs. 15	Cardia 25%, other 75%	100	No	62/38	1.049 (0.748–1.471)	Sex, age, site, G, pT, pN, M+, TNM stage. QKI expr
Bilici <i>et al.</i> , 2010 (17)	Turkey	Retrospective series	238	29.5	100 vs. 0	Proximal 16%, distal 84%	100	RN	50/50	0.99 (0.23–1.17)	Age, sex, site, G, size, pT, Borrmann, surgery, pN, cTNM stage, LVI, VI, PNI, M+
Chen <i>et al.</i> , 2014 (18)	China	Retrospective series	991	55.3	100 vs. 0	Upper 3rd 37.2%, other 62.8%	100	Adj CT (62.4)	44.5/45.9	1.024 (0.883–1.187)	Age, site, gastrectomy, Borrmann, size, morphology, G, LVI, VI, pT, pN, TNM stage, adj CT
Choi <i>et al.</i> , 2007 (19)	Korea	Retrospective series	286	RN	85 vs. 15	Cardia + body 46%, other 54%	100	RN	36/52	0.83 (0.45–1.53)	Sex, pT, LVI, M+, NDRG2 expr
de Maat e <i>t al.</i> , 2007 (20)	the Netherlands	Retrospective analysis of a prospective study	137	ШN	100 vs. 0	Я	100	ЯN	77/23	1.58 (1.075–2.38)	pN+, pT, TNM stage, D1 vs. D2, COX2
Deng <i>et al.</i> , 2015 (21)	China	Retrospective series	1,521	38	100 <i>vs</i> . 0	Proximal 3rd 45.6%, other 54.4%	100	24.1 neoadj	38/62	1.267 (1.098–1.463)	Age, site, size, pT, pN, n° N+, type surgery, D1 vs. D2,
Table 1 (contin	(pənı.										

Table 1 (contin	(pəni										
Author, year	Country	Type of study	N pts	Follow up (months)	Stage (I–III vs. stage IV) (%)	Site	Primary surgery (%)	Ct (%)	Intestinal/ diffuse (%)	OS HR (diffuse vs. intestinal)	Variables used in MVA
Di Bartolomeo et al., 2015 (22)	Italy	Retrospective analysis of a prospective study	346	61	100 vs. 0	Proximal 18%, other 82%	100	Adj CT [100]	52/48	1.41 (0.97–2.04)	TNM stage, G, osteopontin, E-caderina, beta catenina, COX2
Eom <i>et al.</i> , 2012 (23)	Korea	Retrospective series	448	52.6	100 vs. 0	N	100	No	46.6/41.7	1.03 (0.51–2.10)	Type surgery, pT, pN
Fujitani <i>et al.</i> , 2012 (24)	Japan	Retrospective series	70	19.4	100 vs. 0	Proximal 40%, other 60%	100	Neoadj CT	28.5/71.5	1.323 (0.635–2.755)	Age, sex, pT, pN, G, R+
Gómez-Martin <i>et al.</i> , 2012 (25)	Spain	Retrospective series	148	N	0 vs. 100	RN	RN	Yes (81.8)	50.7/28.3	1.47 (1.01–2.17)	PC, HER2
Gong <i>et al.</i> , 2005 (26)	SU	Retrospective series	86	25.7	84 vs. 16	NR	100	oN	61.6/38.4	1. 37 (0.77–2.49)	Stat3, VEGF, MVD, TNM stage, R+, age
Guo <i>et al.</i> , 2013 (27)	China	Retrospective series	2,379	65	100 vs. 0	Proximal 12%, other 88%	100	RN	55/45	1.182 (1.045–1.336)	Age, size, Bormann type, LVI, pT, pN
Ha <i>et al.</i> , 2013 (28)	Korea	Retrospective series	495	R	98 vs. 2	Upper rd 16%, other 84%	100	Yes adj CTRT [100]	35/59	1.301 (0.834–2.030)	MET, M+, pN, age, sex, G
Hayashi <i>et al.</i> , 2008 (29)	Japan	Retrospective series	134	69	100 vs. 0	Proximal 24%, other 76%	100	RN	37/63	1.262 (0.668–2.385)	Age, TNM stage, HER1-2-3-4
He <i>et al.</i> , 2012 (30)	China	Retrospective series	103	RN	53.3 vs. 46.6 (stage III, IV)	Proximal 9.7%, other 90.2%	100	Yes (for advanced stages)	74.7/25.2	2.470 (1.166–5.230)	Kiel stage, Snail
Hsu <i>et al.</i> , 2011 (31)	Taiwan	Retrospective series	1,036	NR	46.6 vs. 53.7 (stage III, IV)	GEJ 16.4%, 83.5% other	100	Yes [60]	50/37.6	1.450 (1.163–1.806)	Age, size, pT, pN, R+, VI, HP
Hu <i>et al.</i> , 2015 (32)	China	Retrospective series	96	NR	25 vs. 75 (stage III, IV)	R	100	No	41.6/58.3	1.311 (0.717–2.396)	CXCR3 expression, age, pT, pN
Jang <i>et al.,</i> 2010 (33)	Korea	Retrospective series	11,189	RN	88 vs. 12	Upper 3rd 11.3%, other 82.7%	100	N	36.6/52.3	1.085 (0.958–1.228)	Sex, age, size, G, TNM stage, R+, site
Janjigian <i>et al.</i> , 2012 (34)	SU	Retrospective analysis of 6 clinical trials	381	18.2	0 vs. 100	GEJ 36.7, 50.1 other	RN	Yes (1st or 2nd line)	48.2/46.4	1.33 (0.93–2.32)	Age, sex, HER2, PS, CT type, site, stage IV, liver & peritoneal M+
Jun <i>et al.</i> , 2009 (35)	Korea	Retrospective series	973	NR	100 vs. 0	NR	100	NR	NR	1.540 (0.782–3.032)	Size, G, TNM stage, LVI, VI, PNI
Table 1 (contin	(pən.										

© Journal of Gastrointestinal Oncology. All rights reserved.

