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Introduction

Despite the adoption of widespread screening efforts, 
a significant fraction of the 136,830 patients diagnosed 
with colon or rectal cancer will ultimately succumb to 
advanced disease (1). Indeed, colorectal cancer (CRC) is the 
second leading cause of cancer death in the United States, 
accounting for an estimated 50,310 deaths in 2014 (1). 
Over the past several decades, there have been a number of 
changes in the treatment options for patients with advanced 
CRC that include the incorporation of new drugs as well 
as the recognition of the benefit of surgical resection for 
selected patients with metastatic disease. 

The first drug to demonstrate activity for the treatment 
of advanced CRC was 5-fluorouracil (5-FU). Initial efforts 
sought to optimize the dose and schedule of this agent while 
demonstrating the benefit of the addition of leucovorin. Over 
the past couple of decades, two additional cytotoxic agents 
have been added to the therapeutic arsenal for the treatment 
of advanced CRC. Irinotecan is an intravenous camptothecin 
analog that was initially developed for advanced CRC that 
was refractory to leucovorin-modulated 5-FU and is now 
incorporated into multiple lines of therapy (2,3). Oxaliplatin 
is a platinum derivative that has minimal single-agent activity 
in advanced CRC. However, the drug has substantial activity 
when combined with a fluoropyrimidine (4). 
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In recent years, two classes of biologic agents have been 
developed to advance outcomes in this disease by targeting 
vascular endothelial growth factor (VEGF) and epidermal 
growth factor receptor (EGFR) signaling respectively. 
Bevacizumab is a monoclonal antibody that binds to 
circulating VEGF isoform A with activity in multiple lines 
of treatment in advanced CRC (5). Ziv-aflibercept is a 
related agent that binds to multiple VEGF isoforms, and 
is now approved for use in the second-line in combination 
with irinotecan-based chemotherapy (6). Regorafenib is 
an oral multi-kinase inhibitor with anti-VEGF as well as 
potential anti-proliferative effect (7). While not solely an 
anti-VEGF agent, it perhaps can best be categorized as 
an extension of the anti-angiogenic paradigm in CRC. 
Cetuximab is a recombinant mouse/human monoclonal 
antibody that binds to the EGFR and was the first EGFR-
targeting agent to demonstrate activity in irinotecan- 
and oxaliplatin-refractory CRC (8). Its use has now been 
expanded to multiple lines of therapy (9-11). Panitumumab 
is a very similar human monoclonal antibody targeting 
EGFR that has comparable activity to cetuximab as a single 
agent and in combination with chemotherapy (12,13). 

While the application of each of these new treatments 
for advanced CRC has pushed the median survival to 
approximately 30 months or greater in recent clinical trials 
(14,15), each individual agent is not universally effective and 
is associated with nontrivial toxicity. Therefore, significant 
recent efforts have been made to understand both factors 
associated with survival regardless of therapy (prognostic 
biomarkers) and factors that identify patients more or less 
likely to benefit from a specific intervention (predictive 
biomarkers). In this review, we will discuss the current 
status of molecular biomarkers to select chemotherapy, 
anti-EGFR agents, and anti-VEGF agents in advanced 
CRC focusing on clinical studies and with a look forward to 
emerging and future developments.

Molecular tests to individualize cytotoxic 
chemotherapy

Uridine diphosphate glucuronosyltransferase 1A1 
(UGT1A1)

UGT1A1 is the key enzyme for inactivation of the active 
metabolite of irinotecan, SN-38 through glucuronidation. 
The UGT1A1*28 polymorphism is characterized by an 
extra TA repeat in the gene’s promoter region, and is 
associated with reduced protein expression and therefore 
reduced glucuronidation. The presence of two UGT1A1*28 

