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Exosome can prevent RNase from degrading microRNA in 
feces
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Background:  Because the stability of miRNA in feces has not been clari�ed, we examined the stability of miRNA in 
feces.
Methods:  RNase was added into culture media of HT-29 cells and fecal homogenates. �e relative quanti�cations of 
miRNA were analyzed by real-time RT-PCR.
Results:  Cellular miRNA or exosomal miRNA were protected from RNase by the cellular membrane or the exosome; 
meanwhile, free miRNA was degraded immediately and completely by RNase.
Conclusion:  �e present study revealed that exosome or cellular membrane could prevent RNase from degrading miR-
NA inside the exosome or cells even in a dreadful condition, as in feces. 
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Introduction

M i c r o R N A s  (m i R N A s),  w h i c h  a r e  s m a l l  (18 -2 5 
nucleotides) noncoding R NA molecules, regulate the 
activity of specific mRNA targets and play a major role in 
cancer. The function of miRNA is the downregulation of 
multiple target gene expressions by degrading the mRNA 
or block ing its translation into protein through R NA 
interference (1,2). The let-7, miR-34 family, miR-126, 
miR-143, miR-145, and the miR-200 family are considered 
to be tumor suppressor miRNAs in colorectal cancer (CRC) 
(3-7). Because the expression level of tumor suppressor 
miRNAs in cancer tissue was lower than in normal tissue, 
these tumor suppressor miRNAs may become candidates 

for future miRNA-based cancer therapy (8). On the other 
hand, since the expression level of the oncogenic miRNAs, 
such as miR-17-92 cluster, miR-21, and miR-135, in cancer 
tissue was higher than in normal tissue, these oncogenic 
miRNAs could be used for a marker of prognosis or poor 
response to chemotherapy (9-14). 

Exosomes are nanoparticles, 50-100 nm in diameter, 
and are released from cells into extracellular matrixes 
through fusion of multivesicular bodies with the plasma 
membrane (15,16). Recent reports indicate that miRNAs 
are circulating stably in bloodstream wrapping in exosomes, 
which can prevent R Nase from degrading the miR NAs 
(17-21). Therefore several methods for miR NA-based 
early cancer detection using serum, plasma, and urine 
are reported (21-23). Also, several studies are available of 
the possible use of the miR NA-based method for CRC 
screening in serum (24,25) and in feces (26).

We have been developing new screening methods for 
CRC by applying molecular biological tools to exfoliated 
colonocytes isolated from naturally evacuated feces (27-29). 
In the past few years especially, we have reported the fecal 
R NA test, including the CRC-related gene expression 
analysis (30) and the CRC-related miR NA expression 
analysis (31). Within this context, we investigate the 
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stability of miRNA in feces. 

Materials and Methods

Cell line and fecal samples
The human colorectal cancer cell line HT-29 (American 
Tissue Culture Collection, Rockville, MD) was cultured 
in the Dulbecco’s Modif ied Eagle Medium (DM EM), 
supplemented with 10% fetal bovine serum (FBS), 100 U/
mL penicillin G, 100 μg/mL streptomycin, and 0.25 μg/mL 
amphotericin B at 37°C in a humidi�ed atmosphere of 5% 
CO2: 95% air.

Naturally evacuated fecal samples were obtained from 
3 healthy volunteers with no endoscopical abnormalities. 
Volunteers were instructed to evacuate at home into a 
disposable 5 × 10-cm polystyrene tray (AsOne, Osaka, 
Japan) and to bring the fecal sample to our laboratory at 
4oC. The samples were then immediately prepared for the 
next step.

Isolation of exfoliated colonocytes �om feces using EpCAM 
beads
EpCAM (epithelial cell adhesion molecule) beads (JSR, 
Tsukuba, Japan), immunomagnetic beads conjugated with 
EpCAM monoclonal antibody (mAb) (clone B8-4),  were 
used for isolation of colonocyte from feces (32).

