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Introduction

Primary and secondary malignancies of the liver represent 
a common and increasing cause of morbidity and mortality 
worldwide (1). Although surgical management offers the 
highest probability of long-term disease control and cure, 
the majority of patients are not appropriate for surgery 
due to advanced tumor burden and/or poor liver function. 
Therefore, non-surgical management is indicated for most 
patients with cancers of the liver. Non-surgical treatment 
options include systemic therapy, thermal ablation, 
chemoembolization, radioembolization, and external beam 
radiation therapy (EBRT). While there are few prospective 
comparative data to guide clinical decision making with 
respect to these options, there is increasing evidence that 
EBRT should be routinely considered for some liver cancer 
patients (2-7).

Liver EBRT with definitive doses was avoided in the era 
of 2-dimensional planning and delivery due to poor high 
dose conformity and consequentially a high risk of severe 
and potentially fatal radiation induced liver disease (RILD) 

(8,9). Major technological improvements in imaging, 
motion management, treatment planning, and dose 
conformity have allowed patients with liver cancer to safely 
and effectively receive EBRT with either X-rays or protons 
(10-12).  

Herein we review the rationale, supporting clinical data, 
limitations, and future implications of proton beam therapy 
(PBT) in the treatment of primary and secondary liver 
malignancies.

Rationale for proton therapy

Compared to an X-ray beam in which dose exponentially 
decreases distal to the intended target, a proton beam 
has a finite range determined by its energy and deposits 
the majority of its dose over a short distance at the Bragg  
peak (13). Thus, there is essentially no exit dose in a proton 
beam, whereas a large volume of normal tissue receives low to 
moderate dose distal to the target with X-rays (Figure 1) (14). 

As a parallel functioning organ, the liver is tolerant of 
high dose to partial volumes, but not to the entire organ 
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(15-17). The importance of minimizing the mean dose 
to uninvolved liver has been well understood for many 
years although the significance of low liver dose has more 
recently become recognized (18). In fact, even <10–15 Gy 
to increasing volumes of uninvolved liver has been shown as 
an important predictor of RILD (18,19).

For patients with HCC, the primary rationale for PBT 
is a reduction in the risk of RILD, especially those with 
more advanced tumor burden and/or worse liver function 
(20-23). Reducing normal liver dose with PBT can also 
facilitate tumor dose escalation, which may benefit some 
patients with unresectable intrahepatic cholangiocarcinoma 
or liver metastases as will be further discussed below 
(24,25). Although PBT may achieve sparing of other organs 
including the bowel, stomach, lung, and heart compared 
to the use of x-rays, these differences are not likely to be 
clinically meaningful for the majority of patients with liver 
cancer.

Clinical outcomes for HCC

PBT has been studied extensively for HCC in Japan where 
there is a high prevalence of the disease (26). A majority 
of the published literature has come from the University 

of Tsukuba, which began treating HCC patients with 
PBT in 1985 (27). Initial results in 162 HCC patients 
treated between 1985–1998 with various hypofractionated 
PBT schedules to a median 72 GyE in 16 fractions were 
encouraging (28). Only 3 or 4 fractions per week were 
initially delivered because of limited access to the beam, 
although 5 fractions per week later became standard. The 
median tumor size was 3.8 cm (range, 1.5–14.5 cm) and 
51.6% of patients had multiple (up to 3) tumors that were 
encompassed in a single treatment field. The 5-year local 
control (LC) was 86.9% with no significant difference for 
tumors <5 vs. >5 cm. The 5-year overall survival (OS) was 
23.5% and there was no grade 3 or higher toxicity despite 
only 50.6% of patients having CP-A cirrhosis. 

