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Introduction

Pancreatic cancer is a devastating disease, which is the 
fourth leading cause of cancer related death in the Unites 
States (1). The use of intensive cytotoxic regimen such as 
FOLFIRINOX has almost doubled the survival but the 
2-year survival rate for patients with metastatic pancreatic 
ductal adenocarcinoma (PDA) is dismally <20% (2). 
Microscopically, PDA is characterized by thick desmoplastic 
stromal matrix surrounding islands of cancer cells. It is 
increasingly realized that the pancreatic stroma plays an 
active role in carcinogenesis, progression, metastasis, 
mediating drug resistance, and immunosuppression (3).  
PDA stroma is highly heterogeneous consisting of stellate 
cells [pancreatic stellate cells (PSCs)] or carcinoma-associated  
fibroblasts (CAFs) in activated form, microvasculature, 
nerves, inflammatory infiltrate and acellular extracellular 
matrix (ECM). Encouraging results from preclinical studies 
targeting the PDA stroma, such as using hyaluronidase to 
improve cytotoxic delivery and CD40 agonist to modulate 

immune response, renewed the field’s enthusiasm and led 
to a number of clinical trials evaluating stromal-targeting 
therapy in PDA. However, the failure of hedgehog (Hh) 
inhibitor to improve patient outcome during clinical 
evaluation despite positive preclinical results is humbling 
and demonstrated the paucity in our understanding of the 
complex PDA biology (4-7). Here, we review the stromal-
targeting strategies currently in (or, near-to) clinical 
evaluation and their preclinical rationales (Table 1).

The biology of stromal cells in PDA

The prominent feature of PDA is dense desmoplastic 
stroma, sometimes comprising up to 80% of tumor mass (42). 
As early as a decade ago, researchers found that highly 
heterogeneous components of the stroma, consisting of 
immune cells, CAF, ECM as well as varieties of proteins, 
enzymes, growth factors and cytokines, form a sophisticated 
network interacted with tumor cells (43). Depletion of 
stromal component has been associated with improved 
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Table 1 Role of stromal constituents in pancreatic adenocarcinoma

Target Role Reference

Cancer-associated 

fibroblasts (CAFs)

Role of pro-carcinogenesis effect

- Promote metastasis (8,9)

- Secret growth factors and enhance tumor progression (10)

- Cause chemotherapy or radiation therapy resistance by Hh signaling (11-14)

- Creating immunosuppressive environment by CXCL12 and IL-17 (15-17)

Controversies

- Genetically or pharmacologically deleted CAF leads to more aggressive tumor growth (18-20)

- Vitamin D can reprogram the CAF (21)

Clinical trials

- Pharmacological ablation of Hh signaling failed to show any clinical benefit (4-7)

Extracellular matrix 

(ECM)

Role of pro-carcinogenesis

- Collagen I expression is associated with gemcitabine resistance (22)

- Fibronectin, laminin, integrin and collagen IV are associated with tumor growth (23,24)

- Enzymatic ablated HA by PEGPH20 improved survival in mice models (25-27)

Clinical trials

- Phase Ib/II trials showed promising effect of PEGPH20 in PDA patients with high HA level (28-31)

Immune Cells Immune co-stimulatory factors and checkpoint regulators

Role of pro-carcinogenesis

- CD40-activated macrophages facilitate the depletion of tumor stroma and induce 

tmoricidal effect
(32,33)

- PD-1 antibody showed remarkable response in NSCLC, melanoma and renal cell carci-

noma
(34,35)

- CTLA-4 is involved in disease acceleration and animal survival in PDA (34)

Controversies

- Only combined with CXCR4 inhibitor, PD-L1 antibody diminishing PDA progression (16)

Clinical trials

- Antagonizing PD-1 signal showed no responses PDA patients (35,36)

- Ipilimumab (CTLA-4 antibody) failed to show any effectiveness for stage III or IV PDA (37)

Inflammatory cytokine (IL-17) and cancer vaccine

Role of pro-carcinogenesis

- CAFs could attract Th17, contributing to immune-suppression in the PDA (17)

