A genetic database can be utilized to identify potential biomarkers for biphenotypic hepatocellular carcinoma-cholangiocarcinoma

Shaffer R. S. Mok, Sachin Mohan, Navjot Grewal, Adam B. Elfant, Thomas A. Judge

Division of Gastroenterology and Liver Diseases, Department of Medicine, Cooper Medical School of Rowan University, MD Anderson Cancer Center at Cooper, Mount Laurel, NJ, USA

Contributions: (I) Conception and design: SR Mok; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: SR Mok, S Mohan, N Grewal; (V) Data analysis and interpretation: SR Mok, S Mohan, N Grewal; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Shaffer R. S. Mok, MD, MBS. Division of Gastroenterology and Liver Diseases, Department of Medicine, Cooper University Hospital, MD Anderson Cancer Center at Cooper, 501 Fellowship Road, Suite 101, Mount Laurel, NJ 08054, USA. Email: mok.shaffer@gmail.com.

Background: Biphenotypic hepatocellular carcinoma-cholangiocarcinoma (HCC-CC) is an uncommon primary liver neoplasm. Due to limitations in radiologic imaging for the diagnosis of this condition, biopsy is a common method for diagnosis, which is invasive and holds potential complications. To identify alternative means for obtaining the diagnosis and assessing the prognosis of this condition, we evaluated biomarkers for biphenotypic HCC-CC using a genetic database.

Methods: To evaluate the genetic associations with each variable we utilized GeneCards[®], The Human Gene Compendium (http://www.genecards.org). The results of our search were entered into the Pathway Interaction Database from the National Cancer Institute (PID-NCI) (http://pid.nci.nih.gov), to generate a biomolecule interaction map.

Results: The results of our query yielded 690 genes for HCC, 98 genes for CC and 50 genes for HCC-CC. Genes depicted in this analysis demonstrate the role of hormonal regulation, embryonic development, cell surface adhesion, cytokeratin stability, mucin production, metalloproteinase regulation, Ras signaling, metabolism and apoptosis. Examples of previously described markers included hepatocyte growth factor (HGF), mesenchymal epithelial transition (MET) and Kirsten rat sarcoma viral oncogene homolog (KRAS). Novel markers included phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), GPC3, choline kinase alpha (CHKA), prostaglandin-endoperoxide synthase 2 (PTGS2), telomerase reverse transcriptase (TERT), myeloid cell leukemia 1 (MCL1) and N-acetyltransferase 2 (NAT2).

Conclusions: GeneCards is a useful research tool in the genetic analysis of low frequency malignancies. Utilizing this tool we identified several biomarkers are methods for diagnosing HCC-CC. Finally, utilizing these methods, HCC-CC was found to be predominantly a subtype of CC.

Keywords: Hepatocellular carcinoma (HCC); cholangiocarcinoma (CC); hepatocellular carcinomacholangiocarcinoma (HCC-CC); genetic; biomarker

Submitted Feb 07, 2016. Accepted for publication Mar 09, 2016. doi: 10.21037/jgo.2016.04.01 View this article at: http://dx.doi.org/10.21037/jgo.2016.04.01

Introduction

Biphenotypic hepatocellular carcinoma-cholangiocarcinoma (HCC-CC) comprises an estimated 1–6.5% of primary liver neoplasms (1). Although this entity does demonstrate pathologic features of its well-established biphenotypic

counterparts, the characteristics of this neoplasm make diagnosis challenging using conventional radiologic imaging and serologic markers. Moreover, accurate prognostic information is affected by the low frequency of this tumor, which restricts available clinical information even within large medical centers (2-20).

There are numerous genetic and risk factors important for hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) separately, which have yet to be addressed in HCC-CC (17-22). Prior studies have examined the role of cytoskeletal stability, apoptosis, and the inflammatory cascade in HCC-CC (4-16). Additionally, as HCC-CC poses a diagnostic dilemma for radiologists, tumor specific biomarker may assist in the diagnosis of this neoplasm and prognostic assessment (23,24).

In this study, we evaluate the utility of a genetic database to identify potential biomarkers for biphenotypic HCC-CC using shared genetic characteristics.

Methods

Variables

We initially evaluated the pathologic subtypes of HCC-CC, HCC and CC (25,26). Pathologic subtypes for HCC-CC included classical and stem-cell. Pathologic subtypes for HCC included: fibrolamellar, scirrhous, sarcomatoid and lympho-epithelial. Subtypes for CC included: intraductal papillary, intestinal-type, clear, squamous and small cell.

After performing our literature search, we identified risk factors relevant to HCC-CC, HCC alone and CC alone (12-15,17-22). Among these risk factors, cirrhosis, hepatitis B virus (HBV) and hepatitis C virus (HCV) viral infections are evaluated risk factors for HCC-CC (12-15,17-20). For HCC alone, the aforementioned risk factors were included as were the following: portal hypertension, alcoholic fatty liver, aflatoxin, peliosis hepatitis, autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC), granulomatous hepatitis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), hemochromatosis (HCM), glycogen storage disease, Wilson's disease, porphyria cutanea tarda (PCT), alpha-1 antitrypsin, tyrosinemia, portal vein thrombosis, Budd-Chiari syndrome. For CC we evaluated the following variables: primary sclerosing cholangitis (PSC), cystic disease of the liver, biliary cyst, choledochal cyst, Caroli disease, other congenital malformation of the bile ducts, other congenital malformations of the gall bladder, cholangitis, schistosomiasis, opisthorchiasis, clonochiasis, recurrent cholangitis, and biliary stricture.

Genetic database

To evaluate the genetic associations with each variable we

utilized GeneCards[®], The Human Gene Compendium (http://www.genecards.org) (27-33). Our initial search was performed on HCC alone, CC alone, and finally HCC-CC. Next, we evaluated the risk factors mentioned above utilizing the same compendium database. We then evaluated each possibly biomarkers in accordance to HCC alone, CC alone, and finally HCC-CC. All results were recorded and each gene was scrutinized manually, independent of the search results.

During our manual assessment of each gene we evaluated gene function, pathway and interaction, association with other genes, cellular location, genomic location, and existing therapeutic targets. The results of our search were then entered into the Pathway Interaction Database from the National Cancer Institute (PID-NCI) (http://pid.nci.nih.gov), to generate a biomolecule interaction map.

Results

Overall genetic characteristics

The results of our query yielded 690 genes for HCC, 98 genes for CC and 50 genes for HCC-CC. A summary of the search results for these searches can be visualized in *Table S1*. Genes depicted in this analysis demonstrate the role of hormonal regulation, embryonic development, cell surface adhesion, cytokeratin stability, mucin production, metalloproteinase regulation, Ras signaling, metabolism and apoptosis. *Table 1* depicts the relationship between these genes, the genomic and cellular location. These genes were integrated into a PID-NCI biomolecule interaction map (*Figure S1*), demonstrating an overview of the interactions between each gene for HCC-CC.