While many dosing regimens were initially used, 3 have 
been preferred for many years at University of Tsukuba 
based on the location of the target: 66 GyE in 10 fractions 
for peripheral tumors, 72.6 GyE in 22 fractions if ≤2 cm 
from the porta hepatis, and 77 GyE in 35 fractions if ≤2 cm 
from gastrointestinal (GI) structures (29). In an analysis of 
266 patients treated between 2001–2007 using this dosing 
strategy, the 5-year LC was 81% and did not differ based 
on fractionation schedule. There was a larger percentage 
of CP-A patients (76%) than in the previously mentioned 
study, which may have contributed to the higher 5-year 
OS of 48%. At least grade 3 toxicity was infrequent despite 
treating tumors in proximity to radiosensitive normal 
organs like bowel, demonstrating the appropriateness of 
using lower dose per fraction for central targets. 

Fukuda et al. recently reported long-term outcomes 
(median follow-up 55 months) in previously untreated 
HCC patients from University of Tsukuba using tumor 
location-adapted dosing (30). The median tumor size was 
3.9 cm (range, 1–13.5 cm) and about 25% of patients had 
multiple tumors. The 5-year LC for patients with stage 0/A, 
B, and C was 94%, 87%, and 75%, respectively. The 5-year 
OS was 69%, 66%, and 25%, respectively. Interestingly, 
the outcomes achieved with PBT for stage 0/A patients 
are similar to those achieved with partial hepatectomy or 
percutaneous ablation (31). 

Favorable long-term PBT results have been achieved not 
only at University of Tsukuba, but also at other institutions 
in Japan, Korea, and the United States (Table 1). In most 
studies, 5-year LC was approximately 80–95% despite 
including tumors ranging from about 4–7 cm, which are 
larger than those typically represented in SBRT studies 
(28,30,34,36,38). Five-year OS varied from about 20–70%, 
reflecting a wide range of patient and tumor characteristics 

Figure 1 Treatment plan comparison of protons (top) versus X-rays 
(bottom). The X-ray plan delivers low dose to a much larger 
volume of uninvolved liver compared to the proton plan. 
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including liver function and tumor burden. Most patients 
in these studies had CP-A cirrhosis (~70–90%), similar to 
the SBRT literature. In 2005, investigators from Chiba 
reported that 80% complete radiographic response 
and 2-year LC 96% was achieved in 30 patients after 
a median 76 GyE in 20 fractions (32). A retrospective 
analysis from the Hyogo Ion Beam Medical Center in 242 
patients treated with 8 PBT protocols (52.8–84 GyE in 4– 
38 fractions) reported 5-year LC 90% and 5-year OS 
38%. In 2011, Bush et al. (6) from Loma Linda University 
published results of a phase 2 trial that prescribed 63 GyE in  
15 fractions to 76 patients with mean tumor size 5.5 cm. 
The majority had either CP-B (47%) or CP-C (24%) 
cirrhosis although liver transplantation was performed in 
18 patients (24%). Pathologic complete response was found 
in 33% and 39% had only microscopic residual disease. No 
RILD was reported.

A 15-fraction approach was studied in a multi-
institutional U.S. phase 2 trial that included both HCC 
(53%) and IHC (47%); median tumor size was 5.7 cm. The 
prescription dose was 67.50 GyE for peripheral tumors and 
58.05 GyE ≤2 cm from the porta hepatis. The 2-year LC 
was excellent (95%) and only 3.6% developed a worse CP 
score after PBT (36). Researchers from M.D. Anderson 
Cancer Center recently reported a retrospective analysis 
of 46 patients treated with various fractionation schemes, 
including 15-fraction regimens of 58 and 67.5 Gy (56%). 
They noted a dose-response effect suggested by a median 
overall survival improvement from 15.8 to 49.9 months for 
patients treated with BED ≥90 GyE (P=0.037) (37). Higher 
BED remained significant (P=0.023) as an independent 
predictor of survival on multivariate analysis. 

Although the data demonstrating safety and efficacy 
of PBT for HCC are well-established, it remains poorly 
defined how HCC patients should be optimally selected 
for PBT over SBRT in the absence of randomized data. 
Recently published retrospective data from Massachusetts 
General Hospital reported that PBT may improve OS 
compared to ablative XRT by decreasing the probability of 
post-treatment liver decompensation, even among CP-A 
patients (39). Two-year OS for PBT patients was 59.1% 
compared to 28.6% for XRT patients. The ongoing NRG 
Oncology GI-003 randomized trial will hopefully provide 
guidance on the benefit of PBT over XRT (NCT03186898). 

