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Introduction

The role of radiation therapy in the treatment of rectal 
cancer has evolved over the past several decades. The 
current standard of care consists of pre-operative concurrent 
chemotherapy and radiotherapy (chemo-RT). Such a 
treatment strategy has further enhanced the pelvic tumor 
control of advanced surgical techniques such as total 
mesorectal excision (TME) and offered greater chance for 
sphincter preservation with lower rates of toxicity compared 
to post-operative radiotherapy, or TME alone (1,2).

Unfortunately, the inclusion of surgical resection 
as standard of care for rectal cancer patients carries 
implications for quality of life and toxicity (3). The 
concept of organ preservation in rectal cancer treatment 
was  p ioneered  by  surgeon Angel i ta  Habr-Gama  

who noted that  a  subset  of  patients  (about 27%)  
achieved a complete response after chemoradiation 
alone and had similar outcomes as those who underwent 
chemoradiation and subsequent TME, but without the added 
morbidity that came with surgery (4,5). Their group validated 
the ‘watch and wait’ strategy by showing that recurrences 
in the non-operative groups could be managed by salvage 
surgery with over 90% success (6). Multiple series have been 
published over the past five years that have demonstrated the 
efficacy and safety of a ‘watch and wait’ strategy (7). 

The efficacy and safety of neoadjuvant chemoradiotherapy 
(CRT) have been demonstrated by a number of studies, most 
of which utilize low doses of radiation from 45–50.4 Gy.  
Indeed, several of the non-operative series have used 
these moderate doses. Despite these relatively low doses 
of radiation therapy, such studies, on average, produce 
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pathologic complete responses (pCR) in 10–27% of patients, 
with clusters of studies reporting closer to 10% (8-11), and few 
at 27% and above (5,12). The value of a pCR after CRT 
has been validated as an indicator of increased chance for 
disease-free survival (13). Efforts to optimize the pCR rate 
from chemoradiation in rectal cancers have been ongoing. 
The impact of multiple factors, such as chemotherapy 
type and radiation dose escalation above 45 Gy have been 
postulated to be correlated with the degree of response (14).

Of interest, the impact of radiation dose escalation 
beyond 50.4 Gy on pCR rates has been examined with a 
recent meta-analysis of patients treated with doses over  
60 Gy which showed increased pCR rates (20%) and 
acceptable short-term toxicity (15). This same group 
is furthering their investigation into radiotherapy dose 
escalation in an ongoing prospective trial (16). The rationale 
behind radiation dose escalation as an avenue to increase 
pCR rates is based on studies that have shown increased 
pCR rates and long-term survival in a dose-dependent 
manner (17), and a trend toward increased pCR rates and 
disease-free survival with increasing dose (18). Furthermore, 
a dose-response model derived from patients treated with a 
combination of external-beam radiation and brachytherapy 
to doses of 50.4–70 Gy showed a clear dose-response with a 
predicted pCR rate of 50% at 92 Gy (19). 

While the effect of a boost beyond historic doses of 
45–50.4 Gy is under current investigation, there remains 
a gap in the literature delineating effective methods of 
planning and applying a radiotherapy boost. Specifically the 
integration of novel imaging techniques, including positron 
emission tomography (PET) and magnetic resonance 
imaging (MRI), into selective application of a radiation 
boost strategy is poorly understood. We sought to review 
the existing literature of contemporary and personalized 
radiation therapy boost strategies. Moreover, we aim to 
provide potential future directions for the integration of 
innovative response assessment strategies into selective 
radiation therapy dose escalation for patients with rectal 
adenocarcinoma.