Gamma-glutamyl transpeptidase (GGT) appeared to have the highest number of associated risk factors (20), followed by the cytokeratin-related genes (KRT7, 8, 9, 18 and 19) (4, 5, 8, 7 respectively). Alkaline phosphatase (ALP) related genes (*ALPL*, *ALPP*, *ALPPL2*) also had a high number of associated etiologies (4, 7 and 4 respectively) (*Table 1*). The genetic location for genes involved in hormonal regulation demonstrated a genetic location of 11p15. Cell adhesion molecules hepatocyte growth factor (HGF) and mesenchymal epithelial transition (MET) demonstrated a genetic location of 7p and genes involved in mucin production 11p15.5. Overall cytokeratin genes demonstrated a genetic location of 12q13, with the exception of KRT19, with a location of 17q21.

Mok et al. Genetic database and HCC-cholangiocarcinoma

Table 1 Genes and potential biomarkers identified for HCC-CC,HCC, CC and associated conditions

Conditions	Total genes
HCC-CC	50
HCC	690
HCC pathologic subtypes	000
Fibrolamellar HCC	5
Scirrhous HCC	2
Sarcomatoid HCC	11
	9/
HCC risk factors	54
Cirrhosis	352
Portal hypertension	30
	00
Henatitis	070
Hepatitis B	203
Toxin	290
Alcoholic fatty liver	30
	6
Poliosis bonotis	0
	2
	206
Primary biliary cirrhosic	118
Granulomatous, benatitis	110
Motobolio	11
Fotty liver diagona	105
Nonalcoholia staatahanatitia	125
Homochromotocic	50
	52
Wilson diseases	52
	20
	20
	20
Vaccular	15
Portel vein thrembesis	0
Portal vein thrombosis	9
	5
	90
CC pathologic subtypes	0
	2
	8
	12
Signet-ring CC	U
Squamous Cell CC	54
Small cell CC	39

Table 1 (continued)

Table 1 (continued)

Conditions	Total genes						
CC risk factors							
Primary sclerosing cholangitis	41						
Congenital							
Cystic disease of liver	97						
Biliary cyst	20						
Choledochal cyst	8						
Caroli disease	2						
Other congenital malformations of bile ducts	1						
Other congenital malformations of gallbladder	1						
Infectious							
Cholangitis	58						
Schistosomiasis	43						
Opisthorchiasis	12						
Clonorchiasis	12						
Recurrent cholangitis	7						
Anatomic							
Biliary stricture	2						
HCC-CC, hepatocellular carcinoma-cholangiocarcinoma: HCC							

hepatocellular carcinoma; CC, cholangiocarcinoma.

Cell adhesion molecules (HGF and MET) are located in the extracellular matrix (ECM) and cell membrane. Cytokeratin molecules are expressed in the cellular membrane, Golgi apparatus, and nucleus, except for KRT19, located in the ECM and cellular membrane. Mucin production genes MUC2 and MUC5AC localize to the ECM. Metalloproteinase, membrane metalloendopeptidase (MME) and reversion-inducing-cysteine-rich protein with kazal motifs (RECK), were located in the ECM and cell membrane, while MMP7 and tissue inhibitor of metalloproteinases 3 (TIMP3) were located in the ECM and Nucleus. Gene *ALPL*, *ALPP*, *ALPPL2* and *GGT* were located in all cellular locations.

The relationship of these genes to each other is summarized in *Table 1* and *Figure S1*. There appears to be a linkage between the embryonic genes and secretin (SCT). KRT18 also demonstrated some associations with the cell adhesion genes. Not surprising, Ras-signaling genes have a relation with apoptosis genes which in turn overlap with cell adhesion, cytokeratin, metabolism and metalloproteinase genes.

Pathologic subtypes

A complete listing of all genes for each pathologic subtype

is presented in Table S2. For each pathologic subtype of HCC-CC, no novel genes could be identified, likely due to extreme search specificity. A detailed examination of HCC subtypes was performed. Fibrolamellar HCC demonstrated no genetic overlap with HCC-CC. Scirrhous HCC possessed two novel genes including MET which shared a common bridge with HCC-CC. Sarcomatoid HCC demonstrated carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3) and CHD1 in common with HCC-CC. Among the pathologic subtypes of HCC, lympho-epithelial HCC had the most genetic overlap with HCC-CC possessing both cadherin (CDH1) and MET, along with ALPP, ALPL, ALPPL2, MUC2, MUC5AC, NAT2, PTGS2, SCT, catenin (cadherin-associated protein), alpha 1 (CTNNA1) and vascular endothelial growth factor C (VEGFC). This totaled 12 genes or 24% overlap with HCC-CC.

Next, the pathologic subtypes of CC were evaluated for overlap with HCC-CC. Intraductal papillary CC shares SMAD family member 4 (SMAD4), Intestinal-type CC possessed Kirsten rat sarcoma viral oncogene homolog (KRAS), KRT7, phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) and tumor protein p53 (TP53) (8% overlap) in common with HCC-CC. Numerically, signet ring CC was similar to the intraductal papillary subtype, differentially expressing 4 genes (8%) in common with HCC-CC (KRT7, MUC2, CDH1 and CEACAM5). Clear cell CC, small cell CC, and squamous cell CC share 20%, 54%, and 78% gene overlap with biphenotypic HCC-CC, respectively. Novel genes expressed by both clear cell CC and HCC-CC include 8-oxoguanine DNA glycosylase (OGG1), CDH1, fragile histidine triad (FHIT) and SMAD family member 4 (SMAD4) among others for 20% overlap with HCC-CC. Genes shared by both HCC-CC and squamous cell CC involve functions such as cytokeratin stability, apoptosis, Ras-signaling, cell adhesion, embryonic development, metalloproteinase, metabolism and tumor necrosis factor alpha pathways.

Hepatocellular carcinoma (HCC) risk factors

Known risk factors for HCC were evaluated with respect to HCC-CC. *Table 2* depicts the total number of genes available for each risk factor for HCC when evaluated separately. Cirrhosis had the highest number of genes at 352, followed by 293 for HBV and 272 for HCV. Peliosis hepatitis had the least number of associated genes.

We compared the genes in each risk factor with HCC and HCC-CC. The results of this comparison are listed

in *Table 3*. Of all the listed risk factors, cirrhosis had the highest number of gene associations with HCC [156] and HCC-CC (19 of 50 or 38%). These genes are summarized in *Table S3*. Most commonly, cirrhosis and HCC-CC differentially expressed genes related to Ras signaling [KRAS, V-Raf-1 murine leukemia viral oncogene homolog 1 (RAF1), RAASF1] and cellular metabolism [ALPP, choline kinase alpha (CHKA), GGT1 and NAT2]. Hepatitis B had 133 genes shared with HCC and 12 with HCC-CC (24%). Genes shared between HBV and HCC-CC were alphafetoprotein (AFP), MET, KRT8, KRAS, RAF1, genes for metabolism and apoptosis. Similar to HBV, HCV had a

high number of comparable genes when compared with HCC [115] and HCC-CC (9.18%). Similar to HBV, HCV demonstrated genes AFP, MET, KRAS and RAF1. Unlike HBV, HCV also demonstrated KRT18 (v. KRT8 for HBV), MMP7, TIMP3 and only GGT1 for metabolism.

