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Introduction

Colorectal cancer represents the second leading cause 
of tumor-related deaths in the United States (1,2). Over 
the last decades, implementation of organized screening 
programs in the asymptomatic population have substantially 
decreased CRC incidence and overall mortality, by detecting 
cancer in its early stage (3,4). Nonetheless, ~22% of patients 
with CRC are still diagnosed with a metastatic condition 
(i.e., stage IV), or progress to late stage disease (5,6). 
Remarkable advances in the development of anti-cancer 
therapies have spawned multiple therapeutic strategies 

for the treatment of mCRC. First-line therapies involve 
the combination of 5-fluorouracil (FU)/leucovorin (LV) 
and oxaliplatin (FOLFOX) or irinotecan (FOLFIRI) with 
monoclonal antibodies targeting the vascular endothelial 
growth factor (VEGF) or epidermal growth factor receptor 
(EGFR) (7). Despite these advances, the 5-year survival rate 
of patients with mCRC continues to hover below 15% and 
new therapeutic strategies are therefore urgently needed (8). 

In initial clinical studies including unselected groups of 
CRC patients, immune checkpoint inhibitors exhibited very 
limited anti-tumor activity. Closer evaluations underlined 
a small subset of patients experiencing long-term cancer 
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remissions when treated with anti-PD1 antibodies (9). 
Genetic analyses revealed that these long-term survivors had 
highly mutated tumors (10,11), characterized by deficient 
mismatch repair (dMMR) and microsatellite instability-high 
(MSI-H) (8,12-14). These features are typically associated 
with cancer immunogenicity, presence of a substantial 
number of tumor-infiltrating lymphocytes (TILs) (15),  
and upregulation of immunological checkpoints. On 
the other hand, immune checkpoint inhibitors are not 
efficacious against MMR-proficient (pMMR) tumors (16), 
which account for the majority of the diagnosed mCRC. As 
these setbacks have been associated with immunologically 
poor tumors (8), strategies aiming at boosting cell-based 
immunity may be beneficial for this large proportion of 
patients with pMMR tumors. 

In this study, we explored the antibody-based delivery 
of IL12 to the tumor microenvironment as a strategy to 
increase the intratumoral density of effector cells. We 
generated a novel fusion protein consisting of murine 
interleukin-12 sequentially fused with a peptidic linker to the 
Sm3E antibody in tandem diabody format (Sm3E-mIL12).  
Murine IL12 was used as surrogate therapeutic payload 
since human IL12 does not cross-react with the cognate 
murine IL12 receptor. The Sm3E antibody specifically 
targets the carcinoembryonic antigen (also called CEA 
or CEACAM5), a validated tumor-associated protein of 
gastrointestinal carcinomas (17,18). In healthy individuals, 
CEA’s expression is restricted to the apical surface of mature 
enterocytes (19), making the antigen virtually inaccessible 
from systemic circulation. However, when these epithelial 
cells turn malignant, the polarized expression of CEA breaks 
down, exposing the antigen to the vascular and lymphatic 
systems (20). As a result, serum levels of soluble CEA are 
routinely monitored to assess treatment response or disease 
recurrence in patients with CRC (21,22). Moreover, the 
selective accessibility in tumors of the membrane-bound 
CEA, make this protein an ideal target for monoclonal 
antibody-based therapies (23-25). In this study, we used a 
clinically translatable CEA-expressing tumor model (C51-
CEA) previously established in our group, in order to 
investigate the anti-cancer potential of Sm3E-mIL12 in an 
immunocompetent setting (26). 

The novel Sm3E-mIL12 immunocytokine retained a high 
binding affinity to the cognate antigen, and was potently 
active in vitro in terms of IFN-γ stimulation. Furthermore, 
the fusion protein was able to selectively localize in murine 
CEA subcutaneous tumors, while sparing healthy organs. 
Sm3E-mIL12 led to durable cancer eradications in 60% of 

the treated BALB/c mice, bearing established C51-CEA 
colon carcinomas. Microscopic analysis of the neoplastic 
masses revealed that the density of effector TILs was 
substantially increased after Sm3E-mIL12 treatment. The 
results of our study provide a rationale for the targeted 
delivery of IL12 for the treatment of pMMR colorectal 
cancer, possibly in combination with immune checkpoint 
inhibitors.