jgo.amegroups.com

Table 1 (cont.	inued)										
Author, year	Country	Type of study	N pts	Follow up (months)	Stage (I-III vs. stage IV) (%)	Site	Primary surgery (%)	Ct (%)	Intestinal/ diffuse (%)	OS HR (diffuse vs. intestinal)	Variables used in MVA
Jung <i>et al.</i> , 2011 (36)	Korea	Retrospective series	293	38.2	48.8 (stage III) vs. 51.2 (stage IV)	Upper 3rd 19.1%, other 80.9%	100	Yes adj CT (62.5)	50/50	1.585 (1.135–2.212)	NLR, TNM stage, surgery, PNI, adj CT
Kulig <i>et al.</i> , 2010 (37)	Poland	Retrospective series	1,992	RN	64 vs. 36	Proximal 20%, other 80%	100	Yes [69]	68.4/42.6	1.01 (0.87–1.16)	Age, BMI, site, splenectomy, pT, pN, LNR, M+, R+, adj CT
Kunz <i>et al.</i> , 2012 (38)	USA	Retrospective SEER database	9,325	Я	88.1 vs. 5.4	Esophagus/ cardia 34.3, antrum/body/ fundus 32.8	100	Yes 30.8 (RT 23)	8.5/19.5/71.8 (other)	1.347 (1.264–1.434)	Age, sex, race, SES, site, TNM stage, G, surgery, CT, RT, hospital size, institution, year,
Kawanishi <i>et a</i> 2000 (39)	<i>ıl.</i> , Japan	Retrospective series	06	RN	93 vs. 7	R	100	R	47.7/52.3	1.451 (0.426–4.429)	pN+, pT, peritoneal carcinomatosis, AMFR+, ECD+, AMFR/ECD+
Kim KH <i>et al.</i> , 2011 (40)	Korea	Retrospective series	149	65.2	83.2 vs. 16.8	Upper 16.1%, other 83.9%	100	Yes adj CT [100]	39.6/46.4	1.137 (0.799–1.617)	Type surgery, LNR, TNM stage, ERCC1 & GSTP1
Kim MA <i>et al.</i> , 2005 (41)	Korea	Retrospective series	729	47	90.2 vs. 9.8	Cardia 14.4%, 85.6% other	100	RN	37.7/55.4	1.106 (0.866–1.413)	Site, TNM stage, LVI, R+, WHO classification
Koh <i>et al.</i> , 2013 (42)	Korea	Retrospective series	143	Ч	40 vs. 60	GEJ/cardia 15.4%, other 84.6%	100	Yes preop CT [100] + post CT (62.9)	26.5/73.5	1.912 (1.147–3.186)	pN+, M+
Kurokawa <i>et a</i> 2015 (43)	<i>il.</i> , Japan	Multicentre retrospective study	1,148	62	100 vs. 0	Upper 22.2 lower, middle 77.8	100	No	54/46	1.07 (0.86–1.33)	Age, sex, site, pT, pN, adj CT, HER2
Lee HS <i>et al.</i> , 2003 (44)	Korea	Retrospective series	329	42	86 vs. 14	RN	100	No	37.3/52.8	1.46 (0.80–2.65)	TNM stage, TSG expression
Lee HS <i>et al.</i> , 2013 (45)	Korea	Retrospective series	653	51	80.7 vs. 9.3	R	100	Yes adj CT (44.2)	48.7/35.7	1.790 (0.894–3.584)	Tumor deposit, pT, pN+, LVI, VI, PNI
Lee HW <i>et al.</i> , 2015 (46)	Korea	Retrospective series	179	96	95 vs. 5	Cardia 2.8%, other 97.2%	100	No	54/46	1.579 (0.989–2.521)	Size, pT, pN, p4ebp1
Lee JH <i>et al.</i> , 2015 (47)	Korea	Retrospective series	111	74, 9	100 vs. 0	Upper- medium 13.5%, other 86.5%	100	Yes adj CT (1.7)	RN	2.216 (0.184–26.632)	Age, sex, D2, PNI, site, size, G, pT
Lee OJ <i>et al.</i> , 2009 (48)	Korea	Retrospective series	106	NR	81.1 vs. 18.9	Cardia 3.8%, other 96.2%	100	No	41.5/58.5	1.81 (0.38–8.49)	Age, sex, grade, TNM stage, mucin phenotype
Table 1 (cont.	inued)										

© Journal of Gastrointestinal Oncology. All rights reserved.

jgo.amegroups.com

Table 1 (contin	(pənu										
Author, year	Country	Type of study	N pts	Follow up (months)	Stage (I–III vs. stage IV) (%)	Site	Primary surgery (%)	Ct (%)	Intestinal/ diffuse (%)	OS HR (diffuse vs. intestinal)	Variables used in MVA
Marano <i>et al.</i> , 2015 (49)	Italy	Retrospective series	274	53	100 vs. 0	Upper 28.1%, other 71.9%	100	No	54.7/39.7	1.074 (0.76–1.63)	Age, site, G, AJCC TNM version
Martinho <i>et al.</i> , 2013 (50)	Brazil	Retrospective series	152	62.3	82.2 vs. 17.7 (stage III, IV)	Proximal 10.5%, other 89.5%	100	RN	65/35	1.56 (0.74–3.28)	Sex, size, WHO classification, pN, LVI, VI, PNI, RKIP
Matsubara <i>et</i> <i>al.</i> , 2008 (51)	Japan	Retrospective series	87	NR	0 vs. 100	NR	100	Yes (first line)	46/54	1.71 (1.08–2.70)	IGFR, PS
Min <i>et al.</i> , 2015 (52)	China	Retrospective series	215	R	100 vs. 0	Cardia 20%, other 80%	100	N	69.3/19.5	1.324 (0.839–2.088)	Sex, age, size, site, G, VI, pT, pN, TNM stage , peritoneal carcinomatosis, G3BP1
Nagashima et al., 2005 (53)	Japan	Retrospective series	55	R	36 vs. 64	NR	0 N	Yes	55/45	1.695 (1.159–2.487)	Molecular phenotype, TNM stage, PS, macroscopic type, age
Orditura <i>et al.</i> , 2014 (54)	Italy	Retrospective series	41	22	100 vs. 0	Gej 100%	100	Yes neoadj CTRT [100]	46/54	1.41 (0.46–4.27)	G, pT, pN, clinical response, TRG, TNM stage, LNR, stage/response
Otsuki <i>et al.</i> , 2011 (55)	Japan	Retrospective series	106	48	58 vs. 42	NR	100	NR	44/56	1.1 (0.46–2.7)	pT, pN, vimentin RNA
Park KW <i>et al.</i> , 2014 (56)	Korea	Retrospective series	154	NR	100 vs. 0	R	100	R	NR	1.165 (0.843–1.608)	LNR, TNM stage, type surgery, NFKB, VEGF
Park S <i>et al.</i> , 2015 (57)	Korea	Retrospective series	4,282	35.8	100 vs. 0	Upper third 13.4%, other 86.6%	100	Yes adj CT except pT1N0	44/56	1.498 (1.019–2.202)	Age, G, site, pT, pN, VI
Pinheiro, 1999 (58)	the Netherlands	Retrospective series	1,543	NR	65 vs. 35	Cardia 21%, other 79%	100	NR	83/13	1.44 (1.2–1.7)	Age, site, TNM stage, surgery
Qiu <i>et al.</i> , 2014 (59)	China	Retrospective series	838	NR	90 vs. 10	36% proximal, 56% distal	100	Adj CT [70]	33.9/51	1.440 (1.004–2.066)	Age, sex, TNM stage, HER2, G
Reim <i>et al.</i> , 2013 (60)	German	Retrospective series	1,767	77	75 vs. 25	Upper not GEJ 37.2%, other not GEJ 62.8%	100	Yes neoadj CT 19, adj CT 6.6	43.8/34.7	1.245 (1.084–1.432)	TNM stage, pT, pN, M+, R+, age, LVI, LNR, G
Rodríguez Santiago <i>et al.</i> , 2005 (61)	Spain	Retrospective series	183	43	100 vs. 0	Superior 17.5%, other 82.5%	100	Yes adj CT if pN+	47.5/35	2.45 (1.37–4.37)	Age, sex, pT, LNR, site
Table 1 (contin	(pənı,										