- Inhibition of IL-17 signaling effectively prevented PDA formation (38)

- Combination therapy of GVAX and PD-1 antibody improved PDA murine model survival (39)

Controversies

- GV1001 in combination with chemotherapy did not find any benefit in advanced PDA (40)

Clinical trials

- GVAX combined with CRS-207 extended survival in phase II trial for stage IV PDA (41)

Hh, Hedgehog signal; CXCL12, Chemokine (C-X-C motif) ligand 12; IL-17, interleukin-17; HA, hyaluronan; PEGPH20, PEGylated 

human recombinant PH20 hyaluronidase; PDA, pancreatic ductal adenocarcinoma; PD-1, programmed cell death 1 receptor; 

NSCLC, non-small cell lung cancer; CTLA-4, cytotoxic T lymphocyte associated protein 4; CXCR4, chemokine (C-X-C motif) 

receptor 4; Th17, interleukin-17 secreting CD4+ cells; GVAX, granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-

transfected tumor cell vaccine; GV1001, simultaneous telomerase vaccination; CRS-207, an attenuated listeria monocytogenes.
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prognosis in some animal models and early-stage clinical 
trials (11,32,42). α-smooth muscle actin (αSMA) secreted by 
CAF is confirmed as a negative prognostic factor in PDA (44).  
Whereas, the current outcome of clinical trials targeting 
pancreatic stroma does not meet the high expectation. More 
importantly, recently published several studies provide new 
explanations for the failure of trials, suggesting ablation of 
the stroma may lead to poorly differentiated tumors and 
accelerate PDA progression (18-21). These conflicting 
evidences prompt us to revisit the role of stromal cell.

Cancer-associated fibroblasts (CAFs)

CAFs have been found to promote tumor progression 
and metastasis in pancreatic cancer (8,9). The stromal 

cells mediate the formation of ECM that protects cancer 
stem cells, secrets growth factors promoting tumor 
proliferation, and interrupt immune-surveillance resulting 
in immunosuppressive tumor microenvironment (10,15) 
(Figure 1). In turn, CAFs’ biology is positively regulated by 
PDA cells (43).

The stromal cells were found in preclinical studies to 
impede the penetration of anti-cancer drugs resulting in 
inadequate cell kills (11,12). Hh signaling was implicated as 
a key regulator of tumor-stromal interaction in PDA (13). 
Using genetic KPC mice model (KrasLSL.G12D/+; p53R172H/+; 
PdxCretg/+), Olive et al. (11) found that interrupting Hh 
signaling using IPI-926 (saridegib) ablate stromal CAFs 
leading to transient increase in intratumoral vascular 
density and increased intratumoral gemcitabine level, 

