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Introduction

Malignant tumors have complex intratumor heterogeneity 
with distinct patterns of growth, gene expression, blood 
flow, oxygenation, and metabolism throughout different 
portions of the tumor. Some of these characteristics of the 
tumor microenvironment may be exploited therapeutically 
for cancer therapy (1-3). Intratumor heterogeneity increases 
as cancer cells proliferate and a tumor grows in size (4). 
This leads to the formation of subpopulations of cells that 
exhibit varying levels of proliferative ability and spatially 
distinct tumor microenvironments that may ultimately drive 
treatment resistance (5). Hence, an attractive concept in 
cancer research is to use advanced imaging techniques to 
assess the heterogeneity of tumor physiology, metabolism, 

proliferation, hypoxia and other biologic properties, and 
correlate the imaging findings with response and outcomes.

Hypoxia is an example of a measurable property of tumor 
biology associated with increased tumor aggressiveness, 
potential for metastatic spread, and resistance to therapy 
that translates into worse survival outcomes for patients 
(6-8). Because the extent of tumor hypoxia does not 
necessarily correlate with tumor size or grade, investigators 
have looked toward molecular and imaging biomarkers of 
hypoxia (9). Several nitroimidazole derivatives have been 
identified as hypoxia radiotracers with positron-emission 
tomography (PET) imaging. The basic mechanism of action 
involves stabilization with nitroreductase enzymes resulting 
in cellular accumulation of the nitroimidazole compound 
under hypoxic conditions, allowing visualization and 
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quantification of the areas and extent of tumor hypoxia (10).  
The labeling of the nitroimidazole compound with 
fluorine-18 then identifies hypoxic regions via PET 
imaging. One such nitroimidazole derivative is fluorine-18 
fluoromisonidazole (FMISO), which was first developed 
in 1986, and has been shown to specifically image hypoxic 
areas in many tumor types (11,12). As it is a relatively older 
radiotracer, it has been more established as a hypoxia marker 
in the clinical setting compared to other nitroimidazole 
derivatives such as fluorine-18 fluoroazomycin arabinoside 
(FAZA), and fluorine-18 fluoroerythronitroimidzaole 
(FETNIM). The chemical structure of select nitroimidazole 
compounds are shown in Figure 1. Increased uptake 
of FMISO has been correlated with worse prognosis 
in lung cancer and head and neck cancer patients (13). 
Furthermore, it has been demonstrated as a predictor of 
treatment response to radiation therapy with the most data 
in head and neck cancers (14,15).

Upper gastrointestinal tumors are an area with poor 
outcomes with potential benefit from hypoxia guided 
radiation therapy. Although neoadjuvant chemoradiation 
therapy has been shown to significantly improve overall 
survival in the landmark CROSS trial for esophageal cancer, 
the majority of patients did not experience a pathologic 
complete response (16). This was especially true for 
adenocarcinomas and overall prognosis remains poor. The 
pathologic response rates of pancreas cancers are even 
lower to chemoradiation therapy (17,18) and a clinically 
significant portion of patients die from complications 

of their local disease (19). Moreover, the proximity to 
relatively radiosensitive organs such as bowel or stomach 
limits the radiation dose that may be used to treat these 
tumors. Tumor microenvironmental factors, such as 
hypoxia, that reduce the effectiveness of radiation further 
compromises the delivery of curative radiation doses to this 
area of the body. Thus, there is a clear need to improve 
local treatment options in upper gastrointestinal cancers. 
As hypoxia is a known mechanism of radiation resistance, it 
may partly explain the poor response to radiation therapy 
observed in gastrointestinal adenocarcinomas. Experimental 
studies have consistently shown that cells irradiated under 
hypoxic conditions are 2–3 times more resistant to radiation 
therapy (20,21). This is thought to be secondary to a lack 
of oxygen which, when present, allows for the generation 
of free radicals that are thought to be responsible for the 
majority of indirect DNA damage and cell kill from ionizing 
radiation. An attractive method to improve response to 
radiation therapy includes identifying the radioresistant 
hypoxic regions and potentially targeting them with a 
higher radiation dose (22).