Material and methods

Cell lines, animals and tumor models

CHO-S (Invitrogen; CVCL_7183), and C51 colon 
carcinoma cells (kindly provided by Dr. M.P. Colombo, 
Department of Experimental Oncology, Istituto Nazionale 
Per Lo Studio E La Cura Dei Tumori, Milan, Italy) 
were expanded and stored as cryopreserved aliquots 
in liquid nitrogen. Cells were grown according to the 
manufacturer’s protocol and kept in culture for no 
longer than 14 passages. Authentication of the cell 
lines including post-freeze stability, growth properties 
and morphology, test for mycoplasma contamination, 
isoenzyme assay,  and steril ity were performed by 
the cell bank before shipment. C51 cells were stably 
transfected with CEA as previously described (26).  
All experiments were performed with mycoplasma-free 
cells. Seven to eight-week-old female BALB/c mice were 
obtained from Janvier; 2–4×106 cells (C51 colon carcinoma), 
were implanted subcutaneously in the left flank of the mice. 

Cloning, expression and in vitro protein characterization.

The format chosen for Sm3E-mIL12 was inspired by 
previous work in our laboratory with F8 and L19 antibody 
derivatives (27). The sequence of the gene is reported 
in Figure S1. The insert was cloned into NheI/NotI of 
pcDNA3.1 (+) (Invitrogen), allowing the expression in 
mammalian cells. Sm3E-mIL12 was expressed using 
transient gene expression in Chinese Hamster Ovary 
(CHO) cells, using previously described procedures 
(28,29). The product was purified from the cell culture 
medium by affinity chromatography using a protein A 
affinity column and analyzed by SDS-PAGE, size exclusion 
chromatography (Superdex200 10/300GL, Healthcare), 
enzyme-linked immunosorbent assay (ELISA), flow 
cytometry (2L-Cytoflex, Beckman-Coulter), and surface 
plasmon resonance analysis (Biacore S200, GE Healthcare) 
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on an CEA antigen-coated sensor chip (Sensor Chip SA, 
GE Healthcare; 10231984), following previously described 
protocols (26).

For the ELISA assay, soluble CEA was coated onto Nunc 
MaxiSorpTM wells (ThermoFisher, 44-2404-21). Binding 
was tested using Sm3E-mIL12, IgG2a(Sm3E) or KSF-
mIL12 (KSF is an antibody specific to hen-egg lysozyme, 
used as negative control), which were subsequently detected 
with protein L-HRP (ThermoFisher, 32420). Positive 
binding was eventually confirmed through the reaction of 
the peroxidase with the TMB-Blotting Substrate Solution. 
Samples were analysed with a SpectraMax® Paradigm 
multimode detection platform (Molecular Devices) at 
450 nm, and results are shown in terms of fold change in 
absorbance between Sm3E-mIL12 or IgG2a(Sm3E), as 
compared to the negative control.

Flow cytometry analysis was performed on C51.wt or 
C51-CEA cell. Proteins were labelled with fluorescein 
5-isothiocyanate (FITC, F7250 Sigma) following the 
manufacturer’s protocol. Cells were resuspended at  
3 mio/mL in FACS buffer (2% BSA, 2 mM EDTA in PBS) 
and membrane-bound CEA was detected using FITC-
labelled Sm3E-mIL12 or KSF-mIL12 at 1 µg/mL. Data 
were analysed using a 2L-CytoFlex flow cytometer and 
subsequently with FlowJo 9 software suite (FlowJo LLC).

Protein stability assay

Sm3E-mIL12 was subjected to a protein stability assay in 
mouse serum (Sigma, M5905). The protein was incubated 
for 72 h at room temperature at 40 µg/mL (concentration at 
t0 upon intravenous injection, considering a dose of 60 µg).  
Sm3E-mIL12 diluted in PBS (40 µg/mL) was used as 
positive control, while mouse serum was as negative control 
for the experiment. Stability was analysed in terms of 
binding in ELISA, on CEA-coated Nunc MaxiSorpTM wells. 
The fusion protein was detected with goat anti-murine 
IL12 p70 (ThermoFisher) and rabbit anti-goat HRP (Dako) 
antibodies. The results are shown in Figure S2.