Figure 1 Interaction of stromal constituents with pancreatic ductal adenocarcinoma (PDA). (A) Cancer-associated fibroblasts (CAFs), 
which expressed α-smooth muscle actin (αSMA), facilitate themselves as well as tumor growth through Hedgehog (Hh), Wnt/β-catenin, 
Notch, K-ras signaling or production of growth factors; (B) secretion of chemokine (C-X-C motif) ligand 12 (CXCL12), the ligand of 
chemokine (C-X-C motif) receptor 4 (CXCR4) and interleukin-17 (IL-17) results in suppression of T cells; (C) hyaluronan (HA) reduces 
the therapeutic indices of chemotherapy agents and enzymatic ablated HA by PEGylated human recombinant PH20 hyaluronidase 
(PEGPH20) provides promising efficacy in clinical trials; (D) programmed cell death 1 receptor (PD-1), cytotoxic T lymphocyte associated 
protein 4 (CTLA-4) and IL-17 signaling generated by cancer cell promote to create the immunosuppressive microenvironment; (E) GVAX 
[granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-transfected tumor cell vaccine] combined with CRS-207 (an attenuated 
listeria monocytogenes) enhances T cell’s anti-tumor effect; (F) CD40 stimulation may led to macrophage-mediated cancer cell kill and 
stromal depletion; (G) targeting of CXCL12 and IL-17 may reverse intra-tumor immune-suppression that enhance the effects of immune 
checkpoint inhibitors (PD-1, CTLA-4); (H) reprogramming the PDA stroma using vitamin D or all-trans retinoic acid (ATRA) may induce 
stromal quiescence and reverse tumor progression.
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resulting in better cytotoxic effect. Similar results were 
observed using a different Hh inhibitor (AZD8542) (14). 
However, the clinical trials evaluating Hh inhibitors in 
PDA failed to demonstrate clinical benefit despite such 
positive preclinical results. The phase II randomized study 
using gemcitabine with/without IPI-926 was stopped early 
due to increased mortality or not showing benefit (4,6,45). 
Similarly, a single-arm phase II trial (NCT01195415) 
of GDC-0449 (vismodegib) with gemcitabine was not 
superior in metastatic PDA compared to gemcitabine alone 
in historical control (7). The failure of clinical trials to 
replicate the preclinical success was puzzling and reasons 
suggested include limitations in the mouse models, chronic 
versus acute ablation of stromal cells by Hh inhibitors, and 
off-target effects of the drugs (46). In addition, there was an 
absence of potential predictive biomarkers such as stromal 
characteristics to guide clinical trial design (47).

Interestingly, several recent preclinical reports 
contradicted earlier studies suggesting that Hh-mediated 
stromal response restrained tumorigenesis and ablation 
of which was detrimental in PDA. Özdemir et al. deleted 
αSMA myofibroblasts by crossing PtflaCre/+; KrasLSL-G12D/+; 
Tgfbr2flox/flox (PKT) mice, demonstrated that the depletion 
of myofibroblast yielded undifferentiated and more 
invasive PDA (19). Similar results were also observed 
in KPC mice crossed with αSMA-transgenic mice (19). 
The decreased elastic content in PDA did not improve 
intratumoral gemcitabine concentration. In contrast, it was 
correlated with reduced survival and confirmed that actually 
desmoplasia protected the host. Separately, Rhim et al. 
specifically deleted Sonic hedgehog (Shh) ligand expression 
in mice PDA stroma by crossing Pdx1Cre/+; KrasLSL-G12D/+; 
p53fl/+; Rosa26LSL-YFP/+ (PKCY) with Shhfl/fl mice. Surprisingly, 
such Shh-deficent tumors were more aggressive, exhibiting 
increased vascularity, heightened proliferation and these 
were recapitulated using Hh inhibitors in KPC mice (20).  
Lee et al. showed that in three distinct genetically 
engineered mice models, Hh pathway inhibition suppressed 
stromal desmoplasia and accelerated growth of the epithelial 
elements; whereas, activation of Hh signaling caused 
stromal hyperplasia and reduced epithelial proliferation 
leading restraint on tumorigenesis (18).

Other novel stromal modulating therapies had been 
explored preclinically. Sherman et al. reported activation 
of vitamin D receptor (VDR) could re-program PSCs 
to a more quiescent and less tumor-supporting state that 
potentially countered PDA progression (21). In transgenic 
mice models, VDR activation reduced inflammatory 

markers and fibrosis,  and increasing intratumoral 
gemcitabine level, Froeling et al. showed that treatment with 
all-trans retinoic acid (ATRA) induced CAFs quiescence, 
leading to reduced cancer cell proliferation and invasion, 
and increased apoptosis via Wnt-β-catenin signaling (48).

Acellular extracellular matrix (ECM)

The acellular part of PDA stroma is composed of proteins, 
polysaccharides and peptides. Secreted by CAFs, these 
stromal elements not only provide structural support 
but are also involved in differentiation, remodeling 
and carcinogenesis. Collagen I was shown to promote 
gemcitabine resistance in vitro (22,23). It also interacted 
with collagen IV and integrins on the surface of PDA 
cancer cells, and is vital for proliferation, maintenance of 
migratory phenotype, and avoiding apoptosis (24). Other 
potential ECM remodeling genes differentially expressed in 
PDA stroma included matrix metalloproteinase 3, collagen 
type IVα1 and syndecan-2 (49), though their role in PDA 
tumor-stromal interaction remains unclear for now.