jgo.amegroups.com

J Gastrointest Oncol 2017;8(1):148-163

Petrelli et al. Lauren classification in GC

Table 1 (contin	(pənı										
Author, year	Country	Type of study	N pts	Follow up (months)	Stage (I–III vs. stage IV) (%)	Site	Primary surgery (%)	Ct (%)	Intestinal/ diffuse (%)	OS HR (diffuse vs. intestinal)	Variables used in MVA
Rosa <i>et al.</i> , 2014 (62)	Italy	Retrospective series	936	NR	82.4 vs. 17.6	Upper third 19.1%, other 80.9%	100	Yes periop CT 2.9 & adj CT 38.5	48/42.9	1.34 (0.86–1.73)	TNM stage, site, year, nodes retrieved, complications, multivisceral resections, R+
Sawaki <i>et al.</i> , 2012 (63)	Japan	Retrospective analysis of a prospective study	101	18.6	0 vs. 100	GEJ 3.9%, other 96.1%	15.7	Yes first line CT	72.5/9.8	3.24 (1.08–9.70)	Treatment arm, sex stage, age, site, measurable disease, n° lesions, n° M+ sites, visceral M+, surgery, previous CT, HER2 status
Shen <i>et al.</i> , 2014 (64)	China	Retrospective series	606	70	97.6 vs. 2.4	Cardia 34%, other 66%	100	Yes adj CT [32]	42.5/57	1.15 (0.79–1.68)	Age, sex, platinum regimen, POU5F1P1 rs10505477
Shim HJ <i>et al.</i> , 2011 (65)	Korea	Retrospective series	174	NN	0 vs. 100	GEJ-cardia 6.3%, other 93.7%	55.7	Yes 3rd line CT [100]	58.6/23.6	1.02 (0.62–1.69)	PS, albumin, G, DCR first line, DCR second line, PFS 2nd line
Shim JH <i>et al.</i> , 2014 (66)	Korea/USA	Retrospective series	2,187	>72	94.2 vs. 5.8	Upper third 13%, other 87%	100	N	47/36	1.25 (0.83–1.66) US, 1.25 (0.9–1.66) Korea	Site, sex, n° N+, n° N, pT
Shimoyama anc Kaminishi, 2003 (67)	d Japan	Retrospective series	123	RN	92 vs. 8	R	100	RN	46/54	5.8 (1.5–23.3)	Angiogenin, pT, pN
Shinmura <i>et al.</i> , 2014 (68)	Japan	Retrospective series	271	N	100 vs. 0	RN	100	RN	NR	1.662 (0.871–3.298)	pT, pN, AURKA, TNK2
Sierra <i>et al.</i> , 2003 (69)	Spain	Retrospective series	156	37.3	75 vs. 25	Proximal 18%, other 82%	100	Yes adj CT [37]	40/60	2.78 (1.47–5.25)	TNM stage, LNR, M+, type of lymphadenectomy
Stiekema <i>et al.</i> , 2013 (70)	the Netherlands	Retrospective series	132	53	100 vs. 0	Upper third 18%, other 82%	100	Yes neoadj CT or CTRT 57 adj CT or CTRT 36	47/53	2.317 (1.188–4.519)	pT, pN, adj CT, R+
Stiekema <i>et al.</i> , 2015 (71)	the Netherlands	Retrospective series	409	18 and 11	100 vs. 0	Proximal 3%, other 97%	100	Yes neoadj CT 23 + adj CTRT 9	54/46	1.31 (1.03–1.68)	Age, sex, site, type surgery, n° N+, pT, pN, adj CT, neoadj CT, adj CTRT
Sun <i>et al.</i> , 2015 (72)	China	Retrospective series	265	19-feb	15 vs. 85 (stage II–IV)	NR	100	No	49/51	1.574 (1.081–2.292)	PDH expression, age, size, pT, TNM stage, pN+, LVI, G
Takashima et al., 2014 (73)	Japan	Pooled analysis of two phase III trials	319	Ц	0 vs. 100	RN	27.9	Yes 2nd line CT [100]	51/49	1.03 (0.8–1.315)	Trial enrollment, sex, age, PS, Borrmann type, surgery, target lesions, peritoneal carcinomatosis, n° M+ sites

155

Table 1 (continued)

Table 1 (conti-	nued)										
Author, year	Country	Type of study	N pts	Follow up (months)	Stage (I–III vs. stage IV) (%)	Site	Primary surgery (%)	Ct (%)	Intestinal/ diffuse (%)	OS HR (diffuse <i>v</i> s. intestinal)	Variables used in MVA
Tan <i>et al.</i> , 2011 (74)	Various	Retrospective series	518	33, 56, 39, 36*	74 vs. 26	RN	100	Yes adj CT [16]	48.8/35.3	0.81 (0.50–1.32)	Intrinsic genomic subtypes, G
Verlato <i>et al.</i> , 2015 (75)	Italy	Retrospective series	568	106	100 vs. 0	NR	100	No	61/39	1.91 (1.09–3.36)	Hospital, age, sex, site, pT, pN, D2 vs. D3
Wang BB <i>et al.</i> 2011 (76)	, Korea	Retrospective series	3,018	R	85 vs. 15	Upper 11.87%, other 88%	100	ЯN	44/56	1.131 (1.012–1.358)	Sex, age, past history, family history, site, number lesions, M+, R+, D1-2-3, type of resection, G, Borrmann type, pT, pN, n° N dissected
Wang L <i>et al.</i> , 2003 (77)	NSA	Retrospective series	86	25.7	73.6 vs. 16.3	NR	100	No	61.6/38.4	0.9 (0.5–1.8)	TNM stage, Sp1, R+, age, sex
Wang X <i>et al.</i> , 2013 (78)	China	Retrospective series	866	N	73.8 vs. 26.2	Upper 15.9%, other 84.1%	100	R	61.8/34.3	1.152 (0.897–1.480)	Age, sex, site, size, G, pT, pN, R+, TNM stage, PLA2G2A expression
Wu CW <i>et al.</i> , 2006 (79)	Taiwan	Retrospective analysis of a prospective study	221	94.5	100 vs. 0	12.6 % upper, other 87.4% other	100	°N N	ч	1.20 (0.80–1.80)	Age, D1 vs. D3, sex, site, Bormann type, pT, pN, spleen/pancreas removed, type surgery, transfusions
Wu X <i>et al.</i> , 2010 (80)	China	Retrospective series	962	26.4	100 vs. 0	NR	100	NR	NR	1.036 (0.786–1.366)	Age, sex, TNM stage, site, IL17A and F genotype
Xu <i>et al.</i> , 2012 (81)	China	Retrospective series	929	35	97.5 vs. 2.5	Fundus or cardia 38.7%, other 61.3%	100	° Z	41.9/58.1	1.181 (0.945–1.474)	Age, sex, size, TNM stage, SOD2 rs4880
Yao et <i>al.</i> , 2004 (82)	NSA	Retrospective series	86	25.9	72 vs. 28	Proximal 23%, other 77%	100	No	66/44	0.78 (0.36–1.68)	SP1, VEGF, TNM stage, R+, G, age
Ye training cohort, 2013 (83)	Various	Retrospective series	81	RN	75 vs. 25	щ	100	° Z	52/48	1.11 (0.63–1.92)	Age, sex, size, TNM stage, MDM2 expression
Ye testing cohort, 2013 (83)	Various	Retrospective series	368	RN	86 vs. 14	щ	100	Yes adj CT (23.2)	57/43	0.98 (0.75–1.26)	Age, sex, size, TNM stage, MDM2 expression
Ye validation cohort, 2013 (83)	Various	Retrospective series	357	N	97.2 vs. 2.8	R	100	Yes adj CT (37.5)	41/59	0.68 (0.49–0.96)	Age, sex, size, TNM stage, MDM2 expression
*, follow up of junction; n pts, metastasis; VE	different cohor number of pat GF, vascular er cular invasion;	ts; °, analysis of t f tients; HR, hazard idothelial growth f PNI, perineural inv	ree diffe ratio; MV actor; pT, /asion; VI	rent cohorts /A, multivaria pathologica , vascular in	in the same pul ate analysis; NR, Il tumor stage; pl vasion; PS, perfc	blications. OS, o not reported; C N, pathological n mance status; [verall surviva. T, chemother: odal stage; n DCR, disease	; PFS, progres apy; RT, radiot ° N+, number control rate; F	sion-free surviv herapy; G, grad of node positive HER, human epi	 (al; LNR, lymphnode raile) (e); R+, margin resection (f); Nphadenectomy (f); HP, he 	tito; GEJ, gastro-esophageal n positive; TNM, tumor node r extension; M+, metastases; elicobacter pylori.