In this review, we summarize the state of known and 
experimental imaging markers of hypoxia and how they have 
been studied in esophagus, pancreas, and liver cancers. The 
purpose of this manuscript is to review studies done with 
hypoxia imaging in patients with these tumors. Most studies 
done for each tumor site will be summarized or referenced 
but this manuscript is not meant to be a systematic review 
of the available literature. It is meant to highlight the state 

Figure 1 Nitroimidazole family of hypoxia positron-emission tomography (PET) tracers. Chemical structure of fluorine-18 
fluoromisonidazole (FMISO), fluorine-18 fluoroazomycin arabinoside (FAZA), fluorine-18-3-fluoro-2-{4-[(2-nitro-1H-imidazol-1-yl)
methyl]-1H-1,2,3-triazol-1-yl}propan-1-ol (HX4), and fluorine-18 fluoroerythronitroimidzaole (FETNIM). The nitro group (NO2) on each 
compound is targeted by nitroreductase enzymes in hypoxic conditions resulting in cellular accumulation. The nitroimidazole compound is 
labeled with fluorine-18 (F), the positron-emitting radionuclide, for visualization on PET imaging.
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of the known imaging techniques in order to propose how 
they can be applied to the field of radiation oncology. We 
then discuss the potential strategies that can be employed in 
the clinic with hypoxia imaging to improve the delivery of 
radiation therapy.

Methods

A literature search was performed using PubMed 
(National Center for Biotechnology Information, NCBI), 
Google Scholar, and MEDLINE (U.S. National Library 
of Medicine). Search terms used included “hypoxia,” 
“imaging,” “esophagus cancer,” “pancreas cancer,” 
“liver cancer,” “hepatocellular carcinoma,” “intrahepatic 
cholangiocarcinoma,” “radiation,” “chemoradiation,” 
and “radiotherapy.” These search terms were also used 
to identify active clinical trials on the ClinicalTrials.gov 
website. English-language original articles, abstracts, and 
reviews were included. A flow diagram illustrating the 
identified articles with the search terms is shown in Figure 2.  
Articles were excluded if the imaging techniques used in the 
study did not include known hypoxia markers, if they were 
pure pre-clinical models without a corresponding study 
done in patients, or if they did not include the appropriate 

tumor sites. An exception was made for an article that 
studied an animal model of liver tumors. This article was 
referenced given the limited amount of literature available 
in patients. Review articles were used in this search to 
further identify original articles that were included in 
this summary. The highlighted studies described are 
summarized in Table 1.

Tumor hypoxia imaging

Esophagus cancer

Tumor hypoxia has been demonstrated in esophageal 
cancer patients, and interestingly, increased hypoxia has 
been demonstrated in patients with adenocarcinomas over 
squamous cell carcinomas. In one study of 20 patients, 
mean FMISO accumulation was significantly higher in 
adenocarcinomas relative to squamous cell carcinomas, 
whereas glucose metabolism did not differ by histology (23). 
These findings were confirmed by a follow-up study of 38 
patients that demonstrated significant tumor hypoxia in 
87% of esophageal cancers imaged with FMISO PET, again 
showing higher relative uptake seen with adenocarcinoma 
histology (24). It was hypothesized that this could partly 
explain the lower pathologic complete response rates 
observed in adenocarcinomas compared to squamous 
cell carcinomas. In a cohort of untreated squamous cell 
esophageal carcinoma patients, investigators from China 
demonstrated the feasibility of FETNIM PET in detecting 
tumor hypoxia and were able to correlate FETNIM 
maximum standardized uptake values (SUVmax) with a 
poorer clinical response to treatment with concurrent 
chemoradiation therapy (25). A newer nitroimidazole 
radiotracer 18F-3-fluoro-2-{4-[(2-nitro-1H-imidazol-1-yl) 
methyl]-1H-1,2,3-triazol-1-yl}propan-1-ol (HX4) has also 
shown promise in reproducibly visualizing esophageal 
tumor hypoxia while affording potential pharmacokinetic 
advantages over other nitroimidazole derivatives as well as 
less spatiotemporal variability in tracer uptake (26). In this 
study, HX4 was shown to have repeatable uptake with a 
high tumor-to-background ratio in a study of 19 esophagus 
cancer patients with both adenocarcinoma and squamous 
histologies. While other PET radiotracers such as FAZA, 
Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-
ATSM), and fluorine-18 fluoroetanidazole (FETA) also 
have potential to image tumor hypoxia, none have yet been 
studied in esophageal cancer (30). Techniques to image 
hypoxia with magnetic resonance imaging (MRI) have also 

Figure 2 Flow diagram illustrating the selection of articles 
summarized.