Radiographic assessment of rectal cancer 
response to therapy

Magnetic resonance imaging (MRI) response assessment

Monitoring the response of rectal cancer to chemoradiation 
by non-invasive methods is a vital component of a non-
operative management strategy along with a selective 

and personalized radiation boost strategy. The ability to 
assess rectal tumors for their treatment response is an 
area of research that has expanded dramatically over the 
past 5 years (20). MRI presents a particularly novel and 
appealing modality to enable such response assessment 
and an adaptive radiation therapy boost strategy. This 
is particularly true secondary to the rapid expansion of 
image guided radiation therapy and specifically linear 
accelerators equipped with MRI guidance (21,22). MRI 
offers several considerable advantages over traditional 
computed tomography (CT) based imaging, particularly 
for primary tumor response assessment with quantitative 
sequences (23). One such example is the “apparent 
diffusion coefficient” (ADC), which is a quantitative value 
derived from diffusion weighted imaging (DWI) MRI that 
reflects tissue cellularity, organization and cell membrane 
permeability (24). This technique has shown promise in 
predicting complete responses of rectal cancer to CRT in 
recent years, and poses the benefit of being a quantitative 
method which is preferred for longitudinal studies 
and meta-analysis. Overall, DWI MRI is an attractive 
imaging modality for cancer staging and re-staging  
because it is noninvasive, relatively quick and does not 
utilize additional contrast agents or ionizing radiation (25).  
Multiple studies have shown significant differences in mean 
tumor ADCs between responders and non-responders 
after CRT treatment, and that a lower mean pre-treatment 
ADC correlates to better responses to CRT (26-29). One 
such example shows the potential of MRI integration into a 
course of radiation therapy treatment (30). Sun et al. showed 
that an increase in mean tumor ADC at approximately one 
week into CRT, along with a low pre-CRT mean ADC 
correlated with higher rates of response to chemo-RT (30). 
However, data examining the acquisitions of rectal MRI 
during a course of radiation therapy are limited. 

Positron emission tomography (PET) based response 
assessment
18F-fluorodeoxyglucose PET (18F-FDG PET) allows 
for visualization of fluorinated glucose concentrations, 
indicating tissue with high metabolic activity, including 
cancers. For this reason, FDG PET is a powerful tool for 
tumor staging. Additionally, changes in metabolic activity 
can be monitored after treatments, and can be tracked with 
the semi-quantitative standardized uptake value (SUV). 
FDG SUV changes have been correlated with pathologic 
response to treatment in multiple cancers, including rectal 
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cancer (31). The specific utility of PET, and PET combined 
with CT in predicting response to chemoradiation is a 
subject currently under intense investigation. Recent 
analysis of pooled individual patient data showed that  
pre-CRT PET/CT had a low positive predictive value 
for pCR (44%). Moreover, the absence of FDG avidity 
early in treatment with Chemo-RT has been shown to 
be indicative of non-responders (31-33). Interestingly, 
combining the ADC from DW-MRI and the SUVmax 
from PET to detect changes in tissue structure at the 
cellular level appears to more accurately reflect rectal cancer 
response to chemo-RT (34). Unfortunately, PET/CT  
has proven unreliable in providing accurate re-staging at the 
completion of chemo-RT (35-37). Additionally, PET/CT  
provides a difficult logistical and economic barrier to 
routine acquisition during the course of chemo-RT as 
radioisotopes carry considerable cost and logistical burden 
to their use.

Methods of radiation therapy dose escalation

3-dimentional conformal radiation therapy (3D-CRT)

The use of 3D-CRT represents the historical standard of 
care for patients with rectal adenocarcinoma. 3D-CRT 
utilizes CT to map a 3D target volume, and deliver 
conformal radiation beams in the shape of the tumor. 
This advancement allows for decreased toxicity to normal 
surrounding tissues and boosting of the tumor to higher 
radiation doses (38). Recent dose escalation studies using 
3D-CRT have shown promise as a key component of 
achieving higher rates of pathological complete responses 
than with traditional chemoradiation alone (39). 