jgo.amegroups.com

J Gastrointest Oncol 2017;8(1):148-163

Petrelli et al. Lauren classification in GC

Relativ e weight

Study name	Country		Statisti	cs for ea	ch study			Ha	zard ratio and 95%
		Hazard	Lower	Upper	7.1/21.02	- 14-1			
4 - 2040	Kama	ratio	limit	limit	Z-Value	p-value			II
An 2010 Atmaca 2012	German	0,951	0,533	1,697	-0,170	0,805			
Ayed-Guerfali 2011	Tunisian	1,650	0,346	7,868	0,628	0,530		- 1	┥ <mark>┌ ●</mark> ┤
Bani-Hani 2005	Giordany	2,530	0,890	7,192	1,741	0,082			++
Becker 2012	German	0,982	0,786	1,227	-0,160	0,873			🕂
Bian 2012 Billici 2010	China	1,049	0,748	1,471	0,277	0,782			
Chen 2014	China	1 024	0,230	1 188	0.314	0,969			
Choi 2007	Korea	0,830	0,450	1,531	-0,597	0,551			↓ ● <mark>↓</mark>
de Maat 2007	the Netherlands	1,580	1,075	2,322	2,328	0,020			
Deng 2015	China	1,267	1,098	1,462	3,240	0,001			
Di bartolomeo Fom 2012	Italy Korea	1,410	0,970	2,050	1,800	0,072			
Fujitani 2012	Japan	1.323	0.635	2,756	0,747	0,354			
Gomez-Martin 2015	Spain	1,470	1,010	2,140	2,012	0,044			
Gong 2005	US	1,370	0,770	2,438	1,071	0,284			▎┿╇
Guo 2013	China	1,182	1,045	1,337	2,660	0,008			
Ha 2013 Hayochi 2009	Korea	1,301	0,834	2,029	1,160	0,240			
He 2012	China	2 470	1 166	5 232	2 361	0,473			
Hsu 2011	Taiwan	1,450	1,163	1,808	3,302	0,001			-← `
Hu 2015	China	1,311	0,717	2,397	0,879	0,379			╽╺┼●┼
Jang 2010	Korea	1,085	0,958	1,229	1,284	0,199			
Janjigian 2012	US	1,330	0,930	1,902	1,562	0,118			
Juna 2009	Korea	1,540	1,135	2,213	2,703	0,212			
Kulig 2010	Poland	1.010	0,870	1,173	0,131	0,896			I ↓ T
Kunz 2012	US	1,347	1,264	1,435	9,180	0,000			
Kawanishi 2000	Japan	1,450	0,426	4,935	0,595	0,552			┼─┼●┼
Kim KH 2011	Korea	1,137	0,799	1,618	0,713	0,476			
KIM MA 2005 Kob 2013	Korea	1,106	0,800	1,413	0,807	0,420			
Kurokawa 2015	Japan	1.070	0.860	1.331	0.607	0,544			
Lee HS 2003	Korea	1,460	0,800	2,665	1,233	0,218			▎╶┎┲
Lee HS 2013	Korea	1,790	0,894	3,584	1,644	0,100			
Lee HW 2015	Korea	1,579	0,989	2,521	1,914	0,056			
Lee JH 2015	Korea	2,210	0,184	20,088	0,627	0,531			
Marano 2015	Italy	1.074	0,360	1.518	0,405	0,450		1 -	
Martinho 2013	Brazil	1,560	0,740	3,289	1,169	0,243			▎▃ᠮ᠊᠊╇┼
Matsubara 2008	Japan	1,710	1,080	2,708	2,288	0,022			
Min 2015	China	1,324	0,839	2,089	1,206	0,228			
Orditura 2014	Japan	1,095	0.460	2,479	2,721	0,007			
Otsuki 2011	Japan	1,100	0.460	2,630	0.214	0.830			┝─┢┷┼
Park KW 2014	Korea	1,165	0,843	1,610	0,925	0,355			
Park S 2015	Korea	1,498	1,019	2,202	2,056	0,040			
Pinheiro 1999	the Netherlands	1,440	1,200	1,728	3,920	0,000			
QIU 2014 Reim 2013	German	1,440	1,004	2,065	1,982	0,048			
Rodriguez Santiago 2005	Spain	2.450	1,370	4,381	3,021	0,002			
Rosa 2014	Italy	1,340	0,860	2,088	1,293	0,196			Ⅰ ∔●
Sawaki 2012	Japan	3,240	1,080	9,720	2,097	0,036			
Shen 2014 Shim H 2014	China	1,150	0,790	1,674	0,730	0,466			
Shim HJ 2011 Shim JH 2014	Korea	1,020	0,620	1,078	0,078	0,938			
Shim JH 2014	US	1,250	0,800	1,883	1,068	0,105			
Shimoyama 2003	Japan	5,800	1,500	22,427	2,548	0,011			▎▕▝╺┿╸
Shinmura 2014	Japan	1,662	0,871	3,171	1,541	0,123			│ ┼╼┼
Sierra 2003	Spain	2,780	1,470	5,257	3,145	0,002			
Stiekema 2013 Stiekema 2015	the Netherlands	2,317	1,188	4,519	2,405	0,014			
Sun 2015	China	1,574	1.081	2,292	2,201	0.018			
Takashima 2014	Japan	1,030	0,800	1,326	0,229	0,819			→ `
Tan 2011	Various	0,810	0,500	1,312	-0,856	0,392			
Verlato 2015	Italy	1,910	1,090	3,347	2,261	0,024			
Wang BB 2011 Wang L 2003	LIS	1,131	0.500	1,264	2,170	0,030			
Wang XW 2013	China	1,152	0,897	1,479	1,108	0,725			
Wu CW 2006	Taiwan	1,200	0,800	1,800	0,881	0,378			→ →–
Wu X 2010	China	1,036	0,786	1,366	0,251	0,802			
Xu 2012	China	1,181	0,945	1,476	1,463	0,144			I _ t ●- I
Ya0 2004 Ye training cohort 2012	Various	0,780	0,360	1,690	-0,630	0,529		· -	
Ye testing cohort 2013	Various	0.980	0,750	1,281	-0.148	0.882			
Ye validation cohort 2013	Various	0,680	0,490	0,944	-2,307	0,021			⊢ •–]
		1,231	1,173	1,292	8,436	0,000		1	I I 🕴 I
							0,1	0,2	0,5 1 2