Hyaluronan (HA) is a polysaccharides found in HA 
stromal matrix. High HA level in PDA increased interstitial 
fluid pressure (IFP) in tumor, creating substantial barriers 
to perfusion that attenuate the effects of anti-cancer  
drugs (25,50). In KPC and KC mice models, treatment 
using PEGylated human recombinant PH20 hyaluronidase 
(PEGPH20) ablated stromal  HA that  led to IFP 
normalization and re-expansion of collapsed tumor 
vasculature without increasing the microvessel density (26).  
When combined with gemcitabine, PEGPH20 significantly 
enhanced drug penetration throughout the tumor tissues, 
inhibited tumor growth and extended the mice survival. 
Similar result was reported by Jacobetz et al. (27).  
Elevated HA level was also found in metastatic PDA 
lesions, suggesting that HA targeting might also benefit in 
metastatic disease.

In stage I/IB clinical trials, PEGPH20 in combination 
with gemcitabine achieved partial metabolic responses 
by FDG-PET/CT in 4 out of 5 pancreatic cancer 
patients using PEGPH20 (28), and particularly showed 
promising activity in those with high HA levels (29,30). 
The randomized, phase II trials evaluating PEGPH20 
in combination with nab-paclitaxel and gemcitabine 
(NCT01839487) and S1313 trial (NCT01959139) assessing 
PEGPH20 in combination with modified FOLFIRINOX 
for previously untreated metastatic PDA are ongoing 
presently. Preliminary result revealed that PEGPH20 
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+ nab-paclitaxel + gemcitabine offered greater overall 
response rate (ORR) and progression free survival (PFS) in 
patients with high HA status (31).

Immune cells

Broad repertoire of immune cells has been involved in 
pancreatic cancer stroma. However, PDA creates a hypoxic 
and highly immunosuppressive environment which is 
resistant to inhibitory cytokines and immune cells anti-tumor  
effect (10,51). Recent studies focus on recruiting anti-tumor 
cells or cytokines to restore their responses.

Immune co-stimulatory factor and checkpoint 
regulators
CD40 is a cell surface molecule that is a member of 
the tumor necrosis factor (TNF) receptor family, and 
participates in immune regulation and mediates tumor 
apoptosis (52). CD40 was found to be a key regulator 
in the development of T cell-dependent anti-tumor 
immunity (53) though recent report showed that CD40-
mediated anti-tumor were macrophage dependent (32). 
Using KPC mice model, Beatty et al. showed that both 
treatments using CD40 monoclonal antibody combined 
with gemcitabine caused tumor regression in 30% of mice, 
far superior to gemcitabine alone (32). They further showed 
that the tumor regression was mediated by macrophage 
that facilitated the depletion of tumor stroma. CP-870, 
893, a monoclonal antibody, is a CD40 agonist that was 
evaluated in combination with gemcitabine in a phase I 
trial in patients with advanced PDA (33). Four of twenty-
two patients (18%) achieved partial response. Interestingly, 
after-treatment tumor biopsy showed an absence of tumor-
infiltrating lymphocyte and abundant macrophages.

Activation of programmed cell death 1 receptor (PD-1)  
by binding with PD-1 ligands (PD-L1 and PD-L2) 
suppresses the T-cell activity and makes cancer cell “invisible” 
to the immune system. Both PD-1 and PD-1 ligands 
are expressed in PDA and had been associated with poor 
prognosis (36). Although early clinical trial of anti-PD-1  
antibody achieved response in non-small cell lung cancer, 
melanoma and renal cell carcinoma (34), but not in PDA 
(35,36). Treatment against cytotoxic T lymphocyte associated 
protein 4 (CTLA-4), another costimulatory signaling, 
improved survival in transgenic mice PDA model (19). A 
phase II trial using ipilimumab (anti-CTLA-4 antibody) 
failed to achieve tumor response by RECIST criteria in 
advanced PDA though delayed shrinkage was observed in 