Bioactivity assay

Sm3E-mIL12, and recombinant mIL12 (BioLegend) were 
subjected to IFN-γ release assay. Lymphocytes were isolated 
from freshly dissected tumor-draining lymphnodes of 
saline treated 129/SvEv mice, bearing F9 teratocarcinoma. 
After red blood cell lysis, lymphocytes were resuspended 
at 3×106 cells/mL in RPMI-1640 (Gibco; 21875-034) 

supplemented with antibiotic-antimycotic (Gibco; 15240-
062), 10% Fetal Bovine Serum (Gibco; 10270-106),  
50 µM β-mercaptoethanol (Sigma Aldrich). 100 µL of the 
cell suspension was incubated for 4 days at 37 ℃ and 5% 
CO2 with a serial dilution of the IL12 derivatives. IFN-γ 
levels from cultured supernatants were analysed by enzyme-
linked immunosorbent assay (BioLegend; 430804) following 
the manufacturer’s protocol.

Ex vivo biodistribution analysis

The tumor homing ability of Sm3E-mIL12 was assessed 
by an ex vivo biodistribution study; 200 µg of FITC-
labelled Sm3E-mIL12 or KSF-mIL12 were injected into 
the lateral tail vein of BALB/c mice (Janvier) bearing C51-
CEA tumors. Mice were sacrificed 24h after the injection. 
Organs were excised and embedded in cryoembedding 
medium (ThermoScientific) from which cryostat tissue 
sections (8–10 µm thickness) were made. FITC signal was 
amplified using rabbit anti-FITC (Bio-Rad, 4510-7804) and 
goat anti-rabbit AlexaFluor488 (Invitrogen, A1108). Signal 
amplification was required for the analysis with the wide 
field Axioskop2 mot plus microscope (Zeiss). For vascular 
staining, goat anti-CD31 (R&D System, AF3628) and anti-
goat AlexaFluor594 (Invitrogen, A11058) antibodies were 
used. The quantification of tumor and organs uptake of the 
products, using Image J software, is depicted in Figure S3.

Therapy studies 

Mice were monitored daily. Tumor volume was measured 
using a caliper (volume = length × width2 ×0.5). Mice were 
intravenously injected with 20, 45 and 60 µg of Sm3E-
mIL12, and 60 µg KSF-mIL12, every second day for three 
times. The therapeutic agent was diluted in Phosphate Buffer 
Saline (PBS; Gibco). Animals were euthanized when tumors 
reached a maximum of 1,500 mm3 (n=5 mice per group).

Analysis of tumor-infiltrating lymphocytes (TILs)

To analyse TILs, mice were injected intravenously three 
times, every second day, with 60 µg Sm3E-mIL12, 60 µg 
KSF-mIL12 or saline. Treated mice were euthanised 24 h 
after the first and third injection. Tumors were excised and 
embedded in cryoembedding medium (ThermoScientific) 
and  the  cor re spond ing  c ryos t a t  t i s sue  s ec t ions  
(8–10 µm thickness) were stained using the following 
primary antibodies: goat anti-CD31 (R&D System; 
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AF3628), rabbit anti-Foxp3 (Invitrogen; 7000914), rat 
anti-NKp46 antibody (BioLegend; 137602), rabbit anti-
CD4 (Sino Biological; 50134-R001), rabbit anti-CD8 
(Sino Biological; 50389-R208). Primary antibodies were 
detected with donkey anti-rabbit AlexaFluor488 (Invitrogen; 
A11008) or donkey anti-rat AlexaFluor488 (Invitrogen; 
A21208) and donkey anti-goat AlexaFluor594 (Invitrogen; 
A21209) or donkey anti-goat AlexaFluor488 (Invitrogen; 
A11055). Slides were mounted with fluorescent mounting 
medium (Dako Agilent) and analyzed with Nikon Eclipse 
Ti-E fully-integrated, motorized inverted microscope 
(Tokyo, Japan).