С

0,61 $\begin{array}{c} 3,81\\ 1,34\\ 0,46\\ 1,48\\ 3,43\\ 4,69\\ 0,15\\ 1,27\\ 2,21\\ 0,57\\ 2,49\\ 0,57\\ 2,49\\ 0,57\\ 2,49\\ 0,57\\ 2,49\\ 0,57\\ 2,49\\ 0,57\\ 2,49\\ 0,57\\ 2,137\\ 3,51\\ 0,99\\ 0,125\\ 0,52\\ 2,133\\ 3,51\\ 0,96\\ 0,125\\ 0,52\\ 2,133\\ 3,51\\ 0,96\\ 0,125\\ 0,52\\ 2,133\\ 3,51\\ 0,96\\ 0,125\\ 0,52\\ 2,133\\ 3,51\\ 0,96\\ 0,125\\ 0,52\\ 2,133\\ 3,51\\ 0,96\\ 0,125\\ 0,52\\ 2,133\\ 3,51\\ 0,96\\ 0,125\\ 0,52\\ 2,133\\ 3,51\\ 0,96\\ 0,125\\ 0,52\\ 2,133\\ 3,51\\ 0,96\\ 0,125\\ 0,52\\ 2,133\\ 0,61\\ 0,125\\ 0,52\\ 0,125\\ 0,12$

Figure 2 Meta-analysis (forest plot) of 73 studies assessing overall survival of diffuse vs intestinal histology in gastric cancer.

10

Figure 3 Funnel plot for publication bias (all studies included) of overall survival meta-analysis.

effect model).

The combined HR according to the stage of disease (stage I–III in all tumors *vs.* stage IV disease only) was statistically significant. In fact, a poorer prognosis was observed for both stage I–III and more advanced stages GCs (n=25 *vs.* n=7 studies) with diffuse histology (HR 1.21; 95% CI, 1.12–1.3; P<0.0001 *vs.* HR 1.25; 95% CI, 1.04–1.5; P=0.014 according to random effect model).

In patients exposed to systemic therapy (either for early or advanced disease), the results were similar, with diffuse histology associated with adverse prognosis (HR 1.27; 95% CI, 1.17–1.37; P<0.0001). Similar results were observed in studies that not included patients treated with systemic therapy (HR 1.15; 95% CI, 1.07–1.24; P<0.0001 according to random effect model).

Publication bias

Both Begg's and Egger's test were significant for publication bias (*Figure 3*). Given the publication bias observed, we calculated the Trim-and-Fill-adjusted analysis. With this analysis, 16 missing studies based on a random effects model (according to trim and fill method), put to the left side of the mean effect, are calculated for a final HR 1.18 (95% CI, 1.12-1.24). Finally, the overall result remains unchanged after the one-study-removed procedure, so no dominant study was included.

Discussion

According to Lauren's classification, GC is categorized as intestinal- and diffuse types (5). Although the Lauren classification system was developed in 1965, it is still widely accepted and employed by pathologists and oncologist, and represents a simple, reproducible and robust classification approach. Intestinal-type GC is more prevalent in men and older people and is associated with chronic inflammation: as a consequence of Helicobacter Pylori-related atrophic gastritis in the antrum, and as a result of reflux in the gastroesophageal junction. Diffusetype GC is more prevalent in younger people and women, with the absence of a pathogenetic role of inflammation and strong relationship with cell adhesion dysfunctioneven as part of hereditary syndromes in germline CDH1 mutated patients. Clinically, the two histotypes of GC have a different pattern of metastatic spread, with more frequent peritoneal involvement in diffuse cancers (84). Currently, the management of patients with GC is mostly dependent on prognostic assessment based on clinical and pathological stage, while histology still needs to be validated as a prognostic or even predictive factor in patients with GC. As a consequence, treatment algorithms and clinical trials have not been tailored on histotype yet.

In this meta-analysis, we explored whether histology, according to Lauren classification, retains an independent prognostic significance in GC. To our knowledge, this is the first meta-analysis to address this issue. The final pooled analysis showed that diffuse histology, as literature data previously suggested, is confirmed as an independent prognostic factor in multivariate analysis in more than 60,000 patients with resected, localized or advanced GC. In the global population, the risk of death was increased by 23%, and this increased risk was not altered by race, stage (locally advanced vs. metastatic) and exposure to chemotherapy. As for now, this represents the most updated systematic on this topic. Liu et al. (7), previously, conducted a meta-analysis examining the survival outcomes among patients with diffuse vs. intestinal histology. They found a better 5-year OS for patients treated with surgery compared with radiotherapy. A major limitation of their study was that they used adjusted and unadjusted odds ratios that do not take into account adjustment for common clinicopathological variables as our paper did.

In patients with GC, the clinical experience suggests a significant variability of outcomes and responsiveness to treatments. The heterogeneity of GC is related to several factors such as epidemiology, pathogenesis, and disease biology. Prognostic and predictive factors beyond disease stage (3,4) are clearly needed, and histotype could be proposed as a surrogate marker of disease biology. A 3-group classification was previously proposed according to histology and tumor site, namely "proximal non-diffuse", "diffuse", and "distal non-diffuse" types (85,86). It was shown that the subtypes have distinct gene expression profiles. Moreover,

the TCGA study showed the presence of four genomic subtypes [namely, EBV-positive, microsatellite instable, Genome Stable and Chromosomal Instability (87)]. It must be pointed out that microsatellite instable GC is mainly represented by non-diffuse distal cancers while genome stable by intestinal-type ones and chromosomal instability by diffuse-type ones. Thus, there seems to be a good correlation between histology and biology within the TGCA dataset.

