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Background

Metastatic Colorectal Cancer (mCRC) is the third most 
common cancer and one of the leading causes of cancer-
related death worldwide and accounting for 40% to 50% 
of newly diagnosed patients with high mortality rates. 
The 5-year overall survival (OS) is very low, which is 18 to  
21 months even with the advancement of chemotherapeutic 
treatment. Two monoclonal antibodies (MoAbs), Cetuximab 
and Panitumumab, which target Epidermal Growth Factor 
Receptor (EGFR), have been approved more recently to 
treat mCRC. These two MoAbs target EGFR by binding to 
the extracellular domain and thus, leading to the inhibition 
of its downstream signaling. They have proven a modest 
clinical benefit in pretreated patients by the use of either, 
alone or in combination with conventional chemotherapy. 
It became clear from the beginning that not all the patients 
with mCRC benefit from these anti-EGFR MoAbs (1). 
Only 10% to 20% patients truly benefit from anti-EGFR 
MoAbs due to the high resistance against this therapy (2,3) 
KRAS protein, which is encoded by KRAS gene, is an early 
player in many signal transduction pathways (e.g., EGFR 
pathway). The protein product of the normal KRAS gene 
performs an essential function in normal tissue signaling 
and the mutation of a KRAS gene is an essential step in 
the development of many cancers. In various retrospective 
studies and randomized trials, show that the presence 
of KRAS mutations are predictive of resistance to the 
anti-EGFR MoAbs treatment and associated with a bad 
prognosis and low survival rate (1). It has been previously 
shown at clinical and preclinical levels that KRAS gene 
mutations are an independent predictive marker of anti-
EGRF MoAbs resistance. On the basis of these results, 
The European Union Drug Regulatory Body and The 
European Medicine Agency have approved the use of anti-
EGRF MoAbs therapy, for only those patients exhibiting 

mCRC with wild-type KRAS (4). It is found that in human 
CRC, mutations in KRAS genes are very frequent, however, 
between 20% to 50% of total non responsive patients (4,5). 
Even the presence of wild-type KRAS does not guarantee 
the full benefit from anti-EGFR MoAbs therapy. In the 
absence of KRAS mutations, resistance to anti-EGFR 
MoAbs treatments may possibly be caused by the alterations 
in the downstream members of RAS-RAF-MAPK pathway?

Introduction

BRAF, one of the members of the three protein-serine/
threonine kinases that are related to retroviral oncogenes, 
was discovered in 1988. Owing to prior DNA sequencing 
error, BRAF residue numbering changed in 2004. In the 
original version, residues after 32 were one number shorter 
than their actual position.

BRAF is major downstream effectors of KRAS and is also 
considered an oncogene whose activating mutations appear 
in about 12-18% of human colorectal cancer (6). BRAF 
plays a role in the regulation of mitogen-activated protein/
extracellular signal-regulated kinases MAP/ERKs signaling 
pathway, which controls the cellular division, differentiation 
and secretion. Mutations in this gene can lead to different 
diseases including CRC.

Factors involving in B-RAF mutations and 
impared signaling

The activation of BRAF oncogene, inactivation of 
mismatch repair genes by methylation of CpG islands, and 
microsatellite instability (MSI) have been reported to be 
involved in CRC development (7). B-RAF does not require 
additional negative charge during activation by additional 
enzyme modification, since its N-region contains an 
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activating serine site and the basal activity of BRAF is higher 
than its other RAF family members (8), that is why BRAF 
is more prone to mutations than CRAF and ARAF (9). 
Single amino acid substitutions can cause the activation 
of BRAF, but CRAF and ARAF require two mutations 
for their oncogenic activation, which is a very rare event 
to be seen (8). The most common BRAF mutation, which 
accounts for more than 90% of the cases of cancer involving 
this gene, is a glutamic acid for valine substitution at 
position 600 (V600E) (9). Continued expression of BRAF 
V600E is required for tumor growth and progression (10). 