In addition to HCV, autoimmune disease such as AIH and PBC demonstrated several genes in common with HCC (88 for AIH and 42 PBC) and HCC-CC [5 (10%), 9 (18%) respectively]. AIH demonstrated GPC3, KRT8, 18, KRAS, GGT1 in common with HCC-CC. When comparing genes for PBC and HCC-CC, this etiology possessed SCT, HGF, KRT7, KRT19, MUC5AC, MMP7, ALPP, CHKA and myeloid cell leukemia 1 (MCL1). Fatty liver disease had 4 genes in common with HCC-CC and 41 with HCC.

Cholangiocarcinoma (CC) risk factors

When evaluating the genes present in CC, our analysis yielded 98 genes. A summary of CC-related risk factors is summarized in *Table 2*. The highest number of genes among CC risk factors included 97 for cystic disease of the liver, 58 for cholangitis, 43 for schistosomiasis and 41 for PSC. The lowest number of genes present was found in other congenital malformations of the bile ducts and gall bladder.

As in HCC, we then compared the CC risk factors with HCC-CC, depicted in *Table 3*. Among these etiologies, cystic disease of the liver demonstrated 17 genes in common with CC and 13 of 50 with HCC-CC (26%). Such genes included all cytokeratin-related genes along with AFP, CEACAM3, SCT, MME, Ras association (RalGDS/AF-6) domain family member (RASSF1) and NAT2. Biliary cysts, demonstrated 10 genes in common with CC and 8 (16%) with HCC-CC. These results can be summarized in *Table S3*.

The next most common etiology for HCC-CC from CC was cholangitis. This risk factor demonstrated 8 genes in common with CC and 7 (14%) with HCC-CC. This risk

Table 2 Genes and biomarkers identified for HCC, CC and HCC-CC

 in correlation with pathologic subtypes and risk factors

Variables	HCC-CC	HCC	CC
Pathologic subtypes			
Fibrolamellar HCC	0	5	0
Scirrhous HCC	1	2	2
Sarcomatoid HCC	2	11	2
Lympho-epithelial-like HCC	12	94	12
Intraductal papillary CC	1	1	2
Intestinal-type CC	4	4	8
Clear cell CC	10	10	12
Signet-ring CC	4	4	5
Squamous cell CC	39	39	54
Small cell CC	27	27	39
Risk factor			
Cirrhosis	19	156	21
Portal hypertension	1	8	1
Infectious			
Hepatitis C	9	115	12
Hepatitis B	12	133	17
Cholangitis	7	24	8
Schistosomiasis	0	10	0
Opisthorchiasis	1	3	1
Clonorchiasis	0	1	0
Recurrent cholangitis	1	2	1
Metabolic			
Non-alcoholic fatty liver disease	4	41	4
Nonalcoholic steatohepatitis	1	6	1
Hemochromatosis	0	12	0
Glycogen storage diseases	0	6	0
Wilson disease	0	10	0
Porphyria cutanea tarda	0	4	0
Alpha-1 antitrypsin deficiency	0	4	0
Tyrosinemia	1	4	1
Congenital			
Cystic disease of liver	13	47	17
Biliary cyst	8	10	10
Choledochal cyst	2	3	2
Caroli disease	0	0	0
Other congenital malformations of bile ducts	0	0	1
Other congenital malformations of gallbladder	1	1	1

 Table 2 (continued)

Table 2 (continued)

× /				
Variables	HCC-CC	HCC	СС	
Autoimmune				
Autoimmune hepatitis	5	88	8	
Granulomatous hepatitis	0	4	0	
Primary biliary cirrhosis	9	42	10	
Primary sclerosing cholangitis	2	15	3	
Carcinogen				
Alcoholic fatty liver	2	15	2	
Alcohol	8	49	8	
Aflatoxin	2	6	2	
Peliosis hepatis	0	0	0	
Vascular				
Portal vein thrombosis	1	4	1	
Budd-Chiari syndrome	0	0	0	
Anatomic				
Biliary stricture	0	2	0	

HCC-CC, hepatocellular carcinoma-cholangiocarcinoma; HCC, hepatocellular carcinoma; CC, cholangiocarcinoma.

factor appeared to demonstrate several metabolic genes (ALPL, ALPP, ALPPL2 and GGT1), as well as KRT19 and MUC2. PSC demonstrated 2 (4%) genes in common with HCC-CC (KRT19 and GGT1) *vs.* 3 with CC alone. Choledochal cyst as a risk factor also demonstrated 2 (4%) genes in common with HCC-CC (SCT and PTGS2). Opisthochiasis, recurrent cholangitis, and other congenital malformations of the gall bladder demonstrated only a single gene in common with HCC-CC. All other CCrelated etiologies had no risk factors in common with HCC-CC depicted in *Table 3* and *Table S3*.

Discussion

Biphenotypic HCC-CC is a unique hepatic neoplasm expressing features of both HCC and CC. This tumor poses a diagnostic dilemma, utilizing radiologic imaging alone, and thus biomarkers would prove a valuable resource in this condition (23,24). To identify potential biomarkers that could assist clinicians in the diagnosis of this unique primary liver cancer, we utilized GeneCards[®], the Human Gene Compendium.

Prior studies have validated the use of this database in the study of several medical conditions (27-33). Specifically, this compendium has assisted researchers in identifying

Gene function	Gene name	Etiologies with gene (total)	Genetic location	Cellular location	Function
Embryonic	AFP	6	4q13.3	ECM and cytoskeleton	Plasma protein produced by yolk sac
	CEACAM3	2	19q13	Cell membrane	Transmembrane signaling molecule to direct phagocytosis of bacteria
	GPC3	2	Xq26	Cell membrane, cytosol, golgi, lysozome	Core protein anchored to the cytosolic membrane
Hormonal	CCKBR	2	11p15.4	Cell membrane	Receptor for CCKB
	SCT	7	11p15.5	ECM	Endocrine hormone secretin
Cell adhesion	HGF	5	7q21.1	ECM to cell membrane	Tyrosine kinase cellular signaling
	MET	4	7q31	ECM to cell membrane	Tyrosine kinase cellular signaling
Cytokeratin	KRT7	4	12q13.13	Cellular membrane, golgi, nucleus	Neutral Proteins involved in differentiation
	KRT8	5	12q13.13	Cellular membrane, golgi, nucleus	Neutral Proteins involved in differentiation
	KRT18	8	12q13	Cellular membrane, golgi, nucleus	Neutral Proteins involved in differentiation
	KRT19	7	17q21.2	ECM to cell membrane	Neutral Proteins involved in differentiation
Mucin productior	n MUC2	2	11p15.5	ECM, golgi	High molecular weight glycoprotein in gut barrier function
	MUC5AC	3	11p15.5	ECM	Protein coding gene for ECM
Metalloproteins	MME	2	3q25.2	ECM, cell membrane	Endopeptidase that cleaves several glycoproteins
	MMP7	5	11q21	ECM, nucleus	Breakdown of ECM
	RECK	3	9p13.3	ECM, cell membrane	Acted upon by cancer leading to negative regulation of MMP
	TIMP3	4	22q12.3	ECM, nucleus	Peptidases for degradation of ECM
Ras signaling	KRAS	5	12p12.1	Cell membrane, cytosol, nucleus	Promoter leading GTPase activation
	RAF1	3	3p25	Mitochondrion, cytosol, nucleus	MAP kinase > Ras signaling
	RASSF1	2	3p21.3	Cytoskeleton, nucleus	Tumor suppressor leading to hypermethylation of CpG islands, accumulation of cyclin-D that causes cell cycle arrest
Metabolism	ALPL	4	-	All	Metabolism
	ALPP	7	2q37.1	All	Metabolism
	ALPPL2	4	-	All	Metabolism
	CHKA	3	11q13.1	Cytoskeleton, cytosol	Synthesis of phosphatidylcholine
	GGT1	20	-	All	Metabolism
	NAT2	5	8p22	Cytosol	Deactivate arylamine and hydrazine drugs and carcinogens, also N-Acetyltransferase
	PTGS2	2	1q25	ER, nucleus	COX, prostaglandin biosynthesis
Apoptosis	MCL1	3	1q21	Mitochondrion, cytosol, Nucleus	Encodes anti-apoptotic protein (BCL-2)
	PIK3CA	3	3q36.3	Cell membrane, cytosol	Oncogene ATP to phosphorylate PtdIns
	TERT	3	5p15.33	Nucleus	Maintains length of telomeres