The clinical relevance of these data will hopefully allow the distinction in managing each subtype separately. While increasing our knowledge of biological heterogeneity of GC, the goal is to use the distinct biologic subtypes as prognostic and predictive biomarkers to improve patients' management and outcome. However, limited work has been done to create a consensus about the several published subtypes, and their clinical applicability is still difficult due to limited widespread of technologies and costs. Some tools are nowadays implemented for estimating patients' outcome, such as nomograms. One example in GC is the nomogram developed by Kattan et al. (88), where the predictions were based on the following established prognostic factors: patient's age and gender, tumor size, depth of tumor invasion, percentage of positive and negative nodes and, notably, tumor primary location and histology. Based on these data and our results, histology may be already used as a simple, costless and easy stratification factor in clinical trials for patients with homogeneous disease stage. It may be also used with predictive purposes when assessing the efficacy of newer drugs. Notably, it was already shown that HER-2 amplification is mostly found in intestinal-type and proximal cancers (89), while FGFR2 amplification is typical of diffuse tumors (90), and even antiangiogenic drugs may be more effective in intestinal-type GC (91).

A limitation of this review, as with any review or metaanalysis, is publication bias. Publication bias occurs when negative results (negative histology results in our case), which are often not published, are excluded. Analyses of efficacy by histologic subtype may not be reported for several reasons: the histology data were not collected; analyses were not performed because the study was inadequately powered or because historical evidence suggested such analyses were not important; analyses were performed but results were negative (and/or inconsistent across other endpoints) and therefore not reported; or results of analyses were positive but not reported because it was unclear how to interpret the findings. However, heterogeneity was moderate ($I^2 = 38\%$), and it has been taken in account through a random effect model analysis. Also, even if publication bias was somewhat significant with Begg's and Egger's tests, the leave-one-out procedure, excluded any "dominant" study. Furthermore, sensitivity analysis adjusting for race, use of systemic therapy or stage did not modify the overall result substantially. Finally, the trim-and-fill procedure found that putting 16 asymmetric studies on the left of the mean effect of the funnel plot; the final results remained substantially unaltered. A second limitation is the use of the Lauren instead World Health Organization classification, that split adenocarcinomas in papillary, tubular mucinous, poorly cohesive and mixed forms. Only two papers included into classification of diffuse types poorly cohesive or signet ring cases, and aim of paper was the validation of prognostic significance of Lauren's subtypes, that is still controversial.

On the contrary, major strengths of this paper are the comprehensive search strategy, careful selection of studies, the attempt of subgroup analyses, and the use of survival outcome that consider HRs adjusted for common confounders.

Many biomarkers are being evaluated to establish prognostic or predictive factors in GC, and several have been identified for their potential key role, but their clinical use remains controversial. In this scenario, the prognostic role of histology seems to confirm a valid prognostic indicator and will play a significant role in future clinical trials.

Acknowledgements

None.

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

References

- 1. Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014. CA Cancer J Clin 2014;64:9-29.
- Sobin LH, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. 7th ed. New York, NY: Wiley-Blackwell, 2009.
- Miceli R, Tomasello G, Bregni G, et al. Adjuvant chemotherapy for gastric cancer: current evidence and future challenges. World J Gastroenterol 2014;20:4516-25.

- 4. Pietrantonio F, De Braud F, Da Prat V, et al. A review on biomarkers for prediction of treatment outcome in gastric cancer. Anticancer Res 2013;33:1257-66.
- Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. an attempt at a histo-clinical classification. Acta Pathol Microbiol Scand 1965;64:31-49.
- Bosman FT, Carniero F, Hruban RH, et al. WHO Classification of Tumours of the Digestive System. 4th ed. Lyon: IARC, 2010.
- Liu L, Wang ZW, Ji J, et al. A cohort study and metaanalysis between histopathological classification and prognosis of gastric carcinoma. Anticancer Agents Med Chem 2013;13:227-34.
- Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994;50:1088-101.
- Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629-34.
- 10. Duval S, Tweedie R. Trim and fill: A simple funnel-plotbased method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000;56:455-63.
- 11. An JY, Baik YH, Choi MG, et al. The prognosis of gastric cardia cancer after R0 resection. Am J Surg 2010;199:725-9.
- 12. Atmaca A, Werner D, Pauligk C, et al. The prognostic impact of epidermal growth factor receptor in patients with metastatic gastric cancer. BMC Cancer 2012;12:524.
- Ben Ayed-Guerfali D, Benhaj K, Khabir A, et al. Hypermethylation of tumor-related genes in Tunisian patients with gastric carcinoma: clinical and biological significance. J Surg Oncol 2011;103:687-94.
- Bani-Hani KE, Almasri NM, Khader YS, et al. Combined evaluation of expressions of cyclin E and p53 proteins as prognostic factors for patients with gastric cancer. Clin Cancer Res 2005;11:1447-53.
- Becker K, Reim D, Novotny A, et al. Proposal for a multifactorial prognostic score that accurately classifies 3 groups of gastric carcinoma patients with different outcomes after neoadjuvant chemotherapy and surgery. Ann Surg 2012;256:1002-7.
- Bian Y, Wang L, Lu H, et al. Downregulation of tumor suppressor QKI in gastric cancer and its implication in cancer prognosis. Biochem Biophys Res Commun 2012;422:187-93.
- 17. Bilici A, Seker M, Ustaalioglu BB, et al. Prognostic significance of perineural invasion in patients with gastric cancer who underwent curative resection. Ann Surg Oncol

2010;17:2037-44.

- Chen L, Shi Y, Yuan J, et al. Evaluation of docetaxeland oxaliplatin-based adjuvant chemotherapy in postgastrectomy gastric cancer patients reveals obvious survival benefits in docetaxel-treated mixed signet ring cell carcinoma patients. Med Oncol 2014;31:159.
- Choi SC, Yoon SR, Park YP, et al. Expression of NDRG2 is related to tumor progression and survival of gastric cancer patients through Fas-mediated cell death. Exp Mol Med 2007;39:705-14.
- 20. de Maat MF, van de Velde CJ, Umetani N, et al. Epigenetic silencing of cyclooxygenase-2 affects clinical outcome in gastric cancer. J Clin Oncol 2007;25:4887-94.
- Deng J, Zhang R, Pan Y, et al. Tumor size as a recommendable variable for accuracy of the prognostic prediction of gastric cancer: a retrospective analysis of 1,521 patients. Ann Surg Oncol 2015;22:565-72.
- 22. Di Bartolomeo M, Pietrantonio F, Pellegrinelli A, et al. Osteopontin, E-cadherin, and β-catenin expression as prognostic biomarkers in patients with radically resected gastric cancer. Gastric Cancer 2016;19:412-20.
- 23. Eom BW, Kim YW, Lee SE, et al. Survival and surgical outcomes after laparoscopy-assisted total gastrectomy for gastric cancer: case-control study. Surg Endosc 2012;26:3273-81.
- 24. Fujitani K, Mano M, Hirao M, et al. Posttherapy nodal status, not graded histologic response, predicts survival after neoadjuvant chemotherapy for advanced gastric cancer. Ann Surg Oncol 2012;19:1936-43.
- 25. Gómez-Martin C, Garralda E, Echarri MJ, et al. HER2/ neu testing for anti-HER2-based therapies in patients with unresectable and/or metastatic gastric cancer. J Clin Pathol 2012;65:751-7.
- 26. Gong W, Wang L, Yao JC, et al. Expression of activated signal transducer and activator of transcription 3 predicts expression of vascular endothelial growth factor in and angiogenic phenotype of human gastric cancer. Clin Cancer Res 2005;11:1386-93.
- 27. Guo P, Li Y, Zhu Z, et al. Prognostic value of tumor size in gastric cancer: an analysis of 2,379 patients. Tumour Biol 2013;34:1027-35.
- 28. Ha SY, Lee J, Kang SY, et al. MET overexpression assessed by new interpretation method predicts gene amplification and poor survival in advanced gastric carcinomas. Mod Pathol 2013;26:1632-41.
- 29. Hayashi M, Inokuchi M, Takagi Y, et al. High expression of HER3 is associated with a decreased survival in gastric cancer. Clin Cancer Res 2008;14:7843-9.