alleles underlies Gilbert’s syndrome. Initial studies 
demonstrated that toxicity, particularly hematologic toxicity, 
was significantly increased in patients with one or two 
alleles of UGT1A1*28 (16). This resulted in its notation 
in the prescribing information; however, management 
strategies for patients homozygous or heterozygous 
for this allele have not been standardized. In a study of  
250 Caucasian patients with advanced CRC treated with the 
FOLFIRI (5-FU, leucovorin, irinotecan) regimen, including 
22 (8.8%) homozygous and 114 (45.6%) heterozygous for 
UGT1A1*28, this marker was associated with an increased 
risk of hematologic toxicity in the first cycle but without 
statistically significant effect in subsequent cycles (17).  
A recent phase I study used flat doses of irinotecan to 
establish the maximum tolerated dose according to 
UGT1A1 genotype for an every 3-week regimen (18). In 
addition to the established association of UGT1A1*28 
polymorphisms with irinotecan-associated toxicity, it has 
also been hypothesized that the reduced rate of elimination 
may actually be a predictive marker for response. Indeed, 
in the above-mentioned study of patients with CRC treated 
with FOLFIRI, response was increased in the UGT1A1*28 
homozygous group (17). Nonetheless, this did not translate 
into a statistically significant increase in survival. While it 
is clear that genetic heterogeneity at UGT1A1 is associated 
with altered metabolism of SN-38, other drug-metabolizing 
enzymes influence the final toxicity and efficacy outcomes. 
The optimal management of irinotecan based on UGT1A1 
status therefore remains incompletely defined (19). 

Excision repair and cross-complementation group 1 
(ERCC1)

The ERCC1 protein is a key component of the nucleotide 
excision repair complex, which is a primary method of repair of 
platinum-DNA adducts. Therefore, it has been hypothesized 
that low ERCC1 expression may be associated with 
sensitivity to oxaliplatin-based chemotherapy in cancer (20).  
An initial study of 50 patients treated with an oxaliplatin and 
5-FU combination regimen suggested that a group of patients 
with higher RNA expression of ERCC1 had a 4.8-fold  
higher risk of death (95% CI, 2.09-15.88) compared to those 
with lower expression (21). In a 91-patient phase I study of 
escalating doses of capecitabine with oxaliplatin, ERCC1 
RNA expression in a metastatic site was associated with 
time to treatment failure (22). Kim et al. studied expression 
of ERCC1 by immunohistochemistry (IHC) in 70 patients 
with advanced CRC treated with an oxaliplatin-containing 
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regimen (22). Survival was longer in those who did not have 
detectable ERCC1 expression according to this method 
(P=0.0474). However, this was not confirmed in a much 
larger analysis (n=1,197) of the MRC FOCUS trial, which 
failed to confirm any predictive benefit of ERCC1 IHC (23).  
Questions have been raised about the specificity of the 
antibody used to assess ERCC1 and about the concordance 
of ERCC1 expression in the primary and metastatic tumor 
tissue (24,25). Thus, the optimal method of assessment of 
assessment of ERCC1 status is not yet clearly defined, as 
different methods may give different results (26). 

A large number of studies have evaluated the predictive 
utility of a polymorphism in ERCC1 (ERCC1-118 C>T) 
to predict outcomes of patients treated with oxaliplatin. 
While several studies have suggested that the T containing 
genotype is associated with better response and/or survival 
(27,28), several others have come to the exact opposite 
conclusion (29-31), and indeed further studies suggest 
no association (32,33). A potential explanation for this 
discrepant data is that the polymorphism may have different 
implications in a Caucasian versus Asian population (34,35). 
Given the limited and contradictory clinical data, measuring 
ERCC1 expression or gene polymorphisms by any method 
cannot be recommended for use to select oxaliplatin-based 
treatment at this time. 

Microsatellite instability (MSI)

Approximately 15% of CRCs have evidence of defective DNA 
mismatch repair manifested as MSI. While some of these 
tumors are a result of hereditary defects in DNA mismatch 
repair enzymes (hereditary non-polyposis CRC), others are 
sporadic and the result of promoter silencing of the DNA 
mismatch repair enzyme MLH1 (36). Current data suggest 
that defective DNA mismatch repair confers an improved 
prognosis in most stages of CRC, but there is also evidence 
that these tumors are relatively resistant to 5-FU monotherapy 
in the adjuvant setting (37). The utility of MSI testing to direct 
treatment in advanced CRC is not established. A summary of 
candidate markers is provided in Table 1.