HCC-CC, hepatocellular carcinoma-cholangiocarcinoma; ECM, extracellular membrane; ER, endoplasmic reticulum; MMP, matrix metalloproteinase; GTPase, guanyl triphosphatase; COX, cyclo-oxygenase; BCL-2, B-cell lymphoma 2; ATP, adenosine tri-phosphate.

genes vital to the prognosis and pathogenesis of multiple malignancies, as well as non-neoplastic liver diseases (30-33). A similar concept has been employed in the setting of HCC-CC in a recent abstract analyzed the genetic composition of 15 pathologic specimens of HCC-CC (34). These investigators descriptively identified genetic markers present in their specimens and compared them with HCC, CC and HCC-CC information.

Our study identifies KRAS, MET, PIK3CA and TP53 as potential biomarkers for HCC-CC. Each of these genes is involved in Ras-signaling, a process vital to oncogenesis. MET factor and HGF encode tyrosine kinases, which allow for further cell signaling from the ECM into the cytoplasm. Furthermore, these gene products also interact with PI3K, which via signaling cascades also activates Ras. Both MET and PIK3CA have been evaluated in prior study to help determine prognostic and chemotherapeutic information in non-small cell lung cancer, breast, gastric, among other cancers (35,36). The MET-HGF complex has been evaluated previously in HCC, CC and HCC-CC, the latter via a small study of 30 pathologic specimens (37). This study demonstrated excess expression of c-met solely in the CC portion of combined HCC-CC.

A similar specificity for the CC portion of biphenotypic HCC-CC has also been described in the literature with regard to KRAS (9,38). The KRAS oncogene has previously been suggested as a clinical biomarker for a variety of abdominal neoplasms, including HCC-CC (34,38). Cancers other than HCC-CC associated with differential expression of KRAS, include colorectal and pancreatic cancer. In colon cancer, KRAS expression has been shown to provide useful information regarding treatment strategies (39).

Biomarkers previously associated with HCC-CC were confirmed in this study and included: AFP, CEA, GGT1, cytokeratin, mucin and metalloproteinase genes (7-10,12-15,19). Among these biomarkers, GGT, AFP, and CEA have been non-specific in the setting of HCC-CC (25). In contrast, cytokeratin, mucin production, and metalloproteinase molecules appear to be valuable to the diagnosis and prognosis of HCC-CC (7-10,12-15,19,25). Specifically, they appear to be useful in differentiating between classical and stem cell subtypes of HCC-CC. Such determinations can be facilitated utilizing cytokeratin signaling biomarkers (7-10,12-15,19,25). These serologic markers also appear to be useful in colorectal and breast neoplasms, with similar application (40).

The overlap between HCC-CC and HCC's pathologic subtypes was determined in our analysis to range between

0-24%, while CC subtypes demonstrated an overlap of 2-78%. Given the significantly larger genetic overlap between the subtypes of CC and HCC-CC, it would appear that HCC-CC is more likely a pathologic subtype of CC with features of HCC. Recently, overall survival for HCC and HCC-CC (41,42) has been assessed using the Surveillance, Epidemiology, and End Results (SEER) database. HCC-CC demonstrated an overall 1-, 3-, and 5-year survival rates of 26.5%, 12.4% and 9.2% (43). Additional analysis evaluating post-transplant prognosis documented a survival rate of 46% for HCC-CC as compared with 78% survival for HCC (44). When reviewing these results with prior studies of survival results for HCC and CC, the survival percentiles of HCC-CC are more consistent with CC (41-45). For CC, the survival after transplantation has been estimated at 22-42% of CC and 0-18% for CC without transplantation. The prognostic comparison and genetic overlap with CC suggests a shared pathogenesis for HCC-CC and CC.

Novel serologic markers identified in our analysis involve pathogenic roles in embryonic development, apoptosis and metabolism. The first of these unique genes, GPC3, codes for a cell surface heparin sulfate proteoglycan. This molecule inhibits the dipeptidyl peptidase activity of dipeptidyl peptidase-4 (DPP4), vital in apoptosis and growth regulation of several tissues. This gene has previously been utilized as a serologic marker for prognosis of HCC after curative resection (46). Down-regulation of this gene is correlated with uncontrolled cellular growth. Expression of this gene in the setting of HCC-CC has yet to be evaluated.

Our biomarker analysis also identifies were two genes involved in cellular metabolism. Choline kinase alpha (CHKA), encodes for enzymes that regulate the synthesis of phosphatidylcholine. The second gene, PTGS2, in combination with CHKA, is an additional metabolic target regulating biosynthesis of cyclo-oxygenase 2 (COX-2). The COX-2 enzyme is involved in inflammation and mitogenesis and has been implicated as a serologic marker for predicting the prognosis of prostate, breast and several other malignant conditions (47). Other biomarkers that may be valuable in obtaining prognostic information include two apoptosis genes, MCL1 and telomerase reverse transcriptase (TERT).

Over expression of telomerase reverse transcriptase (TERT) leads to cessation of telomere shortening, hence being associated with oncogenesis. Another apoptotic gene MCL1, encodes for an anti-apoptotic protein, which is a member of the Bcl-2 family. Alternate splicing of this

protein leads to isoform1, which inhibits apoptosis directly. Both molecules appear to be useful in early detection of various malignancies, including HCC (48).

N-acetyltransferase 2 (NAT2) is also identified in our analysis. NAT2 has been implicated in the activation/ inactivation of medications, as well as carcinogens. Subsequently, NAT2 may serve as a biomarker to predict the risk for drug induced liver injury (49). In prior studies of CC, genetic polymorphisms and upregulation of NAT2 have correlated with risk for CC (50). Such findings can be correlated with those listed above for KRAS and MET.

The culmination of the above genetic analysis demonstrates the utility of GeneCards in the analysis of low frequency malignancies such as HCC-CC. Not only did this genetic analysis confirm previously documented serologic markers for HCC-CC, it identifies several unique molecular targets, which may be useful in studies evaluating the pathogenesis, diagnosis, and prognosis of HCC-CC. It has also illuminated the similarity of HCC-CC with the pathologic subtypes of CC as compared to HCC. This genetic compendium also permits the creation of a map outlining relationships between several of these genes which may allow a better understanding of the pathogenesis of this rare primary neoplasm.