Records identified with 
search terms in electronic 

databases (n=384)

Duplicate articles 
excluded (n=142)

Records excluded by 
title (n=134)

Records excluded by 
abstract (n=85)

Cited references 
found in studies (n=3)

Inclusion of English 
articles and abstracts after 
duplicates removed (n=228)

Inclusion of articles and 
abstracts after title review 

(n=94)

Studies chosen for summary 
(n=12)

Inclusion of articles and 
abstracts in English (n=370)



1047Journal of Gastrointestinal Oncology, Vol 9, No 6 December 2018

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2018;9(6):1044-1053jgo.amegroups.com

T
ab

le
 1

 S
um

m
ar

y 
of

 s
tu

di
es

A
ut

ho
rs

 &
 

ye
ar

N
o.

 
of

 P
ts

Tu
m

or
 ty

pe
H

yp
ox

ia
 

m
ar

ke
r

H
yp

ox
ia

 q
ua

nt
ifi

ca
tio

n
C

lin
ic

al
 re

sp
on

se
 c

or
re

la
te

s
O

th
er

 fi
nd

in
gs

B
rin

k 
et

 a
l.,

 
20

06
 (2

3)
20

E
so

ph
ag

us
FM

IS
O

S
U

V
 o

f F
M

IS
O

 
ac

cu
m

ul
at

io
n 

an
d 

re
la

tiv
e 

to
 

FD
G

 P
E

T 
to

 d
ef

in
e 

hy
po

xi
c 

fr
ac

tio
n

P
er

ce
nt

ag
e 

of
 v

ia
bl

e 
ce

lls
 o

n 
pa

th
ol

og
y 

af
te

r 
R

T 
an

d 
su

rg
er

y 
fo

un
d 

to
 s

ig
ni

fic
an

tly
 c

or
re

la
te

 
w

ith
 F

M
IS

O
 a

cc
um

ul
at

io
n

A
de

no
ca

rc
in

om
as

 h
ad

 s
ig

ni
fic

an
tly

 h
ig

he
r 

FM
IS

O
 a

cc
um

ul
at

io
n 

co
m

pa
re

d 
to

 s
qu

am
ou

s 
ce

ll 
ca

rc
in

om
as

B
rin

k 
et

 a
l.,

 
20

08
 (2

4)
38

E
so

ph
ag

us
FM

IS
O

 
S

U
V

 o
f F

M
IS

O
 

ac
cu

m
ul

at
io

n 
an

d 
tu

m
or

/
bl

oo
d 

ra
tio

 >
1.

3

N
ot

 d
es

cr
ib

ed
H

yp
ox

ia
 id

en
tif

ie
d 

in
 3

3/
38

 p
at

ie
nt

s;
 3

0 
w

ith
 a

 h
om

og
en

ou
s 

su
b-

vo
lu

m
e 

an
d 

3 
w

ith
 

m
ul

tif
oc

al
 s

ub
-v

ol
um

es
 o

f h
yp

ox
ia

Yu
e 

et
 a

l.,
 

20
12

 (2
5)

28
E

so
ph

ag
us

FE
TN

IM
 

S
U

V
s 

re
fe

re
nc

ed
 b

as
ed

 
on

 m
ul

tip
le

 n
or

m
al

 ti
ss

ue
 

re
gi

on
s 

an
d 

sp
le

en

M
ax

im
um

 S
U

V
 w

as
 p

re
di

ct
iv

e 
of

 
tr

ea
tm

en
t r

es
po

ns
e:

 h
ig

he
r 

S
U

V
s 

co
rr

el
at

ed
 w

ith
 w

or
se

 re
sp

on
se

Tu
m

or
 S

U
V

s 
di

d 
no

t v
ar

y 
si

gn
ifi

ca
nt

ly
 b

ut
 

th
e 

m
id

dl
e 

of
 th

e 
hy

po
xi

c 
re

gi
on

s 
sh

ift
ed

 o
n 

av
er

ag
e 

15
 m

m
 b

et
w

ee
n 

pr
et

re
at

m
en

t s
ca

ns

K
la

ss
en

  
et

 a
l.,

  
20

15
 (2

6)

32
E

so
ph

ag
us

 a
nd

 
pa

nc
re

as
H

X
4

H
yp

ox
ic

 v
ol

um
e 

de
fin

ed
 a

s 
S

U
V

m
ax

 o
f t

um
or

 d
iv

id
ed

 
by

 S
U

V
m

ea
n 

of
 a

or
ta

 w
ith

 
va

lu
es

 >
1 

N
ot

 d
es

cr
ib

ed
H

X
4 

up
ta

ke
 w

as
 re

pe
at

ab
le

 b
et

w
ee

n 
sc

an
s 

in
 b

ot
h 

es
op

ha
gu

s 
an

d 
pa

nc
re

as
 c

an
ce

r 
pa

tie
nt

s.
 O

ve
ra

ll 
up

ta
ke

 w
as

 s
lig

ht
ly

 h
ig

he
r 

fo
r 

es
op

ha
gu

s 
ca

nc
er

s

S
eg

ar
d 

 
et

 a
l.,

  
20

13
 (2

7)