Results 

Cloning and characterization of the Sm3E-mIL12 fusion 
protein

Figure 1A shows a schematic representation of the novel 
Sm3E-mIL12 immunocytokine. The p40 and p35 subunits 
of murine IL12 have been sequentially fused to the N’-
terminal site of the Sm3E antibody, cloned in tandem 
diabody format. The product was purified through protein 
A affinity chromatography, and impurities were analysed 
by SDS-PAGE (Figure 1B) followed by gel filtration 
chromatography (Figure 1C).  Sm3E-mIL12 bound 

Figure 1 In vitro characterization of Sm3E-mIL12. (A) Schematic representation of Sm3E-mIL12. The fusion protein consists of the 
murine heterodimeric IL12 followed by the Sm3E antibody in tandem diabody format. (B and C) SDS-PAGE in non-reducing (NR) and 
reducing (R) conditions, and size exclusion chromatography of Sm3E-mIL12. L = Ladder. (D) ELISA performed on CEA-coated wells. 
Results show fold change in absorbance (450 nm) of Sm3E-mIL12 and IgG2a (Sm3E) compared to the control antibody (KSF-mIL12). (E) 
Surface Plasmon Resonance analysis of Sm3E-mIL12 at 125, 250 and 500 nM, on CEA-coated sensor chip. (F) Flow cytometry of Sm3E-
mIL12 showing selective binding to C51-CEA cells. (G) IFN-γ release assay by Sm3E-mIL12 and recombinant murine IL12 in 129/SvEv 
mice’s tumor-draining lymph nodes. 
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efficiently to both soluble and membrane-bound CEA 
(C51-CEA), as evidenced by ELISA, Surface Plasmon 
Resonance and Flow Cytometry binding studies (Figure 
1D,E,F). The ability of the fusion protein to induce IFN-γ 
production was confirmed in a cell-based assay using murine 
IL12 as reference, yielding with a EC50 values of 1.583 and 
1.753 pM, respectively (Figure 1G). 

Biodistribution study of FITC-labelled Sm3E-mIL12 and 
KSF-mIL12

The ability of Sm3E-mIL12 to localize at the tumor site 
was assessed through an in vivo biodistribution study in 
immunocompetent BALB/c mice, bearing C51-CEA 
lesions (saline treatment was used as negative control). 
24 h after intravenous administration, the fusion proteins 
were detected ex vivo by immunofluorescent staining 
(Figure 2). While the two products were undetectable in 
healthy organs, the tumor uptake was substantially higher 
when IL12 was fused to the tumor-targeting antibody (i.e., 
Sm3E-mIL12) as compared to KSF-mIL12. Moreover, as 
evidenced by a protein stability assay, Sm3E-mIL12 retained 
binding to the cognate antigen after being incubated for  
72 h in mouse serum (Figure S2). 

Therapy experiments

In a preliminary dose escalation experiment conducted in 
BALB/c mice bearing C51-CEA subcutaneous tumors, 
Sm3E-mIL12 was well tolerated up to 60 µg, as evidenced 
by the absence of body weight loss (Figure 3A). Moreover, a 
cumulative dose of 180 µg exerted a potent anti-cancer cancer 
effect on small tumors. In a therapy study performed on 
mice carrying well established subcutaneous lesions, Sm3E-
mIL12 exerted a potent tumor-growth inhibition leading to 
durable complete responses in 60% of the treated animals. 
By contrast, the untargeted IL12 (i.e., KSF-mIL12) did not 
show a comparable therapeutic performance (Figure 3B). 

Microscopic analysis of tumor-infiltrating lymphocytes

In order to gain insights on the mechanism of action of 
Sm3E-mIL12, we analysed the immune cell infiltrate 
of C51-CEA tumors, excised 24 h after the first and last 
injection of the immunocytokine (i.e., 1 and 5 days after 
the first injection). A progressive infiltration of NK cells, 
CD4+ and CD8+ T cells within the tumor mass could be 
observed along with Sm3E-mIL12 treatment (Figure 3C). 
By contrast, the number of regulatory T cells remained 