Fecal samples were processed as described previously 
(28). Brief ly, one gram of fecal sample was homogenized 
with a buffer (40 mL) consisting of Hanks’ solution, 10% 
fetal bovine serum (FBS), and 25 mM HEPES buffer 
(pH 7.35) at 200 rpm for 1 min using a Stomacher system 
(Seward, Thetford, UK). The homogenate was f iltered 
through a nylon filter (pore size, 512 μm), and following 
the addition of 40 μL of EpCAM beads, the sample mixture 
was incubated for 30 min under gentle rolling conditions 
at room temperature. The mixture on the magnet was 
incubated on a shak ing platform for 15 min at room 
temperature. The supernatant was then removed, and the 
colonocytes in the pellet were stored at −80°C until RNA 
extraction.

Isolation of exosome �om culture media or feces using CD63 
beads 
CD63 beads ( JSR), immunomagnetic beads conjugated 
w ith CD63 m Ab (R&D systems, Minneapolis, M N), 
were used for isolation of exosome from culture media or 
feces. 

Ten microliters of CD63 beads were applied to 1 mL 
of culture media of HT-29 cells, and the sample mixture 
was incubated for 30 min under gentle rolling conditions 
at room temperature. The mixture on the magnet was 

incubated on a shak ing platform for 15 min at room 
temperature. The supernatant was then removed, and the 
exosomes in the pellet were stored at −80°C until R NA 
extraction. 

Isolation of exosome from feces was processed in the 
same manner as described above. The exosomes isolated 
from feces using CD63 beads were stored at −80°C until 
RNA extraction.

Extraction of total RNA
Fecal samples were homogenized as described previously 
(33,34), and total RNA was extracted from all homogenates 
using a miR Neasy Mini Kit (Qiagen, Valencia, CA), in 
accordance with the manufacturer’s instructions. Brief ly, 
one gram of feces was homogenized with 5 mL of Isogen 
(Nippon Gene, Toyama, Japan), using an I� Ultra-Turrax 
homogenizer (I�-Werke, Staufen, Germany) at 6,000 rpm 
for 2 min. �e homogenates were centrifuged at 15,000 rpm 
for 5 min at 4°C. �e supernatants were transferred into a 
new tube, up to 5 mL more Isogen was added, and 1.5 mL of 
chloroform was then added. 

H T-29 cel l s ,  e xosomes i solated by CD63 bead s , 
and colonocy tes isolated by EpCA M beads were also 
homogenized with 1 mL of Isogen, and to the homogenates 
0.2 mL of chloroform were added. 

One milliliter of culture media was also homogenized 
w it h 3 m L of Isogen-L S (Nippon gene), a nd to t he 
homogenates 0.2 mL of chloroform were added. 

A ll of the tubes were shaken v igorously for 30 sec, 
and centrifuged at 15,000 rpm for 15 min at 4°C. The 
aqueous phase was transferred into a new tube. One-and-
a-half volume of 100% ethanol was added, and the tube 
was vortexed for 15 sec. The mixture was poured onto a 
miRNeasy spin column (Qiagen), and the columns were 
centrifuged at 10,000 rpm for 15 sec at room temperature. 
T he r e m a i n i n g s t e p s  w e r e  done a c c ord i n g t o  t he 
manufacturer's instructions. Each sample was eluted in 100 
μL of RNase-free water. �e total RNA was electrophoresed 
using a Cosmo-I microcapillary electrophoresis (Hitachi 
High-Technologies, Tokyo, Japan), and the concentrations 
of total R NA was determined using a NanoDrop U V 
spectrometer (LMS, Tokyo, Japan). �e RNA samples were 
stored at −80°C until analysis.

cDNA synthesis and real-time RT-PCR
For miRNA expression analysis, cDNAs for U6, miR-16, 
and miR-21 were synthesized. For this purpose, we used the 
commercially available TaqMan MicroRNA Assay (Applied 
Biosystems, Foster, CA). 