10
P

an
cr

ea
s 

(v
ar

io
us

 
hi

st
ol

og
ie

s)
FM

IS
O

 
S

U
V

m
ax

 o
f t

um
or

 
co

m
pa

re
d 

to
 b

ac
kg

ro
un

d 
m

us
cl

e 

N
ot

 d
es

cr
ib

ed
FM

IS
O

 u
pt

ak
e 

in
 o

nl
y 

2 
ad

en
oc

ar
ci

no
m

a 
w

he
re

as
 a

ll 
tu

m
or

s 
ha

d 
in

cr
ea

se
d 

FD
G

 
up

ta
ke

. N
o 

si
gn

ifi
ca

nt
 c

or
re

la
tio

n 
be

tw
ee

n 
FM

IS
O

 a
nd

 F
D

G
 S

U
V

m
ax

 le
ve

ls

M
et

ra
n-

N
as

ce
nt

e 
 

et
 a

l.,
  

20
16

 (2
8)

20
P

an
cr

ea
s 

ad
en

oc
ar

ci
no

m
a

FA
Z

A
 

P
er

ce
nt

ag
e 

of
 v

ox
el

s 
w

ith
 

S
U

V
s 

m
or

e 
th

an
 3

 s
ta

nd
ar

d 
de

vi
at

io
ns

 fr
om

 th
e 

m
ea

n 
up

ta
ke

 o
f m

us
cl

e

N
ot

 d
es

cr
ib

ed
H

yp
ox

ia
 d

et
ec

te
d 

in
 1

5 
ou

t o
f 2

0 
pa

tie
nt

s 
in

 
th

e 
pr

im
ar

y 
tu

m
or

. F
A

Z
A

 S
U

V
s 

fo
r 

m
et

as
ta

tic
 

le
si

on
s 

w
er

e 
si

m
ila

r 
be

tw
ee

n 
th

e 
pr

im
ar

y 
tu

m
or

 a
nd

 m
et

as
ta

tic
 le

si
on

s

Yo
pp

 e
t a

l.,
 

20
11

 (2
9)

17
H

ep
at

oc
el

lu
la

r 
ca

rc
in

om
a 

an
d 

ch
ol

an
gi

oc
ar

ci
no

m
a 

D
C

E
 

M
R

I
Im

ag
e 

an
al

ys
is

 u
si

ng
 k

in
et

ic
 

m
od

el
 o

f p
er

fu
si

on
 in

 
tu

m
or

s 
an

d 
no

n-
tu

m
or

 li
ve

r 
pa

re
nc

hy
m

a

P
at

ie
nt

s 
ex

hi
bi

tin
g 

si
gn

ifi
ca

nt
 

ch
an

ge
s 

in
 tu

m
or

 p
er

fu
si

on
 a

ft
er

 
an

tia
ng

io
ge

ni
c 

th
er

ap
y 

im
pr

ov
ed

 
tim

e 
to

 d
is

ea
se

 p
ro

gr
es

si
on

Tu
m

or
 p

er
fu

si
on

 le
ve

ls
 c

or
re

la
te

d 
w

ith
 ti

ss
ue

 
ex

pr
es

si
on

 o
f h

yp
ox

ia
 m

ar
ke

rs
 (H

IF
-1

-α
, C

A
 

IX
, V

E
G

F)

N
o.

, 
nu

m
b

er
; 

P
ts

, 
p

at
ie

nt
s;

 F
M

IS
O

, 
flu

or
in

e-
18

 f
lu

or
om

is
on

id
az

ol
e;

 S
U

V,
 s

ta
nd

ar
d

iz
ed

 u
p

ta
ke

 v
al

ue
s;

 F
D

G
 P

E
T,

 f
lu

or
od

eo
xy

gl
uc

os
e 

p
os

itr
on

-e
m

is
si

on
 t

om
og

ra
p

hy
; 

R
T,

 
ra

di
at

io
n 

th
er

ap
y;

 F
E

TN
IM

, f
lu

or
in

e-
18

 fl
uo

ro
er

yt
hr

on
itr

oi
m

id
za

ol
e;