Figure 2 Biodistribution analysis of Sm3E-mIL12 and KSF-mIL12. Ex vivo microscopic analysis performed on tumor and organ sections of 
mice bearing C51-CEA subcutaneous lesions. Animals were euthanized 24 h after a single injection of Saline (negative control), 200 µg of 
FITC-labelled Sm3E-mIL12 or 200 µg of FITC-labelled KSF-mIL12.
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Figure 3 Therapy study and microscopic analysis of tumor-infiltrating lymphocytes. (A) Dose escalation study of Sm3E-mIL12 in mice 
bearing C51-CEA lesions intravenously injected every second day (arrows) (B) Therapeutic performance of Saline, 60 µg of KSF-mIL12 
and 60 µg of Sm3E-mIL12 in C51-CEA-bearing BALB/c mice, injected every second day (arrows). Treatment started when subcutaneous 
tumors reached an approximate size of 100 mm3. Statistical differences were assessed between KSF-mIL12 (non-targeted product) and 
Sm3E-mIL12 (targeted product). ****, P<0.0001 (regular two-way ANOVA test with Bonferroni post-test). Data represent mean tumor 
volume and body weight change (± SEM). CR, complete response. n=5 mice per group. (C) ex vivo immunofluorescence analysis on C51-
CEA sections, 24 h after the first and third injection(s) of Saline, 60 µg of KSF-mIL12 or 60 µg of Sm3E-mIL12. Markers specific for 
apoptotic cells (caspase-3), NK cells (NKp46), Tregs (Foxp3), CD4+ T cells (CD4), CD8+ T cells (CD8) were used (green). Blood vessels 
were stained with an anti-CD31 antibody (red). 20× magnification; scale bars =100 µm.
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unchanged. 

Discussion

In  th i s  Communica t ion ,  we  have  descr ibed  the 
characterization of a novel immunocytokine consisting 
of murine interleukin-12 fused to the tumor-targeted 
Sm3E antibody (Sm3E-mIL12) (Figure 1). Sm3E is a 
humanized immunoglobulin with high binding affinity to 
both soluble and cell membrane-bound CEA (Kd =20 pM). 
Sm3E-mIL12 efficiently localized at the tumor site and 
not in healthy organs, thus potentially reducing systemic 
toxicity (Figure 2). Sm3E-mIL12 led to a complete tumor 
eradication 60% of the treated mice, while murine IL12 
fused to KSF (a control antibody specific to hen egg 
lysozyme) induced only a transient and not significant 
inhibition of the tumor growth (Figure 3B). The anti-cancer 
activity of Sm3E-m-IL12 correlated with a progressive 
increase of CD4+, CD8+ T cells and NK cells within the 
tumor mass, consistent with the regression of the neoplastic 
lesions (Figure 3C). The increase of effector cells might 
derive from an expansion of pre-existent tumor-resident 
lymphocytes, or from newly infiltrating leukocytes attracted 
at the site of disease by chemokine gradients. Previous work 
of our group showed a dramatic elevation of IFN-inducible 
protein 10 (IP10) and of monokine-induced by IFNγ (MIG) 
in cancer lysates upon treatment with a tumor-targeted 
IL12 (30). Furthermore, depletion experiments have shown 
that the presence of IP10 and MIG is crucial, at least in 
mouse models, to achieve a robust T cell infiltration within 
the tumor mass (31). 

CEA is a validated tumor-associated antigen discovered 
by Phil Gold and Samuel Freeman in 1965 (32). In 
healthy individuals, the expression of CEA is restricted 
to the apical surface of polarized epithelial cells across 
the gastrointestinal tract (21). Therefore, the membrane-
bound antigen is not accessible to therapeutic proteins from 
systemic circulation. However, when the epithelial cells 
become malignant, CEA can be found around the whole 
cell surface as a result of tumor cells differentiation (21). 
The selective accessibility of CEA in cancer patients cancer 
has made it an ideal target for both imaging and therapeutic 
applications (24,25). 

At present, systemic therapeutic strategies are not 
efficacious in controlling mCRC, except for a small subset 
of patients with highly mutated cancers (i.e., dMMR-
MSI-H tumors) that respond well to immune checkpoint 
inhibitors (9). The high response rate to immunotherapy 

observed in this population has been correlated with the 
presence of a substantial number of TILs (33). However, 
the majority of mCRC have a pMMR phenotype (~85%) 
characterized by low immunogenicity, few TILs, and are 
consequently irresponsive to immunotherapy. It is now clear 
that the presence of pre-existent tumor-specific lymphocytes 
represents a crucial biomarker of responsiveness to anti-
PD1 treatments (34-36). Beyond immune checkpoint 
inhibitors, bispecific antibodies are currently being 
investigated in pMMR CRC (37). Cibisatamab, a bispecific 
antibody which bridges CEA+ and CD3+ cells, showed 
promising anti-cancer activity in combination with 
Tecentriq® (atezolizumab) (NCT02650713) (38,39). In 
principle, an immunocytokines directed to a tumor cell 
membrane antigen may be equivalent to a bispecific entity, 
creating an immunological synapse between the cancer cell 
and suitable leukocytes expressing the cognate cytokine 
receptors (e.g., T and NK cells). 