cDNA for miR NA was synthesized using a TaqMan 
MicroR NA RT Kit (Applied Biosystems) in accordance 
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with the manufacturer’s instructions. �e reaction mixture 
consisted of 2 μL (or 5 ng) of total RNA, 0.5 μL of 10 × 
RT buffer, 1 μL of 5 × RT primer, 0.05 μL of dNTPs (100 
mM), 0.06 μL of RNase Inhibitor (20 U/μL), and 0.33 μL 
of MultiScribe Reverse Transcriptase (50 U/μL) in a final 
reaction volume of 5 μL.

�e reaction mixture for real-time PCR consisted of 4 μL 
of a template cDNA, 10 μL of TaqMan Fast Universal PCR 
Master Mix (Applied Biosystems), and 1 μL of 20 × primer/
probe mixture in a total reaction volume of 20 μL. Real-time 
RT-PCR was performed with precycling heat activation at 
95°C for 20 sec, followed by 40 cycles of denaturation at 95°
C for 3 sec and annealing/extension at 60°C for 30 sec in an 
Applied Biosystems 7500 Fast Real-Time PCR System. 

Susceptible to RNase degradation
To evaluate the susceptibility to RNase, RNA extracted 
f rom HT-29 cel ls was treated using R Nase (Qiagen, 
f inal concentration: 5 μg/mL) at 4°C or 37°C for 0, 5, 
10, 20, and 30 min. A f ter the treatment, a l l samples 
were electrophoresed using a Cosmo-I microcapil lary 
electrophoresis, the concentrations of total R NA were 
evaluated using a NanoDrop UV spectrometer, and the 
expressions of miR NA from HT-29 cells were analyzed 
using real-time RT-PCR.

Analysis of RNA protection �om RNase
HT-29 cells (5 × 105 cells) were plated into a 10-cm cell 
culture plate (Corning, Corning, NY). After an exchange 
for 10 mL of fresh medium the next day, HT-29 cells were 
cultured for 48 hr. The HT-29 cells were then incubated at 
37°C for 0, 30, 60, and 90 min a�er addition of RNase (�nal 
concentration, 5 μg/mL). �e culture media and cells were 
processed as described above, and free miRNA, exosomal 
miR NA, and cellular miR NA could be obtained. Three 
replicates were performed in each sample. 

One gram of fecal sample from 3 volunteers was put into 
Stomacher Lab Blender Bags (Seward) and incubated at 37°
C for 0, 30, 60, and 90 min a�er the addition of RNase (�nal 
concentration, 5 μg/mL). �e fecal samples were processed, 
and fecal miR NA, exosomal miR NA, and colonocy te 
miRNA could be obtained as described above.

Statistical analysis
The miR NA expression analyses were conducted using 
the comparative Ct (threshold cycle) method. �e relative 
quantification for each miRNA was analyzed using a two-
sided t-test. Statistical analyses were performed using 
StatView Ver. 5 for Windows (Abacus Concepts, Berkeley, 
CA). P<0.05 was considered statistically signi�cant. 

Results

Degradation of naked RNA �om HT-29 cells using RNase
Total RNA extracted from HT-29 cells was treated, using 
5 μg/mL of RNase, and electrophoresed. Two peaks, 18S 
and 28S ribosomal RNA (rRNA), were observed in the total 
RNA without treatment of RNase (Fig 1A). On the other 
hand, no rRNA peak was observed in the total RNA treated 
with RNase. Small RNAs, including miRNA or degrading 
RNA, were observed in all samples. miRNA expressions 
treated with RNase at 4°C were significantly lower than 
those without treatment (U6: P=0.002; miR-16: P=0.0006; 
miR-21: P= 0.0 03) (Fig 1B). Same as above, miR NA 
expressions treated with RNase at 37°C were significantly 
lower than those without treatment (U6: P=0.003; miR-16: 
P=0.006; miR-21: P=0.01) (Fig 1C). As a consequence, 
naked RNA was degraded by 5 μg/mL of RNase at both 4°C 
and 37°C for only 5 min. 