 H
X

4,
 1

8F
-3

-f
lu

or
o-

2-
{4

-[
(2

-n
itr

o-
1H

-im
id

az
ol

-1
-y

l)m
et

hy
l]-

1H
-1

,2
,3

-t
ria

zo
l-1

-y
l}p

ro
pa

n-
1-

ol
; F

A
Z

A
, f

lu
or

in
e-

18
 

flu
or

oa
zo

m
yc

in
 a

ra
bi

no
si

de
; D

C
E

 M
R

I, 
dy

na
m

ic
 c

on
tr

as
t-

en
ha

nc
ed

 m
ag

ne
tic

 re
so

na
nc

e 
im

ag
in

g.



1048 Tao et al. Hypoxia imaging in upper gastrointestinal tumors

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2018;9(6):1044-1053jgo.amegroups.com

not yet been evaluated in esophageal cancer patients.

Pancreas cancer

The hypoxic pancreatic tumor microenvironment, 
characterized by reduced vascularity and an abundance of 
stromal tissue, likely contributes to an aggressive clinical 
course and reduced responsiveness to treatment (31-34). A 
specific example of the pancreas tumor microenvironment 
contributing to disordered vascularity includes findings 
that the tumor stroma contains high levels of hyaluronic 
acid, which raises the interstitial pressure and decreases 
perfusion in the tumor (35). In spite of these hypoxic 
conditions, FMISO demonstrated minimal activity in 
detecting hypoxia in 10 patients with a variety of pancreatic 
tumor histologies, including 7 with pancreatic ductal 
adenocarcinomas, 1 neuroendocrine carcinoma, 1 poorly 
differentiated/sarcomatoid carcinoma, and 1 mucinous 
neoplasm (27). In a study evaluating 20 patients with PET 
FAZA imaging, hypoxia was only detected in 75% percent 
of patients, and the hypoxic fraction ranged from less 
than 5% to greater than 50%, suggesting that the tumor 
microenvironment of pancreatic adenocarcinomas may not 
be as uniformly hypoxic as once thought (28). In contrast 
to these experiences, PET imaging with HX4 was found 
to feasibly and reliably visualize pancreatic tumor hypoxia 
in a cohort of 13 patients (26). This discrepancy was 
attributed to faster background clearance with HX4 relative 
to other nitroimidazole derivatives as well as to the longer 
time interval between radiotracer injection and scanning 
used in the study. Thus, detection and characterization 
of hypoxia may be dependent upon the imaging modality 
used and the presence of severe hypoxia in pancreatic 
cancer likely contributes to the aggressive biologic behavior 
of these tumors. In an effort to better understand the 
diagnostic value and predictive potential for hypoxia 
imaging in pancreatic cancer, a single-arm single institution 
prospective clinical trial is attempting to correlate PET 
FAZA uptake with extent of disease, serum biomarkers, 
treatment response, and survival endpoints in pancreatic 
cancer (clinicaltrials.gov: NCT01542177). MRI techniques 
such as dynamic contrast enhancement (36,37) or diffusion 
weighted imaging (38) are also under study to evaluate 
tumor hypoxia in pancreatic cancer.