BRAF is a major contributor to many cancers. Somatic 
mutations in the BRAF gene have been detected in almost 
50% malignant melanomas and many other cancers including 
CRC, ovarian and papillary thyroid carcinomas (11).

Of the oncogenic mutations in the BRAF gene, most 
are clustered in two regions of the kinase domain, which 
is responsible for maintaining the inactive catalytic 
conformation, the glycine rich loop and the activation 
segment. The proteins of BRAF oncogene with impaired 
kinase activity and the binding and activation of CRAF are 
required for ERK activation in vivo. The oncogenic BRAF 
proteins have been divided into three groups based on their 
enzymatic activity: (I) those with high enzymatic activity, 
they are 130-700 folds more active than the wild-type 
(WT) BRAF; (II) those with intermediate activity ,which 
are 60 to 1.3 folds more active than WT BRAF; (III) those 
with impaired catalytic activity are 0.8 to 0.3 folds active 
as compared to WT BRAF (12). Activating mutations in 
BRAF oncogene have been reported in 10-15% CRC with 
the vast majority being a V600E hotspot mutation (13). 
V600E substitution is strongly associated with microsatellite 
instability (MSI+) phenotype, but is mutually exclusive 
with KRAS mutations (14). CIMP provides a unique 
opportunity to study the molecular mechanism that leads 
to epigenetic changes in CRC and how these changes can 
cause this disease (15). A strong association between CpG 
island methylator phenotype (CIMP) and the presence of 
an activated form of BRAF mutation (BRAFV600E) has been 
founded (16). It has also been demonstrated that sporadic 
microsatellite instability (MSI) occurs as a consequence of 
CIMP-associated MLH1 DNA hypermethylation (16,17). 
It has been reported that both BRAF mutations and CIMP 
are present in the earliest stages of colorectal neoplasia, 
where CIMP is present in apparently normal mucosa of 
patients predisposed to multiple serrated polyps (18) as 
well as BRAF mutations in aberrant crypt foci (19). BRAF 
mutations in tumors with MSI+ CIMP+ are 10 folds more 
frequent than tumors without these phenotypes (20), 70-
80% BRAF mutation frequencies have been reported in 
sporadic MSI+, CIMP+ and MLH1-methylated CRC and 

polyps (21). The BRAF oncogene gene has been linked to 
MSI pathway in tumorigenis (22).

BRAF mutation frequencies in MSI+ are much higher 
than MSI- tumors, and the higher frequencies have 
been seen in tumors showing methylation of the MLH1 
promoter proximal region and in tumors with infiltrating 
lymphocytes (20). It has been reported in various studies 
that 100% of the carcinomas with BRAF mutations, 
methylation of hMLH1 occurred. Samowitz et al. have 
speculated about a fact, that MSI colorectal tumors that 
develop from hyperplastic polyps frequently show BRAF 
mutations and the methylator phenotype (CIMP), 
including the methylation of hMLH1 (23). According to 
Domingo et al, the inactivation of hMLH1 by methylation 
is reacted to the activation of BRAF, suggesting that specific 
modulation in the RAS/RAF system could occur depending 
on hMLH1 methylation status in CRC (24).

Koinuma K et al. reported an association between BRAF 
mutations and promoter methylation of the hMLH1 repair 
gene, where hMLH1 has been found to be altered in 80% of 
the cases of MSI sporadic CRC (25). BRAF mutations were 
reported to show prognostic significance in MSI - but not 
in MSI+ CRC (26). In various previous studies it has been 
reported that BRAF mutations in MSI-sporadic CRC are 
more frequently detected as compared with microsatellite 
-stable CRC (up to 50% vs. 12% respectively) (26).