Molecular tests to individualize anti-EGFR 
therapy

KRAS and NRAS

The EGFR signaling pathway has been targeted in a 
number of different malignancies. Upon binding to ligands 

such as EGF, amphiregulin, or epiregulin, EGFR results 
in an intracellular signal that is transduced through several 
intracellular signaling pathways. A dominant pathway 
involves the activation of the G-protein intermediate 
RAS, and subsequent signaling through BRAF, MEK, 
and ERK (the MAP kinase pathway). Mutations in the 
RAS family of proto-oncogenes (KRAS, NRAS, HRAS) 
result in constitutive activation of MAP kinase pathway 
signaling that is independent of activation of receptor 
tyrosine kinases such as EGFR. Since the currently available 
EGFR antibodies cetuximab and panitumumab bind to 
the extracellular domain of EGFR to result in receptor 
internalization and block signaling, it has been hypothesized 
that mutations in RAS render the activity of EGFR 
antibodies irrelevant. 

The most common RAS mutations in colon cancer 
occur in codons 12 and 13 of KRAS, and are present in 
35-45% of cases. An initial study of 30 patients confirmed 
preclinical data that tumors harboring this mutation would 
be resistant to EGFR antibody therapy (38). These findings 
were subsequently confirmed in prospective retrospective 
analyses of large clinical trials that randomized patients to 
treatment with or without EGFR antibodies. For example, 
in the CRYSTAL trial that compared initial treatment 
with the combination of leucovorin, 5-FU, and irinotecan 
(FOLFIRI) to the same treatment with cetuximab, there 
was a significant interaction between KRAS mutation status 
and survival outcome (9). Many other similar studies and 
a meta-analysis came to similar conclusions (12,39-41). 
Therefore, KRAS mutation testing has been integrated into 
guideline-based management of advanced CRC (42). 

Multiple questions have been raised by these data, 
perhaps most prominently is whether all mutations in RAS 
behave similarly. Initially, it was questioned whether codon 
13 mutations were equivalent to codon 12 mutations in 
predicting the lack of efficacy of EGFR antibodies. Several 
retrospective studies suggested that the predictive effect 
of KRAS codon 13 mutation was incomplete (43,44); 
nonetheless, targeted studies have not suggested that benefit 
in this population is worthy of changing the paradigm (45).  

Subsequently, other mutations in KRAS and similar 
mutations in NRAS have been evaluated as potential 
predictors of lack of response to EGFR antibodies in 
CRC (46). The other mutations frequently encountered 
include mutations in codons 59, 61, 117, and 146. They 
are generally activating in cell line models (47). Recent 
secondary analysis of several key studies of EGFR antibodies 
in the treatment of advanced CRC have demonstrated 
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no trend for benefit for the addition of EGFR antibodies 
of patients to patients whose tumors these further RAS 
mutations (which we and others refer to as expanded 
RAS testing, see Table 2) (10,48-52). While no single 
study is statistically powered to evaluate the treatment 
by biomarker interaction for each of these additional 
mutations individually, this extended analysis has generally 
been accepted as standard prior to the prescription of an 
anti-EGFR agent (53). Moreover, with the application of 
next generation sequencing technology to simultaneous 
assessment of multiple candidate genetic markers, further 
refinement of this algorithm can be expected (54). 

BRAF

Using analogous reasoning to that described for RAS 

mutations, the BRAF V600E mutation, immediately 
downstream of RAS, has been evaluated as a negative 
predictive marker for the efficacy of EGFR antibodies. 
However, establishing the BRAF V600E mutation as a 
negative predictive marker has been challenging due to 
its lower prevalence (approximately 5-10%) (39-41,55). 
Additionally, an activating mutation in BRAF conveys 
a strong prognostic significance, with mutated tumors 
conferring a poor prognosis (10). Most studies do not clearly 
demonstrate a negative predictive benefit for BRAF for the 
selection of EGFR antibodies (48). Nonetheless, BRAF 
mutation testing has been recommended due to its strong 
implications on prognosis and due to the availability of BRAF 
mutation targeted clinical trials (56). Indeed, we use this 
information to guide the intensity of therapy and surveillance 
for progression of disease on treatment. 