Liver cancer

Due to physiologic hepatic metabolism of nitroimidazole 

derivatives, few in vivo studies have evaluated hypoxia 
imaging biomarkers in liver tumors. However, within a 
preclinical orthotopic rat model, FMISO and iodine-124 
iodoazomycin galactopyranoside (IAZG) were both found 
to detect tumor hypoxia in implanted liver tumors and 
peritoneal metastases (39). Higher contrast ratios and 
superior diagnostic image quality were observed with 
FMISO compared to IAZG. In a phase II study of 17 
patients with hepatocellular carcinoma or intrahepatic 
cholangiocarcinoma, Yopp and colleagues utilized dynamic 
contrast-enhanced magnetic resonance imaging (DCE-
MRI) to measure the degree of tumor re-oxygenation after 
treatment with floxuridine (FUDR) and bevacizumab (29).  
The rationale for using the antiangiogenic agent 
bevacizumab was that it  could potentially reverse 
tumor hypoxia and improve the delivery of cytotoxic 
chemotherapy, which in this case was FUDR. The 
investigators also stained tumor tissue for baseline 
expression of 3 hypoxia markers: anti-hypoxia inducible 
factor-1α (HIF-1α), anti-carbonic anhydrase IX (CA 
IX), and vascular endothelial growth factor (VEGF). 
DCE-MRI parameters correlating with tumor perfusion 
were found to correlate with baseline tissue markers of 
hypoxia as well as time to progression in these patients 
with primary liver cancers. Interestingly, only patients 
with tumors expressing these hypoxia markers exhibited 
significant changes in the DCE-MRI perfusion parameters 
after bevacizumab therapy. Additionally, improvement 
in clinical outcomes with a longer time to progression 
was observed only in patients who exhibited significant 
changes in DCE-MRI parameters after administration of 
bevacizumab. The authors hypothesize that these changes 
in DCE-MRI parameters could reflect normalization 
of tumor vasculature leading to decreased hypoxia and 
conclude that DCE-MRI may be a useful biomarker of 
therapeutic response, especially after treatment with 
antiangiogenic therapy. However, a concern with DCE-
MRI imaging is that it provides only an indirect measure 
of hypoxia that uses blood flow as a surrogate (40,41). As 
multiple factors influence the degree of hypoxia in tumors, 
blood flow may not always correlate with tumor hypoxia. 
Although experience is limited, these studies suggest that 
hypoxia imaging is feasible in primary liver cancers and 
could also be predictive of treatment response and clinical 
outcomes. Additional studies are warranted to develop 
novel imaging biomarkers that can better characterize in 
vivo tissue hypoxia within metastatic and primary tumors 
of the liver.
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Strategies to integrate hypoxia imaging with 
radiation therapy

One strategy is to apply the information gained from 
hypoxia imaging and use it to individualize total radiation 
dose or to adapt the radiation dose during treatment based 
on initial response. For example, patients with tumors 
exhibiting hypoxia could be selected for dose escalation or 
de-escalation if their tumors exhibit an early response to 
radiation therapy. In a seminal pilot study from Lee et al.,  
33 patients with HPV positive oropharyngeal cancer 
were evaluated for pretreatment hypoxia with FMISO 
(defined as >1.2 tumor to muscle standardized uptake 
value) (42). A repeat scan was performed one week after 
initiating definitive chemoradiation. Interestingly, 100% of 
patients demonstrated pretreatment hypoxia of either the 
primary site or involved regional lymph nodes. However, 
hypoxia resolved within one week of treatment in 48% of 
cases. Patients with resolution of hypoxia after one week 
of treatment received a 10 Gray (Gy) radiotherapy dose 
reduction to metastatic lymph node(s) from 70 to 60 Gy. 
For the entire cohort, including patients who underwent 
adaptive dose reduction, 100% 2-year local control was 
achieved with 100% 2-year overall survival. One patient 
with persistent hypoxia on FMISO PET developed distant 
metastatic disease, corresponding to a 2-year distant 
metastases-free survival rate of 97%. Of course, it is not 
known whether these excellent outcomes would have been 
observed without this adaptive radiation dosing technique; 
100% 2-year local control and overall survival may have 
been observed if all patients were treated to 60 Gy as HPV 
positive oropharyngeal cancers are known to be sensitive 
to radiation therapy. In addition, hypoxia imaging only 
gives a snapshot of a dynamic process and is thus subject 
to sampling error. Variations in hypoxic imaging of normal 
tissues may also suggest differential normal tissue toxicities 
between patients. Nonetheless, these promising results 
suggest that adaptive radiotherapy based on hypoxia 
imaging is potentially safe and feasible, offering a new 
avenue for further personalizing oncologic therapy and 
minimizing unnecessary treatment-related toxicities.

In light of this intriguing potential, adaptive radiotherapy 
via advanced imaging has gained acceptance in the treatment 
of other cancers. In a phase II clinical trial by Kong et al., 
midtreatment standard fluorine-18 fludeoxyglucose (FDG) 
PET was acquired in 42 patients with inoperable stage II-III 
non-small cell lung cancer (NSCLC). Based on the degree 
of intra-treatment PET metabolic activity, radiotherapy was 

adaptively dose-escalated up to a maximum of 86 Gy in 30 
fractions, with a threshold of grade >2 radiation-induced 
lung injury (43). Concurrent weekly carboplatin and 
paclitaxel were given, as well as three cycles of consolidation 
chemotherapy. At a median follow-up of 47 months, 2-year 
infield and overall locoregional control rates were 82% 
and 62%, respectively. Median overall survival was 25 
months with 2- and 5-year overall survival rates of 52% 
and 30%, respectively. These local control and survival 
rates compare favorably to historical controls with standard 
chemoradiation, suggesting yet another exciting possibility 
for improving patient outcomes with individualized, 
response-based adaptive radiotherapy. It is interesting that 
the landmark RTOG 0617 randomized trial failed to show 
improved tumor control with higher doses of radiation 
therapy (44), which may be partly explained by applying 
uniform dose escalation to unselected patients.