During uncontrolled division in tumor cells, their demand 
for nutrients and oxygen increases, and to adapt to hypoxic 
environment, cells switch to anaerobic glycolysis and 
induction of survival factors and angiogenic growth factors 
such as; vascular endothelial growth factor (VEGF) (27). In 
hypoxia, Hypoxia-inducible factors (HIFs) are thought 
to play a major role in controlling the transcriptional 
responses (28). Mutated BRAF induces and regulates 
both Hypoxia-inducible Factor-1α (HIF-1α) and Hypoxia 
inducible Factor -2α (HIF-2α) in hypoxia (29). KRAS induces 
only HIF-1α. HIF-1α is thought to promote the growth of 
colon cancer cells, whereas; HIF-2α may restrain growth. 
The differential effects of KARS and BRAF mutations on the 
HIFs presents the unique interaction between the oncogenes 
and the tumor microenvironment, which may provide the 
phenotypic differences in mutant BRAF and KRAS CRC (29).

MoAbs action with non-BRAF mutated and BRAF 
mutated cells

Two monoclonal anti-bodies (MoAbs), Cetuximab and 
Panitumumab, which target the EGFR have been entered 
in clinical practice to treat mCRC, both these molecules 
bind to the EGFR external domain, leading to inhibition of 
its downstream signaling pathways (Figure 1).These include 
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the RAS-RAF-MAPK axis, which is mainly involed in cell 
proliferation, and the P13K-PTEN-AKT pathway, which is 
involved in cell survival and motility (30).

The anti-EGFR monoclonal antibody, Cetuximab, 
has demonstrated clinical beneifits in, and is widely 
used to treat, mCRC (Figure 1) (31). Notion has been 
acknowledged by European Medicine Agency (EMEA), 
which approved the use of Panitumumab or Cetuximab only 
in mCRC patients whose tumors display wt-KRAS (32). 
American Society of Clinical Oncology recommended 
that only those mCRC patients with wild-type KRAS be 
considered candidates to receive anti-EGFR therapy. The 
efficacy of anti-EGFR monoclonal antibodies in 60-70% of 
mCRC patients with wt-KRAS tumors is still limited, with 
response rates between 10% and 40% (33). There is a need 
for additional biomarkers for these patients. Interestingly 
the expression of the EGFR protein has not been strongly 
associated with clinical response to Cetuximab in CRC, 
although, there is limited evidence that amplification of the 
EGFR gene relates to objective response and other indices 
of clinical benefits. The relation between the increase of 
the EGFR gene dosage and response to Cetuximab or 
Panitumumab is not strong enough to allow the clinical use 

of this biomarker for the predictive selection of patients (34). 
As proven, BRAF is the principal effectors of KRAS (35) 

and its oncogenic V600E mutation is mutually exclusive with 
KRAS mutations in CRCs (36). It has been demonstrated 
that the V600E mutation can also preclude responsiveness 
to Panitumumab or Cetuximab in mCRC patients and 
cellular models of CRC also, mutations in BRAF have shown 
impaired responsiveness to Panitumumab or Cetuximab in 
patients with mCRC (Figure 2A) (4). Of note, KRAS and 
BRAF mutations are known to be mutually exclusive in 
colorectal cancers (36). Patients who have mutated BRAF 
don’t respond to MoAbs therapy even if they present wt-
KRAS, which shows that wt-BRAF is required to respond 
to MoAbs therapy to treat mCRC (4). Therefore, mutated 
BRAF tumors (approximately 10%) add algebraically to 
those carrying KRAS mutations (35-45%), thus further 
empowering the selection of patients eligible for Cetuximab/
Panitumumab treatment. Of note, when considered together, 
the two biomarkers can identify up to 55% non-responders (4).

BRAF inhibitors

As there are no drugs currently available for the specific and 

Figure 1 A. Normal binding of ligand to EGFR and activation of downstream signaling transduction cascade leading to DNA 
synthesis,cellular proliferation and migration etc; B. Binding of anti-EGFR drug e.g., cetuximab or panitumumab to EGFR which inhibits 
ligand binding to EGFR and inhibits receptor’s activation and resulting downstream signaling cascade of RAS-MAPK pathway’s activation 
inhibition, shown as red line, leads to the inhibition of cellular proliferation,migration, and DNA synthesis etc

A B
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direct inhibition of KRAS, but there are number of agents 
that are designed to inhibit the kinase activity of BRAF, 
which is either already clinically approved or is progressing 
through the pipeline of phase I and II studies (37).