Table 1 Summary of reviewed candidate molecular markers in colorectal cancer 

Marker Putative mechanism Status

Cytotoxic agents

UGT1A1*28 polymorphism Reduced glucuronidation of SN-38, resulting in 

reduced clearance and increased exposure

Associated with toxicity but management 

strategies not standardized

ERCC1 expression Reduced repair of DNA-platinum adducts Contradictory data, methodology has been 

questioned

ERCC1 polymorphisms Altered expression of ERCC1 resulting in differential 

repair of DNA-platinum adducts

Contradictory data which may be result of 

interaction with race/ethnicity

MSI Reduced sensitivity to 5-FU Insufficient data in advanced disease

EGFR antibody therapy

RAS mutation Constitutive pathway activation independent of 

receptor signaling

Strongly predictive for absent activity

BRAF V600E mutation Constitutive pathway activation independent of 

receptor signaling

Strongly prognostic, does not consistently 

predict lack of efficacy 

EGFR expression/amplification Increased target availability Evidence of response in EGFR expression 

negative patients

Amphiregulin/epiregulin Autocrine signaling loop Methodological issues and prognostic 

implications need to be clarified

PI3KCA mutation Constitutive pathway activation independent of 

receptor signaling

Contradictory data from small studies

PTEN loss Loss of negative regulator of EGFR meditated PI3K 

pathway signaling

Contradictory data from small studies

Antiangiogenic treatments

VEGF or VEGFR expression Activated angiogenesis through VEGF pathway Not predictive

Circulating angiogenic factors Activated angiogenesis through angiogenic pathways. Not predictive although IL-8 prognostic

ERCC1, excision repair and cross-complementation group 1; MSI, microsatellite instability; 5-FU, 5-fluorouracil; EGFR, epidermal growth 

factor receptor; PI3K, phosphoinositide-3-kinase; VEGF, vascular endothelial growth factor.
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EGFR expression and amplification

During the initial development of EGFR antibodies in 
metastatic CRC, it was predicted that EGFR protein 
expression would be required for any activity. Therefore, 
only EGFR-expressing CRC was allowed on the initial 
clinical trials (57). However, subsequent analyses did not 
demonstrate a correlation with EGFR expression and 
response (58). Response to an EGFR antibody was observed 
in tumors that did not have immunohistochemically 
detectable expression of EGFR (59). Therefore, expression 
of EGFR has been abandoned as a predictive marker for the 
benefit of EGFR antibody therapy CRC. Similarly, EGFR 
copy number has been described as a poor candidate for 
development as a predictive marker of the efficacy of EGFR 
antibody therapy (60), despite at least one small study 
suggesting a provocative interaction between copy number 
and outcome (61). 

EGFR ligand expression

Intratumoral expression of the EGFR ligands amphiregulin 
and epiregulin may reflect activation of the EGFR pathway 
through an autocrine signaling loop. An initial study 
using tissue obtained from pretreatment tumor biopsy 
mRNA on a single agent cetuximab study suggested 
that intratumor expression was strongly associated with 
disease control and progression free survival (62). A 
follow up analysis of tissue obtained on a study combining 
cetuximab and irinotecan demonstrated concordant 
results, and further demonstrated that the effect was only 
relevant in tumors with absent mutation in KRAS (63).  

However,  l igand expression may have prognostic 
implications that dilute the predictive utility and the 
optimal method of measurement is not yet standardized 
as concordance between tumor sites is modest (64,65).  
Thus, while the measurement of amphiregulin or epiregulin 
expression cannot be recommended to select EGFR 
antibody use in RAS wild type patients, they remain strong 
candidates for further development in ongoing studies of 
EGFR antibody therapy in CRC.

PI3K pathway alterations

In addition to the RAS pathway, EGFR signaling is 
mediated through a distinct pathway that involves 
phosphoinositide-3-kinase (PI3K), AKT and PTEN. 
Similar to the rationale for how RAS pathway mutations 
impact upstream EGFR-directed therapy, mutations in the 
PI3K pathway have been evaluated as a predictive marker 
for the efficacy of EGFR antibody therapy.