FDG PET may be a feasible imaging tool to guide dose 
escalation in radiation therapy, but studies have shown that 
it is actually not a reliable imaging correlate for hypoxia 
(45,46). Thus, there is a need to investigate further the 
role of hypoxia imaging to determine which patients are 
best-selected for radiotherapy dose-escalation and whether 
hypoxic portions of a tumor can be selectively targeted in 
order to overcome radioresistance. One simple strategy 
is to select patients with tumors exhibiting a high degree 
of hypoxia and uniformly increase radiation dose to the 
entire extent of the gross tumor volume (GTV). However, 
this strategy often results in unacceptably high dose to the 
surrounding normal tissues. With advances in radiation 
technology and planning, including intensity-modulated 
radiation therapy (IMRT) and stereotactic body radiation 
therapy (SBRT), heterogeneous dosing to tumors with 
dose-painting is now possible. Therefore, an alternative 
strategy would be to use hypoxia imaging to selectively 
boost only the hypoxic regions of the tumor, which may 
make it possible to avoid increasing dose to normal tissues 
(22,47). Several modelling studies based on established 
principles in radiobiology suggest that an increase in 
total radiation dose to the hypoxic region of a tumor can 
significantly increase tumor control probability. Although 
hypoxic cells are considered 2–3 times more radioresistant, 
one study used a Monte Carlo model to show that only a 
moderate increase in dose of 120–150% to areas of chronic 
hypoxia led to a significant increase in tumor control 
probability (48). Another study in head and neck cancer 
patients used FMISO PET to determine the target of 
an added simultaneous integrated boost (SIB) of 10 Gy 
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to each patient’s IMRT plan and demonstrated a mean 
improvement in tumor control probability of 17% without a 
significant associated increase in normal tissue complication 
probability (49).

There is a clear rationale to apply these strategies in the 
radiation treatment of patients with upper gastrointestinal 
tumors. Similar to the results in the lung cancer literature, 
dose escalation in unselected patients with esophagus cancer 
has not been shown to have a benefit on local control or 
survival (50). For pancreas and liver tumors, conventional 
doses of radiation therapy have significant limitations in 
achieving disease control with clinical evidence suggesting 
that higher doses may lead to improved outcomes (51-55). 
Upper gastrointestinal tumors are especially challenging 
due to the requirement for higher radiation dose for 
disease control, yet close anatomic proximity to exquisitely 
radiation-sensitive organs such as the small bowel and 
stomach. In clinical practice, a boost of higher radiation 
dose may be given to the portion of pancreatic tumors 
away from the dose-limiting duodenum, or to an arbitrary 
central region of a liver tumor assumed to harbor hypoxic 
radioresistant cells (51,52). However, no study has been 
done to identify the true areas of hypoxia that could more 
accurately be used to define and individualize the radiation 
dosing specific to each patient’s tumor. Thus, these 
noninvasive hypoxia tracers could be used to rationally 
define radiation treatment volumes by more accurately 
individualizing radiation dosing specific to each unique 
tumor microenvironment.

Although FMISO, FETNIM, and HX4 have not been 
directly compared in esophageal cancer, a reasonable next 
step in designing a clinical study would be to pick one 
tracer to use in a pre-treatment and mid-treatment scan 
and selectively design dose-escalated radiotherapy plans for 
patients with hypoxic tumors. In this concept, the hypoxic 
imaging assessment would be an integral biomarker in 
defining different therapy arms. In operable patients, the 
pathologic response could be correlated with the degree 
of pre- and mid-treatment hypoxia. The challenge is in 
determining how much the selective or total GTV boosting 
versus baseline tumor biology contributed to the pathologic 
and/or clinical response.

For pancreatic cancers, some small initial studies showed 
that FMISO and FAZA were not reliable markers of 
hypoxia in pancreas tumors, but HX4 appears to show the 
most promise. Thus, HX4 could be used to determine the 
feasibility of a selected hypoxia-targeted pancreatic boost. 
Whether this decreases in the maximum and volumetric 

doses to the dose-limiting structures in pancreas cancer 
to allow for safer and individualized dose escalation can 
then be investigated. Additional clinical data is needed to 
demonstrate the feasibility of this approach.