In a study by Mohiuddin et al., patients treated up to  
60 Gy by 3D-CRT with 5-FU chemotherapy had favorable 
responses, with an acceptable toxicity profile. Diarrhea 
was the most common acute toxicity at a grade 3, with no 
grade 4 or 5 toxicities in any category observed. This study 
illustrates a potential opportunity for dose escalation by 
3D-CRT. The total reported pCR rates were 13% (2/15) 
in patients who received less than 55 Gy, and 44% (8/18) 
in patients who received over 55 Gy. Interestingly higher 
pCR rates occurred (66%) with continuous infusion vs 
bolus of 5-FU (9.5%) (40). In a phase 2 follow-up study 
by Mohiuddin et al., 106 patients were randomized to 
continuous venous infusion of 5-FU plus RT boosted to 
55.2 for T3 cancers and 60 Gy for T4 cancers. The second 
treatment arm consisted of 5-FU plus irinotecan and  

50.4 Gy for T3 and 54 Gy for T4 tumors. PCR rates were 
30% in Arm 1 and 26% in Arm 2 (41).

Closely reproducing these results, is a series by Pfeiffer 
et al., in which 18 patients with unresectable or recurrent 
tumors underwent 60 Gy of radiation in 30 fractions with 
tegafur/uracil (UFT) chemotherapy. Of the 18 patients,  
2 (11%) experienced a pathological complete response (42). 
In a phase II clinical trial by Movsas et al., a 3D-CRT boost 
was taken to 61.8 Gy with 5-FU in patients with bulky, 
locally advanced rectal cancer. They found downstaging 
in 50% of patients (43). In a study by Vestermark et al., 
rectal cancer patients were treated with a 60 Gy boost to 
the gross tumor volume in 30 fractions with concurrent 
chemotherapy. Of the patients who underwent resection, 
33% (5/15) had a pathological complete response (39). In 
a unique study by Engineer et al., patients with clinically 
unresectable rectal cancer received 45 Gy of EBRT with 
concurrent oral capecitabine or EBRT alone boosted to 
60 Gy. Patients experienced a pCR rate of 7% and 11% 
for radiation alone vs. radiation + chemo (44). The lower 
pCR rate in this study is perhaps not unexpected, as the 
dose escalated treatment arm did not include concurrent 
chemotherapy.

Together, these studies are difficult to interpret with 
radiation doses up to 60 Gy yielding dramatic ranges 
of pCR rates between 11% and 66%. Heterogeneity of 
patient populations, pathologic specimen processing, and 
treatment protocols make direct comparisons between 
studies difficult, although it is clear that escalated doses of 
radiation delivered by 3D-CRT trend toward higher pCR 
rates often with acceptable toxicity profiles. This group 
of studies also emphasizes the importance of optimizing 
chemotherapy regimens in concert with radiotherapy. This 
paradigm was also supported by the result of Engineer’s 
study, in which chemoradiation outperformed radiation 
alone (44). However, 3D-CRT strategies carry limitations 
in their ability to conformally address a circumferential 
target. In addition, they provide higher doses to critical 
local structures, such as the femoral necks and urinary 
bladder, which may limit the total radiation dose achievable 
when embarking upon dose escalation (45). 