Despite these findings, potential weaknesses of this study include the retrospective evaluation of data collected from small numbers of patients. However utilizing a vast database, such as GeneCards[®], The Human Gene Compendium, allows for an expanded evaluation of a rare disease. This approach has been validated in the past in similar neoplasms as well as more common liver disease. The ability to analyze a complex series of genetic components, which would be otherwise time and labor intensive, is an added benefit of this approach.

Although several novel cellular components and pathways have been identified as potential biomarkers for HCC-CC, the utility of each of these components or the combination of these biomarkers in clinical diagnosis and prognosis have yet to be determined. Nonetheless, employing large relational genetic databases such as GeneCards for an initial analysis will permit more focused investigation into the utility of biomarkers as well as guide studies of pathogenesis and future therapies.

Acknowledgements

None.

Footnote

Conflicts of Interest: AB Elfant is a consultant for Boston Scientific. The other authors have no conflicts of interest to declare.

References

- Wittekind C, Fischer HP, Ponchon T. Combined hepatocellular and cholangiocarcinoma. In: Hamilton SR, Aaltonen LA, editors. World Health Organization classification of tumours: pathology and genetics of tumours of the digestive system. Lyon: IARC Press, 2000:181-2.
- Park H, Choi KH, Choi SB, et al. Clinicopathological characteristics in combined hepatocellularcholangiocarcinoma: a single center study in Korea. Yonsei Med J 2011;52:753-60.
- Sasaki M, Sato H, Kakuda Y, et al. Clinicopathological significance of 'subtypes with stem-cell feature' in combined hepatocellular-cholangiocarcinoma. Liver Int 2015;35:1024-35.
- Tang D, Nagano H, Nakamura M, et al. Clinical and pathological features of Allen's type C classification of resected combined hepatocellular and cholangiocarcinoma: a comparative study with hepatocellular carcinoma and cholangiocellular carcinoma. J Gastrointest Surg 2006;10:987-98.
- Yano Y, Yamamoto J, Kosuge T, et al. Combined hepatocellular and cholangiocarcinoma: a clinicopathologic study of 26 resected cases. Jpn J Clin Oncol 2003;33:283-7.
- Ng IO, Shek TW, Nicholls J, et al. Combined hepatocellular-cholangiocarcinoma: a clinicopathological study. J Gastroenterol Hepatol 1998;13:34-40.
- Hauben E, Struyf N, Michielsen P, et al. Cytokeratin profiles and mucin secretion in combined hepatocellularcholangiocarcinoma. A case report. Pathol Res Pract 1996;192:488-91.
- Tickoo SK, Zee SY, Obiekwe S, et al. Combined hepatocellular-cholangiocarcinoma: a histopathologic, immunohistochemical, and in situ hybridization study. Am J Surg Pathol 2002;26:989-97.
- Coulouarn C, Cavard C, Rubbia-Brandt L, et al. Combined hepatocellular-cholangiocarcinomas exhibit progenitor features and activation of Wnt and TGFβ signaling pathways. Carcinogenesis 2012;33:1791-6.
- 10. Itoyama M, Hata M, Yamanegi K, et al. Expression of both hepatocellular carcinoma and cholangiocarcinoma

Mok et al. Genetic database and HCC-cholangiocarcinoma

phenotypes in hepatocellular carcinoma and cholangiocarcinoma components in combined hepatocellular and cholangiocarcinoma. Med Mol Morphol 2012;45:7-13.

- Cazals-Hatem D, Rebouissou S, Bioulac-Sage P, et al. Clinical and molecular analysis of combined hepatocellularcholangiocarcinomas. J Hepatol 2004;41:292-8.
- Chu KJ, Lu CD, Dong H, et al. Hepatitis B virusrelated combined hepatocellular-cholangiocarcinoma: clinicopathological and prognostic analysis of 390 cases. Eur J Gastroenterol Hepatol 2014;26:192-9.
- Zhan Q, Shen BY, Deng XX, et al. Clinical and pathological analysis of 27 patients with combined hepatocellular-cholangiocarcinoma in an Asian center. J Hepatobiliary Pancreat Sci 2012;19:361-9.
- Mourad W, Khalaf H, Tulbah A, et al. Clinicopathologic features of hepatic neoplasms in explanted livers: a single institution experience. Ann Saudi Med 2007;27:437-41.
- 15. Okuda H, Shiratori K, Yamamoto M, et al. Clinicopathologic features of patients with intrahepatic cholangiocarcinoma who are seropositive for alphafetoprotein-L3 and those with combined hepatocellular and cholangiocarcinoma. J Gastroenterol Hepatol 2006;21:869-73.
- Fujii H, Zhu XG, Matsumoto T, et al. Genetic classification of combined hepatocellularcholangiocarcinoma. Hum Pathol 2000;31:1011-7.
- 17. Koh KC, Lee H, Choi MS, et al. Clinicopathologic features and prognosis of combined hepatocellular cholangiocarcinoma. Am J Surg 2005;189:120-5.
- Jarnagin WR, Weber S, Tickoo SK, et al. Combined hepatocellular and cholangiocarcinoma: demographic, clinical, and prognostic factors. Cancer 2002;94:2040-6.
- Maeda T, Adachi E, Kajiyama K, et al. Combined hepatocellular and cholangiocarcinoma: proposed criteria according to cytokeratin expression and analysis of clinicopathologic features. Hum Pathol 1995;26:956-64.
- 20. Tomimatsu M, Ishiguro N, Taniai M, et al. Hepatitis C virus antibody in patients with primary liver cancer (hepatocellular carcinoma, cholangiocarcinoma, and combined hepatocellular-cholangiocarcinoma) in Japan. Cancer 1993;72:683-8.
- European Association For The Study Of The Liver; European Organisation For Research And Treatment Of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2012;56:908-43.
- 22. Khan SA, Davidson BR, Goldin RD, et al. Guidelines for

the diagnosis and treatment of cholangiocarcinoma: an update. Gut 2012;61:1657-69.

- 23. Fowler KJ, Sheybani A, Parker RA 3rd, et al. Combined hepatocellular and cholangiocarcinoma (biphenotypic) tumors: imaging features and diagnostic accuracy of contrast-enhanced CT and MRI. AJR Am J Roentgenol 2013;201:332-9.
- 24. Wells M, Venkatesh S, Johnson G, et al. Biphenotypic Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma: Imaging Features on MRI, CT, Ultrasound and PET. Radiological Society of North America 2014 Scientific Assembly and Annual Meeting, Chicago IL. http://archive.rsna.org/2014/14007120.html. Accessed January 4, 2015
- 25. O'Connor K, Walsh JC, Schaeffer DF. Combined hepatocellular-cholangiocarcinoma (cHCC-CC): a distinct entity. Ann Hepatol 2014;13:317-22.
- Wanless IR. International consensus on histologic diagnosis of early hepatocellular neoplasia. Hepatol Res 2007;37 Suppl 2:S139-41.
- 27. Rappaport N, Twik M, Nativ N, et al. MalaCards: a comprehensive automatically-mined database of human diseases. Curr Protoc Bioinformatics 2014;47:1.24.1-19.
- 28. Stelzer G, Dalah I, Stein TI, et al. In-silico human genomics with GeneCards. Hum Genomics 2011;5:709-17.
- 29. Safran M, Dalah I, Alexander J, et al. GeneCards Version 3: the human gene integrator. Database (Oxford) 2010;2010:baq020.
- Kim JM, Kim HG, Han JM, et al. The herbal formula CGX ameliorates the expression of vascular endothelial growth factor in alcoholic liver fibrosis. J Ethnopharmacol 2013;150:892-900.
- 31. Zhou T, Wang T, Garcia JG. Genes influenced by the non-muscle isoform of Myosin light chain kinase impact human cancer prognosis. PLoS One 2014;9:e94325.
- Sharma G, Agarwal SM. Identification of critical microRNA gene targets in cervical cancer using network properties. Microrna 2014;3:37-44.
- Baasiri RA, Glasser SR, Steffen DL, et al. The breast cancer gene database: a collaborative information resource. Oncogene 1999;18:7958-65.
- Keller JW, Doyle MM, Wang-Gilliam A, et al. Analysis of the genomic profile of biphenotypic tumors compared to cholangiocarcinoma and hepatocellular carcinoma. J Clin Oncol 2014;32:abstr 226.
- 35. Santarpia M, Altavilla G, Margeli M, et al. PIK3CA mutations and BRCA1 expression in breast cancer: potential biomarkers for chemoresistance. Cancer Invest