The pharmacological inhibition of the MAPK signaling 
cascade in cancer cells carrying constitutively active KRAS 
and BRAF mutants has been shown to improve anti-EGFR 
treatment with MoAbs. In this regard, it has been reported 
that treatment with the BRAF inhibitor, Sorafenib, can 
restore sensitivity to Cetuximab and Panitumumab of CRC 
cells carrying the V600E allele (38) .

So, the concomitant treatment of patients with 
mCRC bearing BRAF-mutated tumors, with Cetuximab/
Panitumumab in combination with a BRAF inhibitor, 
is possible and supported by a strong rationale. MoAbs 
activity can be restored in BRAF mutated patients by 
introducing BRAF inhibitor along with MoAbs therapy 
(Figure 2B) .  Recently another study has reported 
the precl inical  characterizat ion of  Vermurafenin 
(RG7202;PLX4032;RO5185426), which is a first-class 
specific small molecule BRAFV600E inhibitor in BRAF 
-mutated CRC cell lines and tumor xenograft models. In 

the same study Vermurafenin showed the dose dependent 
inhibition of ERK and MEK phosphorylation, which 
caused the inhibition of tumor growth in BRAFV600E, 
bearing xenograft models and arresting of cell proliferation 
in BRAFV600E expressing cell lines. This shows that 
combination of Vemurafenib with MoAbs therapy could 
enhance the clinical anti tumor efficacy in CRC harboring 
the BRAFV600E mutation (Figure 2B) (39). It has been 
shown that the multikinase inhibitor, Sorafenib, might 
restore sensitivity to EGFR inhibitors in BRAF mutated 
CRC cell lines ,and combining of more selective BRAF 
inhibitors [e.g., PLX-4032 and XL-281 can also restore 
the sensitivity EGFR-targeted antibodies towards BRAF 
mutation (4)]. The first generation of RAF inhibitors, 
including sorafenib, were notable for their lack of specificity 
and potency for RAF and these agents have shown limited 
efficacy in tumors with a high incidence of BRAF mutation, 
such as, melanoma. Novel inhibitors of the pathway 
with greater selectivity for BRAF and MEK are now in 
Phase 1 and 2 clinical trials with promising early results. 
To maximize the likelihood of success with these agents, 
clinical trials enriched with patients whose tumors possess 

Figure 2 A. Inactivation of EGFR by anti-EGFR drugs does not inhibit the activation of RAS-MAPK pathway due to BRAF oncogene 
mutation, shown in red, which causes uncontrolled cellular proliferation, migration, and survival etc; B. Combination of cetuximab/
panitumumab and BRAF inhibitor i.e., Vemurafenib PLX4030 inhibit the downstream signaling cascade, oncogenic proliferation and 
survival in BRAF mutated cells

A B
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BRAF and RAS mutations have been proposed (40). It 
has also been reported that AZ628, a selective and potent 
investigational small molecule RAF kinase inhibitor, is 
remarkably effective at inhibiting the growth of a specific 
subset of human cancer cell lines derived from melanomas, 
thyroid cancers, and colorectal cancers that harbor the 
BRAF V600 mutation (41).

Resistance to BRAF inhibitors

Clinical responses to target anticancer therapeutics are 
frequently confounded by de novo or acquired resistance (42). 
In chronic myelogenous leukemia (CML), gastrointestinal 
stromal tumors (GIST) and non-small cell lung cancers 
(NSCLCs), acquired resistance to kinase inhibitors 
is frequently associated with either secondary kinase 
domain mutations, amplification of the gene encoding the 
target kinase, or mutational activation of genes encoding 
componentsof alternative survival pathways (42-46). It has 
been shown that elevated levels of CRAF cause the acquired 
resistance to BRAF inhibition in the melanomas (47). It has 
also been shown that MAP3K8 (COT/TPL2), which is a 
MAPK pathway agonist, drives resistance to RAF inhibition 
in cell lines containing RAFV600E mutation (48).