Intensity modulated radiotherapy (IMRT) boost strategies 

IMRT is an advanced form of 3D-CRT in which the 
radiation beam intensity can be changed, or modulated, 
during treatment. The ability to deliver a range of radiation 
doses to the tumor bed allows for a simultaneous integrated 
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boost (SIB) as well as minimizing doses to organs at risk, 
potentially enabling dose escalated radiation therapy to the 
tumor (46). In a study by Alongi et al., patients treated with 
IMRT boosting to 60 Gy in 30 fractions with concurrent 
capecitabine, resulted in a pCR rate of 17.5% with no grade 
3 or higher toxicities (47). The low toxicity profile of this 
treatment regimen suggests that higher dose escalation via 
IMRT could be an appealing strategy. Two very similar 
studies by Ballonoff et al., and Freedman et al., analyzed 
dose escalation to 55 Gy using IMRT with oral capecitabine 
(48,49). Interestingly, the main difference between the 
studies, was that in the Freedman et al. study, capecitabine 
was administered 7 days per week, while in the Ballonoff 
study, it was administered 5 days per week with radiation 
therapy. Reasons for the divergent responses to similar 
treatments in pCR rates were attributed to the subjectivity 
of pathological evaluation, coupled with an early termination 
of the Freedman study due to acute toxicities (48,49). These 
two examples illustrate that escalating radiation therapy 
doses with IMRT may be feasible, however toxicity must be 
carefully monitored in such an approach. A phase II trial by 
Zhu et al., showed a promising pCR rate of 23.7% in stage 
II and III rectal cancer with a treatment regimen of 55 Gy 
to the primary tumor via IMRT, concurrent oxaliplatin and 
capecitabine and an additional course of Xelox 2 weeks post  
chemo-RT (50). Cubillo et al. examined patients treated 
with 57.5 Gy by SIB IMRT with chemotherapy tailored to 
tumor genotypes. In addition, they monitored PET SUV 
response before and after chemo-RT. Of the 16 patients, 
8 (50%) experienced a pCR. Interestingly, the PET SUV 
change was a poor predictor of pCR, with only 2 of the 
8 patients who experienced a tumor regression grade 4 
showing a complete PET response. Additionally, one 
individual experienced a pCR with a negligible change 
of PET SUV (51). In a follow-up study Hernando et al. 
used the same IMRT radiation boost technique with the 
substitution of a standardized chemotherapy regimen of 
capecitabine for the customized regimens used previously. 
The results were understandably less dramatic than for the 
customized chemotherapies, with a pCR rate of 30.6% (51). 
These two series illustrate nicely the value of simultaneous 
integrated boost via IMRT for rectal cancer, which achieved 
a higher than average 30.6% pCR rate. On the other end 
of the spectrum, the only study with a radiation boost by 
IMRT without chemotherapy is a Belgian study in which 
patients were treated with up to 55.2 Gy. The pCR rate 
was low at 8% of the 108 participants, again illustrating 

the importance of concurrent chemotherapy (52). Finally, 
a recently published single arm phase II trial, Hong and 
colleagues evaluated the toxicity of IMRT, which did not 
appear to reduce the rates of GI toxicity, however a selective 
dose escalation strategy was not attempted in this series (53).

Brachytherapy boost strategies

Endorectal brachytherapy involves temporary insertion 
of radioactive material into the rectal lumen, delivering 
therapeutic radiation to the tumor. This technique has 
largely been used for adjuvant or palliative treatment in 
patients with rectal cancer (54). Endorectal brachytherapy 
has advanced from a relatively crude procedure that 
irradiates the entire rectum circumference, to a highly 
conformal technique with the use of 3D-CT planning 
and partial shielding to spare normal tissue adjacent 
to and opposite the rectal tumor (55). Studies on the 
use of brachytherapy as the sole neoadjuvant radiation 
treatment for rectal cancer are limited with the total doses 
reaching 26 Gy (56,57). Endorectal brachytherapy has 
also been used to escalate radiation doses beyond 50.4 Gy  
in conjunction with EBRT with mixed results. In 2006, 
Jakobsen et al. used EBRT boosted to 60 Gy, plus an 
additional boost of 5 Gy via brachytherapy. Results 
were promising with a pCR rate of 27%, attributed by 
the authors to the high doses of radiation used, with a 
favorable side-effect profile consisting of diarrhea as the 
only grade 3 toxicity. In a follow-up study, Jakobsen et al. 
added a COX-2 inhibitor to the regimen. The goal of the 
study was to determine the feasibility of adding a COX-2  
inhibitor as a radiosensitizing agent to CRT. The COX-2  
inhibitor was found to cause a severe maculopapular 
rash. However, the toxicity profile aside from the skin 
manifestations was reasonably low, with only 1 incidence 
of grade 3 diarrhea and leukopenia, while 21% of the 
patients experienced a pCR, a result that is comparable to 
the prior study considering the larger tumors treated in 
the second series (24% T4). Sun Myint et al. followed 34 
patients treated with CRT consisting of 45 Gy EBRT, and 
a boost of 10 Gy via high dose rate brachytherapy. Patients 
experienced a favorable 31% pCR rate, with acceptable 
toxicity (58). A randomized trial published in 2012 by a 
Danish group authored by Jakobsen et al. enrolled 248 
patients with T3-T4 tumors, and treated them with  
50.4 Gy by EBRT, with an additional 10 Gy brachytherapy 
boost in the experimental arm. The group found a pCR 
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rate of 18% in both arms, with only one notable difference 
in response: a 28% to 48% increase in response rate 
in T3 tumors (59). Published in 2014, a follow-up of 
the same patients showed that despite improved initial 
responses, these results did not correspond to long-
term responses, and the lack of difference in pCR rate 
between the groups was reflected in the similar 5-year 
survival of the patients (60). A subsequent prospective trial 
by the Danish group utilized 60 Gy via IMRT, with an 
additional 5 Gy brachytherapy boost to test the watchful 
waiting strategy in patients with T2-T3 tumors. The 
outcomes were excellent with a 78% clinical complete 
response rate, and local control in 58% of patients at  
2 years without surgical intervention (61). Together, these 
studies indicate that brachytherapy may have a role in 
an organ sparing strategy, particularly when used to add 
to an already escalated dose delivered by external beam 
radiation therapy. Additionally, and unsurprisingly, the 
effect of brachytherapy boost may be most effective with 
smaller tumors, a partial explanation to this is the fact 
that brachytherapy is an inherently local treatment, and 
does not effectively treat at-risk or involved lymph nodes, 
necessitating an additional boost strategy (55).