160

- He H, Chen W, Wang X, et al. Snail is an independent prognostic predictor for progression and patient survival of gastric cancer. Cancer Sci 2012;103:1296-303.
- 31. Hsu JT, Chen TC, Tseng JH, et al. Impact of HER-2 overexpression/amplification on the prognosis of gastric cancer patients undergoing resection: a single-center study of 1,036 patients. Oncologist 2011;16:1706-13.
- Hu M, Li K, Maskey N, et al. Overexpression of the chemokine receptor CXCR3 and its correlation with favorable prognosis in gastric cancer. Hum Pathol 2015;46:1872-80.
- 33. Jang JH, Beron RI, Ahn HS, et al. Clinicopathological Features of Upper Third Gastric Cancer during a 21-Year Period (Single Center Analysis). J Gastric Cancer 2010;10:212-8.
- 34. Janjigian YY, Werner D, Pauligk C, et al. Prognosis of metastatic gastric and gastroesophageal junction cancer by HER2 status: a European and USA International collaborative analysis. Ann Oncol 2012;23:2656-62.
- Jun KH, Jung H, Baek JM, et al. Does tumor size have an impact on gastric cancer? A single institute experience. Langenbecks Arch Surg 2009;394:631-5.
- Jung MR, Park YK, Jeong O, et al. Elevated preoperative neutrophil to lymphocyte ratio predicts poor survival following resection in late stage gastric cancer. J Surg Oncol 2011;104:504-10.
- Kulig J, Sierzega M, Kolodziejczyk P, et al. Implications of overweight in gastric cancer: A multicenter study in a Western patient population. Eur J Surg Oncol 2010;36:969-76.
- Kunz PL, Gubens M, Fisher GA, et al. Long-term survivors of gastric cancer: a California population-based study. J Clin Oncol 2012;30:3507-15.
- Kawanishi K, Doki Y, Shiozaki H, et al. Correlation between loss of E-cadherin expression and overexpression of autocrine motility factor receptor in association with progression of human gastric cancers. Am J Clin Pathol 2000;113:266-74.
- 40. Kim KH, Kwon HC, Oh SY, et al. Clinicopathologic significance of ERCC1, thymidylate synthase and glutathione S-transferase P1 expression for advanced gastric cancer patients receiving adjuvant 5-FU and cisplatin chemotherapy. Biomarkers 2011;16:74-82.
- Kim MA, Lee HS, Yang HK, et al. Clinicopathologic and protein expression differences between cardia carcinoma and noncardia carcinoma of the stomach. Cancer 2005;103:1439-46.
- 42. Koh YW, Park YS, Ryu MH, et al. Postoperative nodal

status and diffuse-type histology are independent prognostic factors in resectable advanced gastric carcinomas after preoperative chemotherapy. Am J Surg Pathol 2013;37:1022-9.

- 43. Kurokawa Y, Matsuura N, Kimura Y, et al. Multicenter large-scale study of prognostic impact of HER2 expression in patients with resectable gastric cancer. Gastric Cancer 2015;18:691-7.
- Lee HS, Lee HK, Kim HS, et al. Tumour suppressor gene expression correlates with gastric cancer prognosis. J Pathol 2003;200:39-46.
- Lee HS, Lee HE, Yang HK, et al. Perigastric tumor deposits in primary gastric cancer: implications for patient prognosis and staging. Ann Surg Oncol 2013;20:1604-13.
- 46. Lee HW, Park MI, Kim MS, et al. Overexpression of phosphorylated 4E-binding protein 1 and its clinicopathological significances in gastric cancer. Pathol Res Pract 2015;211:298-302.
- 47. Lee JH, Kim MG, Jung MS, et al. Prognostic significance of lymphovascular invasion in node-negative gastric cancer. World J Surg 2015;39:732-9.
- Lee OJ, Kim HJ, Kim JR, et al. The prognostic significance of the mucin phenotype of gastric adenocarcinoma and its relationship with histologic classifications. Oncol Rep 2009;21:387-93.
- 49. Marano L, Boccardi V, Braccio B, et al. Comparison of the 6th and 7th editions of the AJCC/UICC TNM staging system for gastric cancer focusing on the "N" parameterrelated survival: the monoinstitutional NodUs Italian study. World J Surg Oncol 2015;13:215.
- Martinho O, Simões K, Longatto-Filho A, et al. Absence of RKIP expression is an independent prognostic biomarker for gastric cancer patients. Oncol Rep 2013;29:690-6.
- 51. Matsubara J, Yamada Y, Hirashima Y, et al. Impact of insulin-like growth factor type 1 receptor, epidermal growth factor receptor, and HER2 expressions on outcomes of patients with gastric cancer. Clin Cancer Res 2008;14:3022-9.
- Min L, Ruan Y, Shen Z, et al. Overexpression of Ras-GTPase-activating protein SH3 domain-binding protein 1 correlates with poor prognosis in gastric cancer patients. Histopathology 2015;67:677-88.
- 53. Nagashima F, Boku N, Ohtsu A, et al. Biological markers as a predictor for response and prognosis of unresectable gastric cancer patients treated with irinotecan and cisplatin. Jpn J Clin Oncol 2005;35:714-9.
- 54. Orditura M, Galizia G, Di Martino N, et al. Effect

Petrelli et al. Lauren classification in GC

of preoperative chemoradiotherapy on outcome of patients with locally advanced esophagogastric junction adenocarcinoma-a pilot study. Curr Oncol 2014;21:125-33.