Overcoming BRAF inhibitors’ resistance

As various targeted kinase inhibitors have demonstrated 
both pre-clinical and clinical activity, the application 
of these agents to large patient population has clearly 
demonstrated that while initial clinical responses can 
be dramatic, rapid acquisition drug resistance is a major 
limitation to the over therapeutic efficacy of these drugs. 
Therefore, one of the major challenges associated with the 
border use of these inhibitors is the elucidation of drug 
resistance mechanisms and the development of strategies to 
overcome or prevent resistance.

Identification of resistance mechanisms in a manner 
that elucidate alternative “druggable” targets may inform 
effective long-term treatment strategies (49). Each of these 
identified resistances in CLM,GIST and NSCLC, has been 
successfully modeled in cell culture using appropriate drug-
treated cancer cell lines, indicating that such cell culture 
modeling can provide an effective system for identifying 
mechanism of acquired drug resistance that are likely to 
arise clinically (46,50,51).This is important because the 
development of strategies to overcome drug resistance, 
which will generally requires considerable time, first 
requires the identification of relevant resistance mechanisms. 
Therefore, the ability to anticipate clinical mechanisms of 
acquired resistance to targeted kinase inhibitors is likely to 

greatly accelerate the development of strategies to overcome 
drug resistance (52), and to reduce the current temporal 
gap between initial clinical successes and subsequent disease 
progression in the absence of available secondary treatment 
options. Anticipating the potential mechanisms of acquired 
resistance that could develop to the RAF inhibitors during 
the course of treatment can overcome this problem, as 
drug resistant clones from human melanoma-derived cell 
line harboring the V600E activating mutation that showed 
sensitivity to AZ628, a selective RAF kinase inhibitor. In 
the subset of these clones, significantly increased expression 
of the BRAF-related CRAF protein appeared to account 
for the acquisition of resistance to AZ628. But the resistant 
clones ,which have shifted their dependency from BRAF 
to CRAF, acquired substantial sensitivity to the HSP90 
inhibitors, Geldanamycin, which promotes the degradation 
of CRAF, thereby revealing a potential therapeutic strategy 
to overcome this resistance mechanism (47).

BRAF mutation analysis in CRC

As in July 2009, the Food and Drug Administration (FDA) 
approved labeling changes to two EGFR antagonists, 
Cetuximab and Panitumumab, stating that these agents are 
not recommended for the treatment of CRC harboring 
KRAS mutations. Thus, determination of KRAS mutation 
status in these tumors is critical when evaluating a patient 
for anti-EGFR therapy.

The American Society of Clinical Oncology (ASCO) 
has further recommended that all patients with metastatic 
colorectal cancer, for whom EGFR antagonists are 
being considered, should be specifically tested for KRAS 
mutational status at codons 12 and 13. Current guidelines 
in the US state, that patients with metastatic CRC being 
considered for EGFR-targeted therapies should be tested 
for KRAS and BRAF mutations (53)

Data from the CRYSTAL trial suggest that BRAF 
mutations are also indicative of poor prognosis and the 
National Comprehensive Cancer Network (NCCN), 
Colon Cancer Guideline Update 2010 states that testing 
for mutations in BRAF should occur when KRAS testing 
indicates KRAS wild type, to avoid exposing patients to 
ineffective drugs, exposure to unnecessary drug toxicities, 
and expedite the use of the best available alternative 
therapy (54). High-resolution melting (HRM) is a recently 
developed technique that shows great potential for scanning 
germline and somatic mutations (55).

Also, another recent study described HRM assay for 
mutation detection in EGFR exons 19-21, KRAS codon 
12/13 and BRAF V600 using formalin-fixed paraffin 
embedded samples, which proved HRM as a rapid and 
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sensitive method for moderate-throughput cost-effective 
screening of oncogene mutations in clinical samples (56). 

BRAF mutations are now increasingly being investigated 
in metastatic colorectal cancer. KRAS mutation analysis may 
be considered medically necessary to predict no response 
to anti-EGFR monoclonal antibodies Cetuximab and 
Panitumumab in the treatment of metastatic, unresectable, 
or advanced colorectal cancer.