HCC patients who are not ideal candidates for SBRT 
due to a high probability of RILD may be better suited 
for PBT (22,23,40-42). Sugahara et al. treated 22 patients 
with median 11 cm HCC (range, 10–14 cm) to a median 

72.6 GyE in 22 fractions (range, 47.3–89.1 GyE in 10– 
35 fractions) and achieved 2-year LC of 87% (23) with no 
grade 3 or higher toxicity. A study of 19 patients with CP-C 
cirrhosis prescribed a median 72 GyE in 16 fractions (range  
50–84 GyE in 10–24 fractions) reported no worsening of 
CP score or grade 3+ toxicity; 74% actually experienced an 
improvement in CP score (22). LC was 95% with median 
follow up of 17 months and 2-year OS was 42%. Elderly 
patients can also achieve excellent outcomes from PBT; 
Hata et al. reported 3-year LC 100% and 3-year OS 62% in 
21 patients with median age 81 years (range, 80–85 years) 
and none experienced grade 3 or higher toxicity (40). Hata  
et al. also showed that PBT was feasible and effective to 
treat portal vein tumor thrombus (PVTT) (41). 

Several dosimetric studies have been performed that provide 
guidance on which patients may achieve the greatest clinical 
benefit from PBT. Toramatsu et al. evaluated the normal 
tissue complication probability for RILD based on the same 
prescription dose over varying tumor sizes and demonstrated 
that for tumors larger than 6.8 cm, the risk of RILD was 
significantly higher for SBRT compared to PBT (43). A study 
from the University of Pennsylvania concluded that PBT 
could be advantageous for tumors >3 cm in the center or dome 
of the liver or for >5 cm tumors regardless of location (21). 

Although PBT will almost certainly deliver reduced liver 
dose in many instances in comparison to SBRT, there are 
many clinical factors such as baseline liver function that 
influence the probability of RILD. As such, best clinical 
judgment should be used to determine whether a certain 
reduction in liver dose achieved with PBT is clinically 
relevant in the context of other clinical factors. 

Clinical outcomes for cholangiocarcinoma

Although the cornerstone of treatment for patients with 
unresectable cholangiocarcinoma is systemic therapy, long-
term clinical outcomes may be greatly improved with the 
addition of EBRT in selected patients without distant 
metastatic disease (44-46). Moreover, in recent years, 
the use of ablative radiation dose has been shown to be a 
significant prognostic factor for both LC and OS (24,47). 
Several studies have demonstrated that dose-escalated 
PBT can achieve favorable LC and OS without significant 
toxicity, even for larger tumors.

Several retrospective studies from Japan showed the 
feasibility of PBT for cholangiocarcinoma. In 2014, Makita 
et al. examined the clinical outcomes of PBT in 28 patients 
with advanced unresectable cholangiocarcinoma with 
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median tumor size 5.2 cm (range, 2–17.5 cm) (47). The 
median PBT dose was 68.2 GyE delivered in 2–3.2 Gy 
fractions (median BED10 =75.8 Gy). Although the overall 
1-year LC was 67.7%, results were improved for patients 
who received a BED10 >70 Gy versus BED10 <70 Gy (1-year 
LC 83.1% vs. 22.2%, respectively). Only 1 patient had acute 
grade 3 toxicity (cholangitis) while 3 experienced late grade 
3 toxicity (2 cholangitis, 1 common bile duct stenosis). 
In 2015, Ohkawa et al. published similar outcomes in 20 
patients with unresectable intrahepatic cholangiocarcinoma 
(IHC) prescribed a medial total dose of 72.6 GyE in  
22 fractions (BED10=96.56 Gy) (48). Among the patients 
treated with curative intent (n=12), the LC at 1, 2 and  
3 years was 80%, 60% and 60%, respectively, while OS at 
1, 2 and 3 years was 82%, 61% and 38%. No grade 3 or 
higher toxicity was observed. 