miRNA protected by exosome or cellular membrane from 
RNase in HT-29 cells
To examine how miR NA was protected from R Nase in 
vitro, we cultured HT-29 cells in the medium containing 
R Na se;  c e l lu l a r  m i R N A e x t r ac te d f rom t he c e l l s , 
exosomal miR NA from the exosomes, and free miR NA 
from the culture media were then analyzed. Cel lular 
miR NA was sufficiently conserved under the treatment 
of R Nase for 90 min (Fig 2A). Exosomal miR NA was 
conser ved under the treatment of R Nase for 30 min; 
however, t he m i R NA was deg raded t herea f ter (Fig 
2B). Free miR NA was degraded by the treatment of 
R Nase within 30 min (Fig 2C). Cellular miR NA was 
sufficiently protected from RNase by cellular membrane. 
Exosomal miR NA was partially protected by exosome. 
On the other hand, free miRNA in the culture media was 
degraded immediately by RNase. 

E�ects of RNase on miRNA in exosome or colonocyte in feces
We also examined the susceptibility of miRNA to RNase 
degradation in feces. Colonocyte miRNA extracted from 
the fecal colonocyte, exosomal miRNA extracted from the 
fecal exosomes, and fecal miRNA extracted from the fecal 
homogenates were analyzed. Ct values of U6 in colonocyte 
miR NA, exosomal miR NA, and fecal miR NA without 
treatment of R Nase were 31.14 (26.57-36.13) (mean 
(range)), 33.23 (30.40-35.15), and 32.60 (31.08-34.29), 
respectively (Table 1). Ct values of miR-16 were 28.60 
(25.71-30.83), 29.69 (28.79-31.01), and 30.36 (29.47-31.05), 
respec t ively.  A lso, Ct va lues of m i R-21 were 27. 2 3 
(23.83-29.00), 27.92 (26.27-30.46), and 29.32 (28.16-30.68), 
respectively. Colonocyte miRNA and exosomal miRNA 
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were not susceptible to RNase degradation (Fig 3A and 3B). 
On the other hand, fecal miRNA was degraded e�ciently by 
the treatment of RNase (Fig 3C). In the feces, miRNA was 
sufficiently protected from RNase by cellular membrane 
and exosome.

Discussion

In the clinical samples, RNA is degraded rapidly by RNase 
existing in any body �uids such as sweat, sputum, or blood. 
The effects of RNase should be, therefore, considered in 
the R NA-based analysis on clinical samples. A lthough 
several storage buffers inhibiting the effect of DNase and 
R Nase were available, we have been investigating the 
CRC screening method based on the analysis using the 
colonocytes isolated from feces. In our preliminary study, 
the colonocytes could not be isolated from feces stored 
in the storage buffers. Therefore we have investigated the 

suitable storage condition of fecal samples for our screening 
test. 

Recently it was reported that miRNA was secreted from 
tumor cells via exosome and was transported to endothelial 
cel ls by paracrine induction (35). This indicates that 
exosome is not only a secretory tool, but that it also supports 
miRNA. We have been investigating the CRC screening 
method (30,31). And then we thought that fecal miRNA 
(free miRNA) from fecal homogenates, exosomal miRNA 
from fecal exosomes, and colonocyte miRNA from fecal 
colonocytes might be candidates for the fecal miRNA test. 
Exfoliated colonocytes were isolated from feces by EpCAM 
beads, using a prev iously published method (28,32). 
Exosomes could be isolated using both the centrifugation 
method (19,35) and the cell isolation method by anti-
CD63 mAb conjugated immunomagnetic beads (36) In the 
present study, HT-29 cells cultured in the media containing 
RNase were analyzed, and fecal homogenates were treated 