IL12 is a strong modulator of the immune system which 
boosts the activity of T cells and NK cells. However, 
recombinant IL12 induces life threatening side-effects at 
really low doses (i.e., 500 ng/kg in human patients), thus 
preventing dose escalation to therapeutically effective 
regimens (40,41). The fusion of IL12 to the tumor-targeting 
Sm3E antibody provides a strategy to reduce exposure of 
the pro-inflammatory cytokine to healthy organs, while 
enhancing activity at the site of disease. In this study, the 
antibody-based delivery of IL12 to the neoplastic mass has 
shown to strongly enhance the number of TILs. Taken 
together, our data suggest that Sm3E-IL12 may be a suitable 
product to combine with immune checkpoint inhibitors for 
the treatment of pMMR which lack of effector T cells.
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Supplementary

MWELEKDVYVVEVDWTPDAPGETVNLTCDTPEEDDITWTSDQRHGVIGSGKTLTITVKEFLDAGQYTCHKGGETLSHSHLLLHKKENGIWSTEIL

KNFKNKTFLKCEAPNYSGRFTCSWLVQRNMDLKFNIKSSSSSPDSRAVTCGMASLSAEKVTLDQRDYEKYSVSCQEDVTCPTAEETLPIELALE

ARQQNKYENYSTSFFIRDIIKPDPPKNLQMRPLKNSQVEVSWEYPDSWSTPHSYFSLKFFVRIQRKKEKMKETEEGCNQKGAFLVERTSTEVQC

KGGNVCVQAQDRYYNSSCSKWACVPCRVRSGGGGSGGGGSGGGGSRVIPVSGPARCLSQSRNLLKTTDDMVKTAREKLKHYSCTAEDIDH

EDITRDQTSTLKTCLPLELHKNESCLATRETSSTTRGSCLPPQKTSLMMTLCLGSIYEDLKMYQTEFQAINAALQNHNHQQIILDKGMLVAIDELM

QSLNHNGETLRQKPPVGEADPYRVKMKLCILLHAFSTRVVTINRVMGYLSSAGSADGQVKLEQSGAEVVKPGASVKLSCKASGFNIKDSYMH

WLRQGPGQRLEWIGWIDPENGDTEYAPKFQGKATFTTDTSANTAYLGLSSLRPEDTAVYYCNEGTPTGPYYFDYWGQGTLVTVSSGGSGGEN

VLTQSPSSMSVSVGDRVTIACSASSSVPYMHWLQQKPGKSPKLLIYLTSNLASGVPSRFSGSGSGTDYSLTISSVQPEDAATYYCQQRSSYPLT

FGGGTKLEIKSSSSGSSSSGSSSSGQVKLEQSGAEVVKPGASVKLSCKASGFNIKDSYMHWLRQGPGQRLEWIGWIDPENGDTEYAPKFQGK

ATFTTDTSANTAYLGLSSLRPEDTAVYYCNEGTPTGPYYFDYWGQGTLVTVSSGGSGGENVLTQSPSSMSVSVGDRVTIACSASSSVPYMHWL

QQKPGKSPKLLIYLTSNLASGVPSRFSGSGSGTDYSLTISSVQPEDAATYYCQQRSSYPLTFGGGTKLEIK

Figure S1 Protein sequence of Sm3E-mIL12.

Figure S2 Sm3E-mIL12 stability assay in mouse serum. The protein was incubated for 72 h at room temperature at 40 µg/mL (red). Sm3E-
mIL12 diluted in PBS (40 µg/mL) was used as positive control (blue), while mouse serum was used as negative control (green). Stability was 
analysed in terms of binding in ELISA, on CEA-coated Nunc MaxiSorpTM wells. The fusion protein was detected with goat anti-murine 
IL12 p70 and rabbit anti-goat HRP antibodies.

Figure S3 Quantification of Sm3E-mIL12 and KSF-mIL12 uptake in the tumor and in normal organs using Image J software. Results are 
showed in terms of fold change in uptake, as compared the Saline group.


