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Clinical enthusiasm for proton therapy (PT) is high, 
with an exponential increase in the number of centers 
offering treatment (1). Attraction for this charged particle 
therapy modality stems from the favorable proton dose 
distribution, with low radiation dose absorption on entry 
and maximum radiation deposition at the Bragg peak (2). 
This leads to improved tumor targeting and normal tissue 
sparing and is particularly advantageous for the treatment 
of tumors positioned near crucial structures (3). The 
proton radiation track structure on the nanoscale and hence 
energy deposition differs from that of conventional photon 
radiation therapy (RT), leading to a different biological 
effect. DNA damage generated by particle tracks with 

high linear energy transfer (LET) are thought to be more 
complex and more difficult to repair (4,5). 

The current clinical convention is to use a fixed relative 
biological effectiveness (RBE) value of 1.1 in order to 
correct the physical dose relative to photon therapy (i.e., 
proton radiation is 10% more biologically effective then 
photon radiation) (6). RBE is defined as the ratio of 
physical doses that cause the same biological effect and is 
calculated as RBE =Dcontrol ⁄Dtest. In this equation Dcontrol is the 
physical dose of a reference radiation modality (X-rays) 
and Dtest is the physical dose of the radiation modality being 
investigated (protons).

In recent years, concerns about the potential side effects 
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of PT have emerged. Various studies (7-17) and review 
articles (18-22) have sought to better quantify the RBE 
of PT and shine some light on the complexity of this 
problem. In a 2014 review article, Paganetti showed the 
average proton RBE values across a spread out Bragg peak 
(SOBP) range from 0.9–1.7 (19). A large body of in-vitro 
evidence for the variation in PT RBE has been published 
and collected in the online, open-access Particle Irradiation 
Data Ensemble (PIDE) database (23). 

The use of a constant RBE disregards the experimental 
evidence demonstrat ing that  RBE has a  complex 
dependency on dose per fraction, tissue type, LET, and 
biological endpoint (4). This translates to an uncertainty in 
the biological effective dose delivered to the patient, more 
so in the regions surrounding the Bragg peak where the 
RBE is hypothesized to be significantly higher, and may 
lead to substantial dose increases to normal tissue.

Based on the in vitro data, many RBE models that relate 
LET and RBE have been developed (24-30). Figure 1 
represents a simple linear model between RBE and LET 
(24,31). Most of the models have similar features, with the 
major difference in the magnitude of the RBE at the distal 
falloff. One major item the in-vitro studies do not include 

is the effect of fractionation. There is evidence to suggest 
that with fractionation, the RBE of the high LET region 
may be amplified (32). Figure 2 shows that potentially high 
biological dose can exist in critical normal tissue and with 
slight modification to the overall dose distribution; these 
biological hot spots can be reduced.

Reduction in biologic hot spots of non-target tissue is 
paramount in proton RT planning as the primary benefit of 
proton RT is a reduction in organ at risk (OAR) irradiation. 
New and emerging clinical data is in support of variable 
proton biological effectiveness and demonstrate late toxicity, 
presumably associated with high biological dose, to OAR 
(33-39). In some situations, such as pediatric brain cancer, 
this has prompted expert working groups for consensus 
guidelines on proton planning to account for this (40-42). 

With conventional RT planning, target expansions are 
created to account for subclinical disease, target motion, 
and variations in treatment set up. Often such expansions 
may result in target volumes extending to or within adjacent 
organs. The Bragg peak may in fact be within an OAR, 
with a higher biologic dose in OAR than tumor. This is 
highlighted in several examples of malignancies within the 
gastrointestinal (GI) tract.

Figure 1 The variability  of the biological dose and LET for a simple homogeneous proton dose distribution. (A) Physical proton dose 
with the constant 1.1 RBE included; (B) biological dose derived from a linear equation relating RBE to LET (26,30); (C) LET distribution;  
(D,E) dose line profile with the red corresponding to the physical dose, green the biological dose, and blue the LET. Note the units for LET 
in this plot is (keV/μm)/10. i.e., 100=10 keV/μm. LET, linear energy transfer; RBE, relative biological effectiveness. 
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For example, as illustrated in Figure 2, several cardiac 
structures, including the left atrium, left ventricle, and 
coronary arteries, may be situated just anterior to or within 
the radiation target volume for a distal esophageal cancer. 
Without considering the biologic effective dose during 
proton planning, proton RT may increase toxic effects to 
the heart (Figure 2B). Thus, despite reduction in integral 
heart dose, which is one of the primary considerations of 
PT for esophagus cancer, a proton plan not accounting 
for biologic effective dose may increase toxicity. Predictive 
modeling of biologic dose builds up and focal reduction 
in physical dose or reduction in the overall dose and 
fractionation are methods to reduce potential toxicity from 
biologic hotspots.

Similar to esophagus cancer, most abdominal cancers 

are situated in tight proximity to OAR. For cancers of the 
pancreas head, the duodenum, large bowel and pylorus of 
the stomach are adjacent OAR and may be located within 
the distal Bragg peak when designing a proton plan with 
posterior fields (Figure 3). Increase in biological effective 
dose in these organs may result in a higher risk of radiation 
enteritis, ulceration and/or hemorrhage, and possible 
perforation. In most cases, this can be accounted for with 
slight modifications to the physical dose or treating to a 
lower total physical dose. In some cases, it is beneficial to 
add an additional field, despite increasing integral body 
dose, to decrease the overall biological effective dose.

In the management of anal cancer, PT may reduce 
substantial dose to adjacent perineum, genitals, and groin 
thereby reducing risk such as dermatitis and long-term 

Figure 2 An intensity modulated proton plan treating a distal esophagus cancer using two posterior oblique fields. (A) Monte Carlo (MCD) 
physical dose wash of the target (red contour); (B) predicted biologic effective dose (MCB). Notice the enhanced buildup of dose between 
110% to 120% of prescription dose (red-yellow) beyond the target and into the heart (arrows). 

Figure 3 An intensity modulated proton plan treating a pancreas head cancer with a two posterior oblique field approach. (A) Monte Carlo 
physical dose (MCD) wash; (B) predicted Monte Carlo based biologic effective dose (MCB). Notice the enhanced buildup of dose between 
110% to 120% of prescription dose (red-yellow) beyond the target and into the transverse colon and pylorus (arrows).
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sexual dysfunction. Figure 4 shows a typical proton plan 
with bilateral posterior oblique and anterior fields to 
provide dose to the pelvis and inguinal lymph nodes. The 
end of range biologic dose builds up in the anterior bladder, 
urethra and obturator tissue. Thus, while sparing perineal 
tissue and genitalia, the enhanced biologic dose may 
increase urethral or other genitourinary toxicity relative to 
other forms of RT. 

Certain planning techniques are often useful to control 
OAR position or limit target motion and volume. Often 
these are simple, reproducible measures such as breath 
hold, controlled urination and bladder filling, defecation, or 
fasting before treatment. A patient’s nutritional status may 
change during the course of treatment resulting in external 
or internal contour changes and impact on the position of 
the distal Bragg peak. Additional imaging and verification of 
proton dose is critical to ensure proper delivery of protons 
during the course of treatment with adaptive re-planning as 
needed. 

Overall, PT has promise to treat many cancer sites with 
similar efficacy as conventional RT but with fewer acute 
and late toxicities. However, further knowledge of biologic 
effective dose and its impact on both cancer and adjacent 
OAR is paramount for effective and safe treatment of patients 
with PT. With greater understanding of the biological effect, 
there may be a future role for purposefully increasing this 
effect within the target for radiation resistant tumors.
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