2008;26:1044-51.

- Sierra JR, Tsao MS. c-MET as a potential therapeutic target and biomarker in cancer. Ther Adv Med Oncol 2011;3:S21-35.
- Varnholt H, Asayama Y, Aishima S, et al. C-met and hepatocyte growth factor expression in combined hepatocellular and cholangiocarcinoma. Oncol Rep 2002;9:35-41.
- 38. Imai Y, Oda H, Arai M, et al. Mutational analysis of the p53 and K-ras genes and allelotype study of the Rb-1 gene for investigating the pathogenesis of combined hapatocellular-cholangiocellular carcinomas. Jpn J Cancer Res 1996;87:1056-62.
- Cavallini A, Valentini AM, Lippolis C, et al. KRAS genotyping as biomarker in colorectal cancer: a comparison of three commercial kits on histologic material. Anticancer Res 2010;30:5251-6.
- Ohlsson L, Israelsson A, Öberg Å, et al. Lymph node CEA and MUC2 mRNA as useful predictors of outcome in colorectal cancer. Int J Cancer 2012;130:1833-43.
- Nathan H, Pawlik TM, Wolfgang CL, et al. Trends in survival after surgery for cholangiocarcinoma: a 30-year population-based SEER database analysis. J Gastrointest Surg 2007;11:1488-96; discussion 1496-7.
- 42. Weimann A, Varnholt H, Schlitt HJ, et al. Retrospective analysis of prognostic factors after liver resection and transplantation for cholangiocellular carcinoma. Br J Surg 2000;87:1182-7.
- 43. Wang J, Wang F, Kessinger A. Outcome of combined

Cite this article as: Mok SR, Mohan S, Grewal N, Elfant AB, Judge TA. A genetic database can be utilized to identify potential biomarkers for biphenotypic hepatocellular carcinoma-cholangiocarcinoma. J Gastrointest Oncol 2016;7(4):570-579. doi: 10.21037/jgo.2016.04.01 hepatocellular and cholangiocarcinoma of the liver. J Oncol 2010;2010.

- Groeschl RT, Turaga KK, Gamblin TC. Transplantation versus resection for patients with combined hepatocellular carcinoma-cholangiocarcinoma. J Surg Oncol 2013;107:608-12.
- 45. Nagorney DM, Kendrick ML. Hepatic resection in the treatment of hilar cholangiocarcinoma. Adv Surg 2006;40:159-71.
- 46. Yang SL, Fang X, Huang ZZ, et al. Can serum glypican-3 be a biomarker for effective diagnosis of hepatocellular carcinoma? A meta-analysis of the literature. Dis Markers 2014;2014:127831.
- 47. Wang D, Guo XZ, Li HY, et al. Prognostic significance of cyclooxygenase-2 protein in pancreatic cancer: a metaanalysis. Tumour Biol 2014;35:10301-7.
- 48. El-Mazny A, Sayed M, Sharaf S. Human telomerase reverse transcriptase messenger RNA (TERT mRNA) as a tumour marker for early detection of hepatocellular carcinoma. Arab J Gastroenterol 2014;15:68-71.
- 49. Higuchi N, Tahara N, Yanagihara K, et al. NAT2 6A, a haplotype of the N-acetyltransferase 2 gene, is an important biomarker for risk of anti-tuberculosis drug-induced hepatotoxicity in Japanese patients with tuberculosis. World J Gastroenterol 2007;13:6003-8.
- 50. Prawan A, Kukongviriyapan V, Tassaneeyakul W, et al. Association between genetic polymorphisms of CYP1A2, arylamine N-acetyltransferase 1 and 2 and susceptibility to cholangiocarcinoma. Eur J Cancer Prev 2005;14:245-50.