Selective and adaptive boost strategies

Patients receiving escalated doses of radiation typically 
receive a boost to the gross tumor volume (GTV) (42). 
Delivery of a radiotherapy boost has evolved with the 
advancement of radiotherapy delivery techniques to a 
simultaneous integrated boost (SIB) which allows for 
boost to the GTV without extending the overall treatment 
period, as utilized with the IMRT strategies mentioned in 
the above studies (62). In general, the imaging modality 
used in the dose-escalation planning and adaption for rectal 
cancer has not been emphasized in the literature as shown 
in Table 1. This is surprising, due to the advantages of using 
MRI in staging and planning RT for rectal cancer (63). It 
seems that rectal adenocarcinoma would be optimally suited 
for an adaptive boost strategy using radiologic response 
through either PET or MRI acquired during the course 
of chemo-RT. In one such example, Alongi et al., utilized 
PET/CT to plan the radiotherapy boost, and identified 
hypermetabolic areas that included primary tumor, 
mesorectum and involved lymph nodes. Patients treated 
with this protocol received 60 Gy of boost to identified 
targets yet had a 17.5% pCR rate. The boost strategy did 

not appear to impact tumor down-staging and PET/CT 
was not predictive of pCR, as there was no correlation 
between pre-treatment SUV-max and pCR (47). However, 
this boost strategy did not incorporate an intra-treatment 
assessment of rectal tumor response to therapy. An example 
of a truly adaptive strategy was presented by Avallone et al. 
who showed that early changes in mean PET SUV after  
12 days of CRT, correlated with improved tumor responses, 
and 5-year relapse-free survival (64). Furthermore, Leccisotti 
et al. showed that a lack of early changes in SUV in response 
to CRT correlates with non-responders, and could be 
used to rapidly adapt the treatment course (65). One 
considerable limitation of PET is the cost and logistical 
challenge associated with the acquisition of these images. 
Alternatively, MRI may prove a powerful tool in selective 
dose escalation for patients with rectal adenocarcinoma. As 
the availability of MR guided radiation therapy systems 
expands, this may allow for real time adaptive treatment 
strategies. In one such early example, Passoni et al. 
employed a unique adaptive strategy that involved re-
imaging with CT and MRI mid-treatment, and re-planning 
the target volume based on the residual tumor (66). As MR 
guided radiotherapy therapy systems become increasingly 
common, further investigation into adaptive boost 
strategies using MR guided systems presents a unique and 
promising opportunity. 