BRAF mutation analysis is considered investigational for 
all indications, including, but not limited to, predicting no 
response to anti-EGFR monoclonal antibodies Cetuximab 
and Panitumumab in the treatment of metastatic, 
unresectable, or advanced colorectal cancer.

KRAS and BRAF mutation analyses using PCR 
methodology are commercially available as laboratory-
developed tests. Such tests are regulated under the Clinical 
Laboratory Improvement Amendments (CLIA). Premarket 
approval from the U.S. Food and Drug Administration 
(FDA) is not required when the assay is performed in a 
laboratory that is licensed by CLIA for high-complexity 
testing.

Factors affecting the efficacy of MoAbs 
Cetuximab In CRC patients other than BRAF, 
KRAS mutations

Mutated BRAF tumors (approximately 10%) add 
algebraically to those carrying KRAS mutations (35% 
to 45%), thus further empowering the selection of 
patients eligible for Cetuximab/Panitumab treatment. 
When considered together, the two markers can identify 
up to 55% of non responders (4). Results from other 
groups recently reported at the 2009 annual meeting of 
the American Association of Cancer Research and the 
American Society of Clinical Oncology confirmed these 
data (57).

In addition to KRAS and BRAF, the EGF receptor 
also activates the PI3k signaling pathway. This signaling 
pathway can be oncogenically deregulated either by 
activating mutations in the PIK3CA p110 subunit or by 
inactivation (often by epigenetic mechanisms) of the PTEN 
phosphatase. The role of deregulated PIK3CA/PTEN 
signaling on the response to Cetuximab and Panitumab has 
therefore been investigated. As in one study, it is indicated 
that when expression of PTEN and mutations of KRAS, 
BRAF and PIK3CA concomitantly ascertained up to 70% 
of patients with mCRC unlikely to respond to anti-EGFR 
therapies, can be identified (58). A gross analysis of current 
data regarding the impact of PIK3CA mutations and PTEN 
loss on response is conflicting (59-63). From the published 
work, it seems that PIK3CA mutations are in fact associated 

with the resistance, although, this correlation is nowhere 
close to that observed for KRAS or BRAF. However, most 
of the authors agree that PTEN inactivation is a negative 
predictor of response (59,64).

As KRAS and BRAF mutations are exclusive, but the 
mutations of PIK3CA or inactivation of PTEN can coexist 
[i.e., they can occur in the same tumor containing KRAS/
BRAF mutations (3).], which makes it difficult to find the 
individual contribution of PIK3CA mutations and PTEN 
inactivation to the resistance against MoAbs therapy other 
than KRAS and BRAF mutations. It has also been shown 
that PIK3CA mutations located in exon 9 and 20 hotspots 
exert different biochemical and oncologic properties and 
are differently activated by KRAS (65). So, it is convincible 
that both PIK3CA mutations and PTEN inactivation have 
a little contribution of resistance against Cetuximab and 
Panitumumab therapy due to co-occurrence of PTEN 
expression and PIK3CA mutations with KRAS and BRAF 
mutations and different oncogentic properties of different 
PIK3CA mutations, so for definite conclusions more 
research work and analyzing of large cohorts of patients 
are needed to become useful to further analyze the eligible 
patients to treat with MoAbs therapy. However, these 
two markers are not yet ready to use clinically. Other 
possibilities can be the occurrence of alterations in other 
key elements of the EGFR-dependent signal cascade (e.g., 
AKT1 or MEK- MAPK) ,as in preclinical studies, inhibition 
of the MEK kinase effectively and specifically inhibits the 
growth of human tumor cells lines harboring activating 
BRAF mutations (66) and genetic alternation in tyrosine 
kinase receptors other than EGFR, providing an alternate 
pathway of survival and/or proliferation.

The Relationship between the increase EGFR gene 
dosage and response to Cetuximab or Panitumumab is not 
strong enough to allow the clinical use of this biomarker for 
the predictive selection of patients (34).