one patient with continued dosing (37).
The reasons for the failure of PD-1 and CTLA-4 to 

achieve tumor response in PDA are unclear. The clue 
might come from another immune molecule. Chemokine 
(C-X-C motif) ligand 12 (CXCL12) is a ligand for 
chemokine (C-X-C motif) receptor 4 (CXCR4). CAFs 
expressing fibroblast activation protein (FAP) created 
immunosuppressive environment in PDA via secretion 
of CXCL12. Administering CXCR4 inhibitor, plerixafor 
(AMD3100), induced rapid T-cell response and acted 
synergistically with PD-L1 antibody to greatly diminish 
cancer cells in KPC mice (16). As such, therapies combining 
immune checkpoints inhibitors with an agent that reverse 
the immunosuppression in the tumor microenvironment 
like CXCR4 inhibitor have potential therapeutic application 
in PDA. This hypothesis is currently in clinical evaluation 
(NCT02301130).

Inflammatory factors
Inflammatory cytokines had been shown to promote 
tumorigenesis. Inflammatory cells such as regulatory T cells 
(Tregs) and tumor-associated macrophage (TAM) subtype 
M2 could attenuate intra-tumor immunity by secreting 
interleukin 10 (IL-10) and transforming growth factor 
β (TGFβ) (54). In addition, tumor cells and CAFs could 
attract interleukin-17 (IL-17) secreting CD4+ cells (Th17) 
via TGFβ secretion, contributing to immune-suppression 
in the PDA tumor microenvironment (17). McAllister 
et al. illustrated that IL-17 stimulated infiltration of  
IL-17-expressing T cells drive tumor progression and the 
disruption of IL-17 signaling prevented PDA formation in 
preclinical studies (38). Antibodies against IL-17 signaling 
pathway (brodalumab and ixekizumab) are currently 
evaluated by clinical trials for treating psoriasis. Therapies 
utilizing IL-17 inhibitors may hold promise in PDA.

Cancer vaccine
GVAX pancreas is a cancer vaccine generated from pancreatic 
cancer cell line and has been modified to express granulocyte-
macrophage colony-stimulating factor (GM-CSF),  
which attract dendritic cell (DC) to present tumor antigen 
to T cells. The effect of GVAX can be amplified by  
co-administration with CRS-207, an attenuated listeria 
monocytogenes, as a boost vaccine to express mesothelin 
(marker of mesothelioma, ovarian and pancreatic cancer) (55).  
In phase II trial for stage IV PDA patients, GVAX/
cyclophosphamide combined with CRS-207 extended 2 months  
survival compared to GVAX/cyclophosphamide (6 vs. 
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4 months) (41). In murine studies, GVAX treatment 
significantly upregulate PD-L1 expression and combination 
therapy of GVAX and PD-1 antibody improved survival (39). 
In contrast, simultaneous telomerase vaccination (GV1001) 
in combination with chemotherapy did not find any benefit 
in patient with advanced PDA in previously untreated 
patients (40). Accordingly, further evaluation of the efficacy 
of cancer vaccination is warranted in the future studies.

Conclusions

The increasing understanding of the tumor-stromal 
interactions in PDA has engendered many novel approaches 
to targeting the tumor stroma. The complexity and 
dynamic nature of PDA microenvironment became more 
apparent following the failure of earlier attempts such 
as that targeting the Hh signaling, suggesting that more 
robust preclinical/translational studies and novel clinical 
trial designs are needed. Currently, there are a number 
of promising stromal-targeting approaches under clinical 
investigation that may potentially groundbreaking. Recent 
report from Moffitt et al. utilized elegant bioinformatics 
methods to distinguish gene signatures from pancreatic 
tumor cells and stromal cells that independently predict 
patient outcome (56). Such advances will help tailor 
personalized treatments in the future.
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