- 55. Otsuki S, Inokuchi M, Enjoji M, et al. Vimentin expression is associated with decreased survival in gastric cancer. Oncol Rep 2011;25:1235-42.
- Park KW, Kim SJ, Oh SY. Clinicopathologic significance of nuclear factor-κB and vascular endothelial growth factor expression in advanced gastric cancer patients. Oncol Res Treat 2014;37:183-90.
- Park S, Choi MG, Kim KM, et al. Lymphoepitheliomalike carcinoma: a distinct type of gastric cancer. J Surg Res 2015;194:458-63.
- 58. Pinheiro PS, van der Heijden LH, Coebergh JW. Unchanged survival of gastric cancer in the southeastern Netherlands since 1982: result of differential trends in incidence according to Laurén type and subsite. Int J Cancer 1999;84:28-32.
- Qiu M, Zhou Y, Zhang X, et al. Lauren classification combined with HER2 status is a better prognostic factor in Chinese gastric cancer patients. BMC Cancer 2014;14:823.
- 60. Reim D, Loos M, Vogl F, et al. Prognostic implications of the seventh edition of the international union against cancer classification for patients with gastric cancer: the Western experience of patients treated in a single-center European institution. J Clin Oncol 2013;31:263-71.
- Rodríguez Santiago JM, Muñoz E, Martí M, et al. Metastatic lymph node ratio as a prognostic factor in gastric cancer. Eur J Surg Oncol 2005;31:59-66.
- 62. Rosa F, Alfieri S, Tortorelli AP, et al. Trends in clinical features, postoperative outcomes, and long-term survival for gastric cancer: a Western experience with 1,278 patients over 30 years. World J Surg Oncol 2014;12:217.
- 63. Sawaki A, Ohashi Y, Omuro Y, et al. Efficacy of trastuzumab in Japanese patients with HER2-positive advanced gastric or gastroesophageal junction cancer: a subgroup analysis of the Trastuzumab for Gastric Cancer (ToGA) study. Gastric Cancer 2012;15:313-22.
- 64. Shen L, Du M, Wang C, et al. Clinical significance of POU5F1P1 rs10505477 polymorphism in Chinese gastric cancer patients receivng cisplatin-based chemotherapy after surgical resection. Int J Mol Sci 2014;15:12764-77.
- 65. Shim HJ, Yun JY, Hwang JE, et al. Prognostic factor analysis of third-line chemotherapy in patients with advanced gastric cancer. Gastric Cancer 2011;14:249-56.
- 66. Shim JH, Song KY, Jeon HM, et al. Is gastric cancer different in Korea and the United States? Impact of tumor location on prognosis. Ann Surg Oncol 2014;21:2332-9.

- 67. Shimoyama S, Kaminishi M. Angiogenin in sera as an independent prognostic factor in gastric cancer. J Cancer Res Clin Oncol 2003;129:239-44.
- Shinmura K, Kiyose S, Nagura K, et al. TNK2 gene amplification is a novel predictor of a poor prognosis in patients with gastric cancer. J Surg Oncol 2014;109:189-97.
- Sierra A, Regueira FM, Hernández-Lizoáin JL, et al. Role of the extended lymphadenectomy in gastric cancer surgery: experience in a single institution. Ann Surg Oncol 2003;10:219-26.
- 70. Stiekema J, Cats A, Kuijpers A, et al. Surgical treatment results of intestinal and diffuse type gastric cancer. Implications for a differentiated therapeutic approach? Eur J Surg Oncol 2013;39:686-93.
- 71. Stiekema J, Trip AK, Jansen EP, et al. Does adjuvant chemoradiotherapy improve the prognosis of gastric cancer after an r1 resection? Results from a dutch cohort study. Ann Surg Oncol 2015;22:581-8.
- 72. Sun XR, Sun Z, Zhu Z, et al. Expression of pyruvate dehydrogenase is an independent prognostic marker in gastric cancer. World J Gastroenterol 2015;21:5336-44.
- 73. Takashima A, Boku N, Kato K, et al. Survival prolongation after treatment failure of first-line chemotherapy in patients with advanced gastric cancer: combined analysis of the Japan Clinical Oncology group trials JCOG9205 and JCOG9912. Gastric Cancer 2014;17:522-8.
- 74. Tan IB, Ivanova T, Lim KH, et al. Intrinsic subtypes of gastric cancer, based on gene expression pattern, predict survival and respond differently to chemotherapy. Gastroenterology 2011;141:476-85, 485.e1-11.
- 75. Verlato G, Marrelli D, Accordini S, et al. Short-term and long-term risk factors in gastric cancer. World J Gastroenterol 2015;21:6434-43.
- Wang BB, Liu CG, Lu P, et al. Log-normal censored regression model detecting prognostic factors in gastric cancer: a study of 3018 cases. World J Gastroenterol 2011;17:2867-72.
- 77. Wang L, Wei D, Huang S, et al. Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin Cancer Res 2003 9:6371-80.
- Wang X, Huang CJ, Yu GZ, et al. Expression of group IIA phospholipase A2 is an independent predictor of favorable outcome for patients with gastric cancer. Hum Pathol 2013;44:2020-7.
- Wu CW, Hsiung CA, Lo SS, et al. Nodal dissection for patients with gastric cancer: a randomised controlled trial. Lancet Oncol 2006;7:309-15.
- 80. Wu X, Zeng Z, Chen B, et al. Association between

polymorphisms in interleukin-17A and interleukin-17F genes and risks of gastric cancer. Int J Cancer 2010;127:86-92.

- Xu Z, Zhu H, Luk JM, et al. Clinical significance of SOD2 and GSTP1 gene polymorphisms in Chinese patients with gastric cancer. Cancer 2012;118:5489-96.
- 82. Yao JC, Wang L, Wei D, et al. Association between expression of transcription factor Sp1 and increased vascular endothelial growth factor expression, advanced stage, and poor survival in patients with resected gastric cancer. Clin Cancer Res 2004;10:4109-17.
- Ye Y, Li X, Yang J, et al. MDM2 is a useful prognostic biomarker for resectable gastric cancer. Cancer Sci 2013;104:590-8.
- Marrelli D, Roviello F, de Manzoni G, et al. Different patterns of recurrence in gastric cancer depending on Lauren's histological type: longitudinal study. World J Surg 2002;26:1160-5.
- Bittoni A, Scartozzi M, Giampieri R, et al. Clinical evidence for three distinct gastric cancer subtypes: time for a new approach. PLoS One 2013;8:e78544.

Cite this article as: Petrelli F, Berenato R, Turati L, Mennitto A, Steccanella F, Caporale M, Dallera P, de Braud F, Pezzica E, Di Bartolomeo M, Sgroi G, Mazzaferro V, Pietrantonio F, Barni S. Prognostic value of diffuse versus intestinal histotype in patients with gastric cancer: a systematic review and metaanalysis. J Gastrointest Oncol 2017;8(1):148-163. doi: 10.21037/ jgo.2017.01.10

- Shah MA, Khanin R, Tang L, et al. Molecular classification of gastric cancer: a new paradigm. Clin Cancer Res 2011;17:2693-701.
- Cancer Genome Atlas Research Network.. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014;513:202-9.
- Kattan MW, Karpeh MS, Mazumdar M, et al. Postoperative nomogram for disease-specific survival after an R0 resection for gastric carcinoma. J Clin Oncol 2003;21:3647-50.
- Van Cutsem E, Bang YJ, Feng-Yi F, et al. HER2 screening data from ToGA: targeting HER2 in gastric and gastroesophageal junction cancer. Gastric Cancer 2015;18:476-84.
- Park YS, Na YS, Ryu MH, et al. FGFR2 Assessment in Gastric Cancer Using Quantitative Real-Time Polymerase Chain Reaction, Fluorescent In Situ Hybridization, and Immunohistochemistry. Am J Clin Pathol 2015;143:865-72.
- Roviello G, Petrioli R, Marano L, et al. Angiogenesis inhibitors in gastric and gastroesophageal junction cancer. Gastric Cancer 2016;19:31-41.