The α-catalytic domain of PI3K is encoded by the 
PIK3CA  gene and is mutated in 10-20% of CRCs. 
Mutation in PIK3CA is not mutually exclusive with RAS 
mutations. The majority of mutations in PIK3CA occur in 
either exon 9 (the helical domain) or exon 20 (the kinase 
domain). Initial studies came to conflicting conclusions 
regarding the potential utility of PIK3CA mutations in 
predicting resistance to EGFR-targeted therapy (66,67). 
In a large study of 773 patients with evaluable specimens 
treated with EGFR antibody therapy, PIK3CA mutations 
were associated with a lower response rate in KRAS  
wild-type patients (17.7% vs. 37.7%; OR 0.35; 95% CI, 

Table 2 Benefit from anti-EGFR antibody treatment plus chemotherapy versus chemotherapy alone in exon 2 wild type and expanded RAS wild 

type patients

Trial Line
Cytotoxic 

backbone
Antibody N

Exon 2 RAS WT
N

Expanded RAS WT
Reference

PFS HR (95% CI) OS HR (95% CI) PFS HR (95% CI) OS HR (95% CI)

COIN* 1 FOLFOX/

CAPOX

Cetuximab 729 NR 1.04 (0.87-1.23) 581 NR 1.02 (0.83-1.24) (10)

PRIME 1 FOLFOX Panitumumab 656 0.80 (0.67-0.95) 0.83 (0.70-0.98) 512 0.73 (0.60-0.88) 0.77 (0.64-0.94) (48)

CRYSTAL 1 FOLFIRI Cetuximab 666 0.70 (0.56-0.87) 0.80 (0.67-0.95) 367 0.56 (0.41-0.76) 0.69 (0.54-0.88) (49)

OPUS 1 FOLFOX Cetuximab 179 0.57 (0.38-0.86) 0.85 (0.60-1.22) 87 0.53 (0.27-1.04) 0.94 (0.56-1.96) (50)

20050181 2 FOLFIRI Panitumumab 597 0.73 (0.59-0.90) 0.85 (0.70-1.04) 421 0.70 (0.54-0.91) 0.81 (0.63-1.03) (51)

PICCOLO*,# 2 Irinotecan Panitumumab 460 0.78 (0.64-0.95) 1.01 (0.83-1.23) 323 0.68 (0.53-0.86) 0.92 (0.73-1.16) (52)

*, the COIN and PICCOLO studies included KRAS codon 61 mutations in their primary analyses and the expanded RAS WT populations also 

exclude patients with BRAF mutations; #, the expanded RAS analysis of PICCOLO excludes a small number of PIK3CA mutations. EGFR, 

epidermal growth factor receptor; WT, wild type; PFS, progression free survival; OS, overall survival; HR, hazard ration; NR, not reported. 
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0.13-0.83; P=0.015) but not with reduced PFS or OS (40). 
Interestingly, the effect seemed to be confined to exon  
20 mutations where response, PFS and OS were all 
statistically reduced compare to wild type patients. 
Nonetheless, exon 20 mutations are relatively rare (only  
9 without KRAS mutation were analyzed in the study) and 
further studies are needed to confirm these findings and 
establish the magnitude of the effect. Indeed, a subsequent 
study on a subset of patients from the original cetuximab 
monotherapy phase III study did not find any effect of 
PIK3CA mutations as a predictive marker for benefit (41). 

Phosphatase and tensin homologue deleted on 
chromosome ten (PTEN) is a tumor suppressor gene 
which functions as a negative regulator of PI3K activation 
by EGFR. Loss of PTEN function results in sustained 
activation of PI3K effector proteins and has been reported 
to occur in the range of 20-40% of CRC (68,69). In small 
retrospective series of 27 patients with CRC who received 
cetuximab as part of their therapy, 10 of 16 patients with 
intact PTEN had objective response in contrast to none 
of the 11 patients with loss of PTEN (68). Interpretation 
of this study is limited by both the small numbers but also 
presence of KRAS mutations in 37% of the cases. A larger 
but also retrospective study found loss of PTEN in 20% of 
111 cases of wild type KRAS CRC (69). In contrast to the 
prior study, loss of PTEN was not associated with response 
or progression-free survival although overall survival was 
shorter. 