Secondary resistance to MoAbs therapies in mCRC 
patients is another cause of ineffectiveness, therefore, it 
is important to identify the possible mechanism causing 
secondary resistance. As has been mentioned in a clinical 
data, the response is transient, even in the KRAS and BRAF 
wild type tumors, and only last for 1 to 1.5 years (67).

The somatic knocking-out or knocking-in of individual 
alleles in normal or neoplastic cells is a new generation of 
cell tumor progression models, which has been developed 
recently. Generation of paired cell lines which closely 
recapitulate the occurrence of cancer mutations in 
individual patients as a result of targeting the endogenous 
loci for mutation or correction (68,69). It has been shown 
that the growth of human tumor cell lines harboring 
activating BRAF mutations can be inhibited by effective and 
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specific inhibition of MEK kinase (66).

Role of ethnicity, gender and smoking in BRAF 
mutated mCRC

The link of BRAF and KRAS mutations with ethnicity 
has been reported. In Chinese and Caucasians BRAF 
mutations were reported to be associated with advance 
disease stages and worse survival of papillary thyroid 
microcarcinoma (70,71), but not in Japanese (54). A study 
from Australia showed that people of southern Europe 
origin had a lower risk of BRAF mutation then those of 
Anglo-Celtic origin (72). BRAF mutations were detected in 
about 45% of the high microsatellite instability (MSH-H) 
tumors and in about 10% of the microsatellite stable (MSS) 
tumors in Caucasians (73). In African Americans, distinct 
BRAF mutation has been reported, with 23% in MSI 
tumors and 0% in non-MSI tumors (74). These findings 
show the relation and importance of investigation of BRAF 
mutations with different ethnic groups. 

In colorectal cancers, BRAF and PIK3CA (but not 
KRAS, APC, or TP53) mutations display a gender bias at 
higher frequencies in females (75,76). This suggests that 
tumors with BRAF somatic mutations arise from a different 
pathway in women. As one study has reported that exposure 
to estrogen in women protects against MSI, whereas, 
the lack of estrogen in aged females increases the risk of 
instability (77). Use of Hormone Replacement Therapy 
(HRT) significantly reduces the risk of colon cancer in 
postmenopausal females (78).This shows that the lack of 
female hormones contributes in the development of various 
cancers including colon cancer, which suggests that it could 
be hypothesized that female patients with mCRC might be 
less likely to benefit from treatment with EGFR-targeted 
MoAbs. However, available clinical data do not support this 
hypothesis (79,80).

Smoking is also associated with mCRC caused by BRAF 
mutations but it is not as strongly associated as gender, 
though females are twice likely to have a tumor with BRAF 
mutation, but it is not strongly associated with smoking, as 
men who smoke are at higher risk of mCRC with BRAF 
mutations (81).

Conclusions

In addition to KRAS analysis, BRAF analysis should be 
done to rule out the BRAF mutations, especially in the 
developing countries like China, where BRAF testing is not 
common (other than few metropolitan areas), to avoid the 
unnecessary cytotoxicity, for selecting patients who would 
respond to the therapies and as the shocking costs of these 

targeted therapies, so the selection of patients is the key role 
to their economic sustainability. And besides using Anti-
EGFR MoAbs, other alternative therapies should also be 
considered. As current data suggests that evaluation of not 
only KRAS or BRAF but also P1k3CA/PTEN alterations 
could be useful for selecting patients with mCRC who are 
unlikely to respond to anti Anti-EGFR-MoAbs. Genetic 
manipulation techniques can be applied to cellular models, 
one can envisage developing in vitro tools to prospectively 
find new sensitivity resistance biomarkers that can then 
be confirmed in patients and even be used to screen for 
rationale drug combinations to reverse resistance. To 
restore the sensitivity of MoAbs, they could be administered 
along with BRAF inhibitors and at the same time new ways 
should be found out in order to reduce the resistance to the 
BRAF inhibitors, further understanding of the molecular 
mechanisms to discover new alternative therapies and tests 
for non-responding patients would be helpful.
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