Gene symbol 1 2 3 4 5 6 7	HCC MET TP53 CDH1 CTNNB1 KRT7 PCNA	Pathologic sub HCC-CC MET KRT7 KRT19 VEGFC CDKN1B MUC2	type Cholangiocarcinoma MUC1 AC019117.1 AFP ASPH CCNB1 CDKN1B
8 9 10 11 12 13 14 15	NME1 NKX2-1 KRT19 CDKN2A RASSF1 CCND1 CDKN1A FHIT	MUC5AC AFP HGF CDX2 PTGS2 CCNB1 TIMP3 OGG1	CEACAM3 CEACAM6 CFLAR ERBB2 HGF KRT20 KRT19 KBT7
16 17 18 19 20 21 22 23	CASP8 KRT18 KRT8 PTEN VEGFC CEACAM5 MKI67 AXIN1	CFLAR MAGEA3 CEACAM6 MCL1 ASPH PTPN3 TP53 CDH1	LGALS3 MAGEA3 MCL1 MET MUC2 MUC17 MUC5AC MUC4
24 25 26 27 28 29 30 31	IFI27 BIRC5 CDKN1B TERT MUC2 TYMP CEACAM3 TGFBR2	PIK3CA RASSF1 FHIT KRT18 KRT8 CEACAM5 KRAS TERT	OGG1 PTGS2 THBS1 TIMP3 VEGFC PTPN3 GPC3 KRAS
32 33 34 35 36 37 38 39	MMP2 VEGFA BCL2 SMAD4 BCL2L1 TGFA JUP IGF2R	SMAD4 TNFSF10 MMP7 PSG2 GPC3 CTNNA1 PTK2 ALPP	ALPL ALPP ALPPL2 APOC1P1 ASB16-AS1 BRAF C7orf55
40 41 42 43 44 45 46 47	CYP1A1 MMP9 RARB KRT14 TNFSF10 APC BAX EGF	MME CHKA RAF1 EBAG9 NAT2 GGT1 CCKBR RECK	CASP9 CCKBR CDH1 CEACAM5 CGB CHML CHKA COX16
48 49 50 51 52 53 54 55	HRAS MMP14 MMP7 MUC5AC PSG2 SERPINB5 ABCB1 AFP	ALPPL2 ALPL SCT HCC	CTNNA1 CXorf40A DAPK1 DMRTC1 DYT10 EBAG9 EIF4E FHIT
56 57 58 59 60 61 62 63	CTNNA1 GSTP1 CDKN3 HGF TGFB1 BRCA2 CDX2 KRAS		GGT1 KRT18 KRT8 KRTCAP3 LINC00543 LRRC26 MAGEA10 MAPK14
64 65 66 67 68 69 70 71	TIMP2 AKT1 ANGPT2 AMACR CCNA2 GRP IGF1R PLAU		MIR200C MIR214 MME MMP7 MUC5B NAT1 NAT2 NCAM1
72 73 74 75 76 77 78 79	RB1 SLC2A1 CDK2 CDK4 EPCAM HIF1A MDM2 MYC		NRAS OVCA2 PET100 PIK3CA PLA2G4A PNLIP PPFIBP2 PSG2
80 81 82 83 84 85 86 87	PLAUR PTCH1 SETD2 PTGS2 MTUS1 CAV1 CASP3 CEACAM7		PTK2 RAF1 RASSF1 RECK SCT SLPI SMAD4 SPANXA2
88 89 90 91 92 93 94 95	DNMT1 ERBB3 FASLG FAS KDR PTK2 TP73 HNF1A		SSX2B TBC1D3H TERT TFF1 TIGD2 TMEM139 TMEM256 TNFSF10
97 98 99 100 101 102 103 104	ALPP ABCC1 CCNB1 CDH2 CDH3 DPYD TERC CTAG1B CYP2E1		TNFRSF1B TNFRSF1A TP53
105 106 107 108 109 110 111 112	MTOR BSG CEACAM1 CTNND1 HBEGF HSPB1 JUN LGALS1		
113 114 115 116 117 118 119 120	MAPK1 MME SKP2 FN1 TWIST1 CHKA CRAT ENG		
121 122 123 124 125 126 127 128 129	GSTT1 SERPINB2 TIMP3 AHR CD34 IGF2 MAGEA4 PTK2B SERPINB3		
130 131 132 133 134 135 136 137	SNAI2 CYCS E2F1 FGF2 GSTM1 ITGB1 MVP NOTCH1		
138 139 140 141 142 143 144 145	OGG1 PARP1 PDGFRA RAF1 STK11 GPC3 BAK1 CFLAR		
140 147 148 149 150 151 152 153 154	FOS HPSE PRKCA RARA RHOA STAT3 BAGE IFNA1		
155 156 157 158 159 160 161 162	MAGEA1 ABCG2 AREG CD80 CD82 CDK1 CDKN2B DPP4		
163 164 165 166 167 168 169 170	EPOR ERCC1 ETS1 FGF1 FGF3 HDAC9 HLA-A KRT1		
172 173 174 175 176 177 178 179	PLG SPINK1 TNFRSF10B TXN RHOC SPP1 ANGPT1 AR		
180 181 182 183 184 185 186 187	CD46 CSF1R EBAG9 FGFR1 H19 HSPA1A ITGAV KRT13		
188 190 191 192 193 194 195 196	MAPK3 MAPK3 NAT2 SMAD2 SP1 TAP1 TFAP2A TGFBR1 TFF3		
197 198 199 200 201 202 203 204	TIMP1 CDKN1C GGT1 MAGEA3 MMP12 WNT1 ACP1 ANPEP		
205 206 207 208 209 210 211 212	ANXA2 CD86 CEACAM6 CXADR DNASE1 EGR1 EZR FASN		
213 214 215 216 217 218 219 220 221	GJA1 HSPA4 ILK ING1 IRF1 ITGA6 NEU1 NRP1 PSMB9		
222 223 224 225 226 227 228 229	PXN SOD2 TEK VTN XIAP HGFAC KLF6 MT1G		
231 232 233 234 235 236 237 238	TNFRSF6B TPX2 G6PC ANXA5 APAF1 AURKA CASP1 CCKBR		
239 240 241 242 243 244 245 246	CLU CREB1 CTTN CYR61 DCN GAPDH GNRHR GZMB		
247 248 249 250 251 252 253 254 255	HDAC1 HNF4A IFNA2 IL6R MAP2K1 MEN1 NQO1 PTTG1 RFC11		
255 256 257 258 259 260 261 262 263	RECK SSTR2 TAP2 TGFB2 TGIF1 TNFRSF10A ABCC2 ADAMTSL1 ALDH2		
264 265 266 267 268 269 270 271	ANXA1 APOD BMP6 BMP7 CALR CCR7 CDC25A CXCL12		
272 273 274 275 276 277 278 279	CYP27B1 CYP1B1 DCK EDNRA EPHB4 HNF1B LINC01194 MCL1		
280 281 282 283 284 285 286 286 287 288	MTA1 NFKBIA NR1H2 PDGFB POMGNT2 PPP2R4 RUNX3 SMARCA4 ARG1		
289 290 291 292 293 294 295 296	FOXM1 HIC1 ADCY10 ALPPL2 ATP7B BAD CADM1 CD4		
297 298 299 300 301 302 303 304 305	CDH13 COPS5 CXCR2 CYP17A1 CYP3A4 DIABLO DNMT3B ENO1 EXH2		
306 307 308 309 310 311 312 313	GDF15 HIST4H4 HSPA5 IRS1 LEPR PIGR PIK3CG SHC1		
314 315 316 317 318 319 320 321 322	SMAD7 STMN1 TSG101 VIPR1 ALB ALDOB ALDH3A1 CLDN10 DIO3		
323 324 325 326 327 328 329 330	FABP1 HDGF HFE IFNAR2 LAPTM4B MDK REG3A RSF1		
331 332 333 334 335 336 337 338 220	SERPINA7 AMFR AURKB BCL10 CCNG1 CDC6 CSK CYP2A6 DDIT2		
339 340 341 342 343 344 345 346 347	DDIT3 DIO2 EDNRB EPAS1 F2R FGFR4 FST GJB1 GJB2		
348 349 350 351 352 353 354 355	HMGA1 IDO1 IFNB1 INSR KISS1 REG1A RHOD S100A8		
356 357 358 359 360 361 362 363 364	SPINT1 TCF7L2 VCP VDR ZEB2 CCL20 CD81 DLC1 E2		
365 366 367 368 369 370 371 372	F2 FGL1 FZD7 GLUL GNMT GPT LECT2 MAGEC2 MAT1A		
373 374 375 376 377 378 379 380	MAT2A PEG10 PINX1 PSMD10 TAT UGT1A7 ABCC3 CCR6		
382 383 384 385 386 387 388 389	CIITA CTLA4 CXCL9 DNAH8 DNMT3A DUSP1 EEF1A1 EIF2AK2		
390 391 392 393 394 395 396 397 398	EPHX1 ETS2 F13A1 FADD GHRL HBB HPN HSP90B1 IL15		
399 400 401 402 403 404 405 406 407	LDLR MBD4 MGAT5 MTAP MUTYH PIK3R1 PIN1 PKM PNP		
407 408 409 410 411 412 413 414 415	PNP POLR3K PPARD PPIG PRDX5 PRKCB PSEN2 PSMB8 RXRA		
416 417 418 419 420 421 422 423	SERPINA1 SFRP1 SMAD3 SOAT1 ST6GAL1 TCF4 TEP1 TFDP1		
425 426 427 428 429 430 431 432	TK1 TNFSF11 TXNRD2 ADH1B AIFM1 AKR1A1 ALPL BID		
433 434 435 436 437 438 439 440 441	CDH17 CISH CYP1A2 EIF2AK3 F2RL2 F9 FUCA1 GAL3ST1		
442 443 444 445 446 447 448 449	GLS2 HK2 IL32 IL1RAPL2 ITGA1 JAG1 JAK1 KLRK1		
450 451 452 453 454 455 456 457 458	MAD2L1 MMP15 NOTCH4 NPM1 NR1I2 NR3C1 NTRK2 OXA1L PARK2		
 →59 460 461 461 462 463 464 465 466 	PPP2R1B PRKG1 PRLR PTPN13 PTPN3 RPS6KB1 RUNX1 SCT		
467 468 469 470 471 472 473 474	SERPINF1 STAT5B STC1 SULT2A1 TFPI2 UGT1A VIP XPC		
476 477 478 479 480 481 482 483	ABCA1 ACP5 ALDH9A1 ARMC10 ASGR2 ASS1 ATF1 BECN1		
484 485 486 487 488 489 490 491	CBS CCNE1 CCR1 CD58 CD63 CDKN2C CSE1L CSN1S1		
- 493 494 495 496 497 498 499 500	CYP20A1 EFNB2 EHHADH EIF6 ELK1 ENPP2 EPHX2 EPRS		
501 502 503 504 505 506 507 508 509	F10 FBN1 GCLC GLS GRB2 GSTA1 GSTA2 GSTA4		
510 511 512 513 514 515 516 517	GSTA3 IKBKB IL6 ITGAL ITGA5 JUNB KISS1R KRIT1		
518 519 520 521 522 523 524 525	MGAT3 MLXIPL MMP16 PDLIM5 PLA2G6 PML POLR2L PPARA		
526 527 528 529 530 531 532 533	PRDM2 PROM1 PTMA RBP4 SCARB1 SHBG SLC11A2 SLC2A2		
534 535 536 537 538 539 540 541 542	SMAD6 SOCS3 SOX4 SRD5A2 SRF SULF1 TLR3 TNFRSF9 TSPO		
543 544 545 546 547 548 549 550	UGT1A1 UGT1A9 XBP1 YBX3 ABCB7 ABCB4 AC004862.6 ACSL4		
551 552 553 554 555 556 557 558 559	ADORA2A AICDA AHSG AKR1B10 ANAPC11 ANXA10 AOC3 APOBEC1		
560 561 562 563 564 565 566 566	ASPH ATF6 BCR BDNF BHMT BNIPL C19orf80 C9orf78		
568 569 570 571 572 573 574 575	CAPN2 CCL15 CCL19 CCL21 CCL5 CCNC CCT2 CD14		
577 578 579 580 581 582 583 584	CLEC12A COPA CREB3L3 CX3CR1 CYP2C19 CYP3A7 DACT1 DEK		
585 586 587 588 589 590 591 592 592	DEPDC5 DKK1 DLAT DLGAP5 DNAJA3 DNAJB1 ECI2 EHD4 EIF27		
594 595 596 597 598 599 600 601	ELANE ETHE1 F2RL3 F7 FAH FBP1 FOXP3 GOT1		
602 603 604 605 606 607 608 609	GOT2 HCCAT4 HCCAT3 HCCAT5 HBE1 HCRP1 HEIH HEPN1		
610 611 612 613 614 615 616 617 641	HHCM HK1 HLA-DRB1 HLF HULC IGF2BP2 INS JUND		
619 620 621 622 623 624 625 626	KLHDC2 KLKB1 KTN1 LCO LINC00261 LIPC MAGEE1 MAGECC		
627 628 629 630 631 632 633 634	MAGED2 MAGEE2 MARVELD2 METTL21B METTL21A MTO1 NDNL2 NFE2L2		
635 636 637 638 639 640 641 642 643	NR1I3 NXF1 OTC PAGE5 PEMT PHF20 PNOC POLR1C PPAT		
644 645 646 647 648 649 650 651	PPBP PRDX4 PRKCI PRKACA PSD3 PSMG2 PYCARD RBM39		
652 653 654 655 656 657 658 659 665	RGN RPLP0 SARNP SEPP1 SHC3 SIRPA SLC17A5 SLC25A13		
661 662 663 664 665 666 667 668	SLC25A47 SLC28A1 SLC01B3 SLC01B1 SMYD3 SOAT2 SQSTM1 SRRD STARD10		
669 670 671 672 673 674 675 676	TCN1 TF TFDP3 TH TGS1 TLR2 TLR4 TMEM170		
677 678 679 680 681 682 683 684 684	UAP1 UGT2B7 URGCP URI1 UROD UTP6 VPS37A VPS54 VV41		