Conclusions and future directions

There appears to be a role for further evaluation of 
dose escalation in patients with rectal adenocarcinoma, 
particularly as it relates to organ preservation. With respect 
to the optimal RT planning strategy for rectal cancer, 
further investigation into the value of MRI-predominant 
adaptive treatment strategies should be considered based 
on superior soft-tissue detail along with the biological 
adaptation provided with advanced MR techniques (67,68). 
Delivery of highly conformal and adaptive doses of 
radiotherapy, coupled with MRI-guided therapy systems, 
may allow for higher rates of pCR and may offer improved 
rates of organ preservation. A list of ongoing clinical trials 
can be found in Table 2. While many boost trials for rectal 
cancer are ongoing, few use a true biologically adaptive or 
selective approach for the incorporation of radiation dose 
escalation. There is room for further investigation into 
novel methods of adaptive boost strategies and incorporation 
of novel imaging techniques for patients with rectal 
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Table 2 Ongoing trials related to rectal dose escalation

Sponsor 
institution 
(reference)

Experimental Arm Control arm
Intra-radiation 
response 
assessment

Primary outcome 
measures 

Eligibility/
tumor stage

Estimated 
enrollment/
status

Clinical trial 
number

UMC Utrecht (16) 50 Gy with 
Capecitabine  
+ 15 Gy boost 

50 Gy with 
Capecitabine 

MRI at week 2 
of chemo-RT 
and week 7 post 
chemo-RT

Complete 
response rate (in 
surgical patients). 
2-year LRFS in 
those who open 
for watchful 
waiting

“Indication 
for chemo-
RT”

94/Recruiting NCT01951521

Zhongnan 
Hospital (69)

25Gy to with a 
boost to 30 Gy/ 
5 fractions

25 Gy – Pathologic 
complete 
remission rate  
(4 weeks post op)

T3-4NxM0, 
tumor ≤12 
cm from anal 
edge

100/Pre-
recruitment

NCT02498353

Grupo de 
Investigación 
Clínica en 
Oncología 
Radioterapia (70)

53.75 Gy to tumor 
and nodes by 
IMRT (concomitant 
boost) with chemo

50.4 Gy 
by 3DRT 
(sequential 
boost) with 
chemo

– pCR. 
Gastrointestinal 
toxicity

T3-4, N0–N2, 
and M0

525/Recruiting NCT02964468

University of 
Brasilia (71)

45 Gy to pelvis + 
14.4 Gy to GTV by 
3DCRT with chemo

– – pCR T3-4, N+ 48/Recruiting NCT02603302

Chinese 
Academy of 
Medical Sciences 
(72)

50 Gy, + SIB up to 
56 Gy to tumor + 
capecitabine 

50 Gy + 
capecitabine 

– pCR T3-4, 15 cm 
from anal 
verge

104/Recruiting NCT02195141

McGill University 
Health Center 
(73)

45 Gy to pelvis 
+ boost to 54 Gy 
total + institutional 
standard 
chemotherapy 

– – Feasibility of a 
“wait and see” 
approach

T3–T4 48/Recruiting NCT03001362

Centre Antoine 
Lacassagne (74)

45 Gy with 
capecitabine + 
contact X-ray 
Brachytherapy 
boost 50 kV (90 Gy 
in 3 fractions)

45 Gy 
by EBRT 
boosted to 
54 Gy 

Week 14 after 
treatment initiation, 
tumor response 
evaluation, 
continue Watch 
and wait, or surgery

Rate of rectum 
preservation with 
watch and wait or 
local excision

T2, T3a, T3b, 
N0, N1

236/Recruiting NCT02505750

IMRT, intensity-modulated radiotherapy; Chemo-RT, radiation therapy and concurrent chemotherapy; LRFS, local recurrence free survival; 
GTV, gross tumor volume; pCR, pathologic complete response.
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