Additional evidence supporting dose escalation for 
cholangiocarcinoma was reported from MD Anderson 
Cancer Center. Tao et al. published a retrospective dose 
response analysis in 79 patients treated with either protons 
or photons for unresectable IHC (24). The median tumor 
size was 7.9 cm (range, 2.2–17 cm) and median follow-up 
was 33 months (range, 11–93 months). The prescription 
dose varied between 35–100 Gy (median 58.05 Gy) in 
3–30 fractions. The prescription dose was the single most 
significant prognostic factor for both LC and OS. Patients 
receiving BED >80.5 Gy had improved 3-year LC (78% vs. 
45%; P=0.04) and 3-year OS (73% vs. 38%; P=0.017). No 
significant treatment-related toxicity was reported. 

The use of ablative dose is also supported by prospective 
data. Hong et al. (36) reported in 2016 outcomes of a 
phase 2 clinical trial of dose-escalated hypofractionated 
PBT for patients with unresectable IHC (n=37), HCC 
(n=44), or mixed IHC/HCC (n=2). Single or multinodular 
tumors (up to three) were permitted. The median tumor 
size among IHC patients was 6 cm (range, 2.2–10.9 cm). 
The prescription dose was 67.5 GyE for peripheral tumors  
(>2 cm from porta hepatis) and 58.05 GyE for central 
tumors, all delivered in 15 fractions. With median follow-up 
of 19.5 months, the 2-year LC among the IHC cohort was 
94.1% and 2-year OS was 46.5%. Grade 3 toxicity occurred 
in only 4 patients (4.8%).

Proton therapy for liver metastases

Although SBRT is well-established for treatment of 
relatively small or limited number of liver metastases, 
prescribing high doses to large tumors while also meeting 

normal organ constraints may not always be feasible 
(5,25,49). PBT may be indicated to treat such patients with 
advanced tumor burden given that there is strong evidence 
that BED10 >100 Gy is required to obtain long-term LC 
of liver metastases (25) . Although the PBT literature for 
liver metastases is limited, the available studies collectively 
demonstrate that ablative PBT can safely achieve durable 
LC even among patients with larger liver metastases (50-56). 

Investigators from University of Tsukuba evaluated PBT 
for liver metastases from various primary tumor sites (54).  
Fukumitsu et al. published a retrospective study of 
133 patients with liver metastases from predominantly 
colorectal, pancreatic, and breast cancers (54). Liver-only 
metastases were present in 61% of patients. The median 
tumor size was 4 cm although tumors up to 18 cm were 
treated. The most frequent dose schedule was 72.6 GyE 
delivered in 22 fractions (BED10=96.56 Gy). LC at 2 and  
5 years was 66% and 53%, and OS rates were 46% and 
25%, respectively. Seven of 8 patients with lesions >10 cm 
had no local recurrence or significant toxicity. More recent 
studies from University of Tsukuba have reported excellent 
LC with minimal toxicity especially for >5 cm metastases 
from gastric (52) and breast (53) cancers.

Investigators from MD Anderson Cancer Center 
evaluated PBT as a salvage therapy for bilateral colorectal 
metastases not amenable to second-stage hepatectomy (55). 
Right hemiliver ablative PBT was delivered to 5 patients 
with a prescription dose of 67.5 GyE in 15 fractions 
(BED10=97.9 Gy), 100 GyE in 25 fractions (BED10=140 Gy),  
or 70 Gy in 28 fractions (BED10=89.6 Gy). All patients 
achieved LC with the exception of one who received a lesser 
BED10 (89.6 Gy). 