The next step for liver tumors is to apply the pre-clinical 
data to the clinical setting in patients with hepatocellular 
carcinoma, intrahepatic cholangiocarcinoma, and potentially 
patients with metastatic disease to the liver. FMISO was 
shown to have superior imaging quality than IAZG in the 
preclinical data and could be investigated as one of the 
first radiotracers clinically assessing hypoxia in patients 
with liver tumors and in determining if any correlates 
to standard-of-care imaging exist. For example, a pilot 
study could assess whether there is correlation between 
FMISO uptake and the degree of enhancement on MRI 
for hepatocellular carcinoma or FDG PET for intrahepatic 
cholangiocarcinoma and metastatic tumors. Mid- and post-
treatment FMISO scans could be done to assess the degree 
of change in tumor hypoxia during radiation therapy and 
to assess whether these imaging findings are predictive of 
treatment response and clinical outcomes. This information 
could then be used in radiation treatment planning to design 
an individualized boost volume based on real-time hypoxic 
volumes, rather than arbitrarily targeting the central tumor 
volume that may not correlate with true areas of hypoxia. 
This strategy could spare unnecessary radiation dose to the 
normal liver parenchyma, while still providing treatment 
intensification to potentially radioresistant regions of tumor.

For gastrointestinal cancer patients receiving neoadjuvant 
chemotherapy, it would be of interest to investigate which 
systemic agents can potentially reverse tumor hypoxia with 
the aid of hypoxic imaging. Many antivascular targeted 
agents are now available, yet their effect on hypoxia in 
gastrointestinal malignancies is not well defined. Research 
in these areas could permit a further personalized approach 
in the selection of chemotherapy.

There are recognized challenges in translating these 
imaging techniques to the clinic. In order to implement 
hypoxia imaging information into IMRT treatment 
planning, the spatial resolution of imaging has to be 
sufficient to differentiate subregion of hypoxia from the 
rest of normoxic tumor. Accurately defining the spatial and 
temporal variation in the areas of tumor hypoxia throughout 
the course of treatment is particularly challenging. To fully 
characterize this variation, a hypoxia radiotracer scan would 
have to be done before or after each fraction of radiation 
therapy. These multiple sets of imaging data would then 
need to be compared to quantify the extent of variability 
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both within and between patients. This may be practical for 
a short course of radiation therapy, such as a 3- or 5-fraction 
SBRT treatment schedule, but becomes impractical with 
longer courses of therapy. Thus, an unanswered question 
is how to best integrate potential changes in the hypoxic 
areas of tumors into the radiation plan throughout the 
course of treatment, particularly if selective boosting is to 
be used. It would be impractical to perform a scan before 
every treatment. Perhaps weekly or mid-treatment scans 
would provide enough information. Another mechanism of 
integrating hypoxia imaging with radiation therapy includes 
the use of MRI-based linear accelerators. With MRI-based 
linear accelerators, it may be more practical for patients to 
be imaged daily and MRI-based biomarkers for hypoxia 
could be incorporated into adaptive radiation protocols. 
This would potentially allow for more frequent assessment 
of hypoxia in a practical manner. The optimal frequency of 
hypoxia imaging scans during radiotherapy requires further 
investigation.

Summary and future directions

Studies have consistently shown that tumors exhibiting 
hypoxia are associated with poor prognosis including 
a worse response to radiation therapy. Imaging with 
PET radiotracers, particularly the nitroimidazoles, is 
a reproducible method of visualizing areas of tumor 
hypoxia that could be used to select patients for different 
methods of radiation dose escalation or adaptation. 
Future studies are needed to establish whether disease 
outcomes can be improved with increasing radiation dose 
to hypoxic tumors. Given that many patients with upper 
gastrointestinal tumors may be unable to proceed with 
surgery due to the advanced nature of their local disease or 
medical comorbidities, the role of radiotherapy becomes 
even more important for local control and possibly 
survival. Unfortunately, responses to radiotherapy or even 
chemoradiation therapy have been poor. Dose escalation 
to entire treatment volumes have been either ineffective 
or are quite difficult due to risk of damage to surrounding 
organs and tissue. One possibility for making radiotherapy 
more effective is by selectively targeting hypoxic regions 
of tumor with higher doses of radiotherapy, thus affecting 
more direct tumor cell kill. Adaptive treatment algorithms 
utilizing hypoxia as a biomarker has significant promise to 
personalize chemotherapy and radiation therapy in a tumor-
specific fashion and improve outcomes in gastrointestinal 
malignancies.
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