Molecular tests to individualize anti-VEGF 
therapy

A number of markers have been explored as potential 
predictors for the benefit of anti-VEGF strategies 
in advanced CRC. Initial studies hypothesized that 
altered intratumoral expression of VEGF would predict 
responsiveness to bevacizumab. However, examination 
of VEGF expression by in situ hybridization and 
immunohistochemistry did not correlate with outcome 
in a subset analysis of the pivotal AVF2107g study (70). 
Similarly, immunohistochemical analysis from the 
NO166966 study of XELOX and FOLFOX with or 
without bevacizumab did not demonstrate an association 
of VEGF, VEGFR1, or VEGFR2 on tumor cells or stroma 
with progression free survival (71). 

Alternatively,  i t  was proposed that basel ine or 
pharmacodynamic changes in circulating angiogenic factors 
such as VEGF-A could predict efficacy of bevacizumab. 

This was initially piloted in a phase II study of bevacizumab 
in rectal cancer that demonstrated no evidence for 
a predictive benefit of baseline plasma VEGF (72).  
Nonetheless, provocative data were generated that 
associated baseline soluble VEGFR1 and increases (>2-fold)  
in plasma PlGF with improved treatment effect. In the 
HORIZON studies testing the anti-VEGF kinase inhibitor 
cediranib, high circulating VEGF was associated with 
worse outcome. However, neither clear predictive effect 
of baseline VEGF nor soluble VEGFR2 was observed for 
the efficacy of cediranib versus placebo (HORIZON II) or 
cediranib versus bevacizumab (HORIZON III) (73). In a 
phase II study of FOLFIRI plus bevacizumab for patients 
with previously untreated advanced CRC, Kopetz et al. 
analyzed a panel of 37 baseline and on-treatment plasma 
angiogenic factors for association with PFS (74). Notably, 
both baseline VEGF and VEGFR2 were not associated 
with outcome. However, high baseline interleukin-8 levels 
were associated with a shorter PFS (11 vs. 15.1 months; 
P=0.03). Moreover, elevations in bFGF, PlGF, and HGF 
were observed in subsets of patients before radiographic 
evidence of disease progression. Despite these interesting 
data, there is no marker available to select for benefit of 
anti-angiogenic therapies at this time in advanced CRC or 
elsewhere (75,76). 

Expression profiling

Recognizing that single molecular events only partly define 
the molecular architecture of CRC, a number of investigators 
have explored gene expression profiling as a mechanism to 
characterize subsets of CRCs that are likely to respond to 
a given intervention. For example, a relatively small study 
used an institutional training set to identify 7 genes from 
a Affymetrix U133 Plus 2.0 chip that were differentially 
expressed in patients who responded to 5-FU-based  
chemotherapy (77). After converting the signature to a RT-qPCR  
assay, the authors demonstrated that patients with a 
favorable predictive signature had a significantly greater 
response rate (58% vs. 13%, P=0.024), improved PFS 
(61% vs. 13% at 1 year, HR =0.32, P=0.009), and improved 
OS (32 vs. 16 months, HR =0.21, P=0.003). Such data are 
provocative and clearly larger studies are warranted. 

Conclusions

It is an exciting time to be treating advanced CRC as the 
development of multiple new treatment strategies has 



S17Journal of Gastrointestinal Oncology Vol 7, Suppl 1 April 2016

© Journal of Gastrointestinal Oncology. All rights reserved. J Gastrointest Oncol 2016;7(Suppl 1):S11-S20www.thejgo.org

pushed the median survival to the range of 30 months. 
Nonetheless, the availability of selection markers to optimize 
therapy on an individual patient basis has not kept up with 
the pace of drug development. It has been established that 
UGT1A1*28 polymorphism is associated with irinotecan 
toxicity, although the optimal management strategy for this 
marker has not been identified. Performance of a test for 
mutations in exon 2 of KRAS has now been expanded to 
other sites in exons 3 and 4 of KRAS and analogous sites in 
NRAS, and is essential for any patient being considered for 
an EGFR targeted antibody. A mutation in BRAF (V600E) is 
associated with a poor prognosis, which may drive alternative 
treatment strategies for individual patients. Unfortunately, no 
established predictive biomarker for anti-VEGF therapy yet 
exists. Nonetheless, the application of new technologies and 
robust study designs to biomarker discovery and validation 
efforts is likely to expand the library of available molecular 
tests to optimize care for patients with advanced CRC in the 
near future. 
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