In 2017 Hong et al. published results of a phase 1/2 study 
of proton-based SBRT for liver metastases (56). In this 
trial, 89 patients with different primaries, predominantly 
colorectal, were evaluated. Patients had no or limited 
extrahepatic disease. Up to 4 tumors were permitted 
and there was no upper limit on tumor size, but at least  
800 mL of uninvolved liver was required. Median tumor 
size was 2.5 cm (range, 0.5–11.9 cm) and in 23 patients, 
the tumor diameter was at least 6 cm. Median prescribed 
radiation dose was 40 GyE (range, 30–50 GyE) delivered in  
5 fractions (BED10 72 Gy) although the authors acknowledge 
that higher doses could have been prescribed, which likely 
would have improved tumor control. LC rates at 1 and  
3 years were 71.9% and 61.2%. For ≥6 cm tumors 1-year 
LC was 73.9%. Median overall survival was 18.1 months for 
the whole group. There were no grade 3–5 toxicities. 
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Challenges and limitations of liver PBT

There are several important treatment planning and delivery 
concerns that should be considered for any patient receiving 
liver PBT. Although proton beams have a distinct advantage 
of finite range with little to no exit dose beyond the target, 
the exact range of a proton beam is uncertain. This range 
uncertainty is related to inaccuracies in Hounsfield Unit 
value determination obtained from CT simulation scans. 
To address this uncertainty, margin is added to target 
regions to ensure that the proton beam does not terminate 
until it completely traverses the desired target (57).  
As a consequence, high dose conformality is sacrificed to 
enhance precision. 

The range of a proton beam is highly influenced by 
changes in tissue electron density within the beam path. 
Variation in tissue electron density can have dramatic 
effects on proton beams either ranging beyond the target 
and delivering unintended dose to normal tissue or being 
stopped early and not delivering the intended dose to 
the target. In contrast, the same electron density changes 
would have relatively little effect on an X-ray beam. 
Therefore, it is important to consider strategies ensuring 
highly reproducible patient setup, robust treatment 
planning methods such repainting, 4-dimensional robust 
optimization, and selecting beam angles that minimize 
delivering protons through highly variable soft tissue 
regions (e.g., bowel). 

Range uncertainty concerns are further complicated 
by the liver being a moving target, especially because of 
the large difference in lower electron density of air in the 
lung and the higher electron density of the liver. Motion 
management strategies to either temporarily eliminate 
or at least keep respiratory motion to a minimum should 
be strongly considered for treating liver cancers with PBT. 
Respiratory gating began at University of Tsukuba in 1992 
and is still used today (58). Other techniques used to account 
for respiratory motion include abdominal compression, 
breath-hold and 4-dimensional (4D) planning (59). 

The vast majority of PBT outcomes for liver cancers 
have been reported using passive scattering (PS), although 
pencil beam scanning (PBS) is becoming increasingly used. 
Although PBS offers superior dose conformality, it is more 
susceptible to differences in tissue electron density and 
therefore is inherently less robust than PS. Nonetheless, 
robust PBS plans can be achieved provided that motion-
robust planning and motion management techniques are 
used (60,61). In fact, a recent study from Germany showed 

that 4D-optimized PBS plans provided better sparing of 
organs at risk than those created with PS (61). 

Conclusions

The dosimetric advantage of PBT over XRT in sparing 
uninvolved liver from low and moderate doses clearly 
translates into clinically meaningful benefit for some 
patients with liver cancer. PBT for HCC has been evaluated 
over several decades with low rates of toxicity and excellent 
long-term LC even in patients with large tumors. Based 
on these outcomes, PBT receives the highest level of 
support (Group 1 recommendation) in the 2017 ASTRO 
Proton Beam Therapy Model Policy (62). For patients 
with intrahepatic cholangiocarcinoma and liver metastases, 
favorable tumor control, survival, and toxicity outcomes 
have been demonstrated after ablative PBT; however, 
additional research is needed to better understand the 
role of such therapy in the context of other liver-directed 
therapies. 

While the potential benefit from PBT for liver cancers, 
especially HCC, is largely undisputed, there is a lack of 
guidance about optimal patient selection for PBT. All 
patients with liver cancer are not expected to benefit from 
PBT compared to XRT or other liver-directed therapies. 
As such, identifying patient subgroups that are most 
appropriate for PBT should be a priority in future research.
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