Figure 1 Degradation of naked RNA using RNase. (A) Electropherogram of total RNA treated with RNase. �e total RNA is treated with 
5 μg/mL of RNase for 0, 5, 10, 20, and 30 min at 4°C and 37°C. Two peaks, 18S and 28S ribosomal RNA (rRNA), are observed in total 
RNA without RNase treatment. (B) Relative quanti�cation (RQ) of each miRNA treated with RNase at 4°C. �e total RNA is treated 
with 5 μg/mL of RNase for 0, 5, 10, 20, and 30 min at 4°C. RQ of each miRNA is normalized by 18S rRNA (C) RQ of each miRNA treated 
with RNase at 37°C. �e total RNA is treated with 5 μg/mL of RNase for 0, 5, 10, 20, and 30 min at 37°C. RQ of each miRNA is normal-
ized by 18S rRNA.
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Table 1 Ct value of each miRNA in colonocyte miRNA, exosomal miRNA, and fecal miRNA
Ct value (Mean (range))

miRNA Colonocyte miRNA Exosomal miRNA Fecal miRNA
U6 31.14 (26.57-36.13) 33.23 (30.40-35.15) 32.60 (31.08-34.29)
miR-16 28.60 (25.71-30.83) 29.69 (28.79-31.01) 30.36 (29.47-31.05)
miR-21 27.23 (23.83-29.00) 27.92 (26.27-30.46) 29.32 (28.16-30.68)

Figure 2  RQ of each miRNA in HT-29 cells treated with RNase. (A) RQ of each miRNA in cellular RNA treated with RNase. HT-29 cells 
are treated with 5 μg/mL of RNase for 0, 30, 60, and 90 min at 37°C. RQ of each group is compared with that of a no-treatment group. (B) 
RQ of each miRNA in exosomal RNA treated with RNase. Exosomes are treated with 5 μg/mL of RNase for 0, 30, 60, and 90 min at 37°C. 
RQ of each group is compared with that of a no-treatment group. (C) RQ of each miRNA in free RNA treated with RNase. Culture media 
are treated with 5 μg/mL of RNase for 0, 30, 60, and 90 min at 37°C. RQ of each group is compared with that of a no-treatment group. 
Mean ± SD.

by R Nase. A lthough free miR NA (fecal miR NA) was 
degraded rapidly, cellular miRNA (colonocyte miRNA) 
was highly conserved. In the culture media, exosomal 
miRNA was conserved for a 30-min treatment of RNase, 
but deg raded for a 90 -m i n treatment . On t he ot her 
hand, the fecal exosome could be conserved for a 90-min 
treatment of RNase. �ese indicated that cellular membrane 
prevented RNase from degrading miRNA in cells, but that 
the exosome partially prevented R Nase from degrading 
miRNA in exosome. 

In this study, U6, miR-16, and miR-21 were analyzed 
because U6 and miR-16 were used for internal control 

as an expression of miR NA in several reports (31,37) 
and miR-21 was one of the miRNAs important for CRC 
carcinogenesis (38,39). The expression of miR-21 in the 
CRC tissue was higher than that in the normal colorectal 
mucosa; however, no signif icant di f ference was seen 
between the early stage of CRC and the advanced stage of 
CRC regarding the expression of miR-21 (31). Recently 
fecal-based RNA tests have been noticed because of their 
simplicity and cost-e�ectiveness (33,34,40), however, fecal 
miRNA was unstable under the existence of RNase. For 
the clinical use of fecal miRNA, it was therefore necessary 
to store the fecal sample under strict conditions. On the 
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other hand, exosomal miRNA or colonocyte miRNA were 
protected from RNase by exosome or cellular membrane. 
This information may be important for the clinical use of 
fecal miRNA in future CRC mass screening. In the present 
study, we examined miRNA protection from RNase in fecal 
samples precisely and could show that exosomal miRNA is 
more stable than free miRNA in a deadful condition like in 
feces.
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