687

ZDHHC2

Table De Dearch shaller in constances and biomarkers included in the pathologic subtypes of 1100, 00 and 1100 0	Table	S2 Search strategy	for genes and	l biomarkers id	lentified in the	pathologic subtypes	of HCC, CC and HC	C-CC
--	-------	--------------------	---------------	-----------------	------------------	---------------------	-------------------	------

Gene symbol					Pathologic subtype					
	Fibrolamellar HCC	Scirrhous HCC	Sarcomatoid HCC	Lympho-epithelial-like HCC	Intraductal papillary CC	Intestinal-type CC	Signet ring CC	Clear cell CC	Squamous cell CC	Small cell CC
1	DNAJB1	MEI	CDH1	CDH1	ERBB2	KRAS	KRI20	MUC1	1953	TP53
2	MARVELD2	TGFB1	PCNA	MET	SMAD4	ERBB2	KRT7	KRT7	MUC1	MUC1
3	MTO1		NKX2-1	MUC2		KRT7	MUC2	OGG1	KRT7	KRT7
4	PAGE5		CDKN2A	ABCB1		BRAF	CDH1	AFP	KRT19	MET
5	PRKACA		CEACAM3	CASP8		PIK3CA	CEACAM5	MET	CDH1	ERBB2
6			VEGFA	VEGFC		TFF1		MME	CDKN1B	NCAM1
7			JUP	JUP		TNFRSF1A		CDH1	MET	KRAS
8			FAS	APC		TP53		FHIT	KRT8	OGG1
9			CTNND1	STAT3				ALPP	FHIT	KRT19
10			PDGFRA	MUC5AC				BRAF	VEGFC	BRAF
11			IFNA2	CTNNA1				RASSF1	ERBB2	CDKN1B
12				TGFB1				SMAD4	CCNB1	KRT20
13				AMACR					KRT20	FHIT
14				HIF1A					KRAS	VEGFC
15				MDM2					MCL1	KRT18
16				PLAUR					OGG1	KRT8
17				PTGS2					LGALS3	CEACAM5
18				ALPP					DAPK1	CEACAM3
19				CDH2					CEACAM5	BASSE1
20									FIF4F	I GALS3
20				TEK					BASSE1	MME
21										DTCS2
22										FIG52
23									IERI	
24				AREG					HGF	MUC4
25				CD80					BRAF	IERI
26				DPP4					CGB	PIK3CA
27				FGF1					PTK2	PTK2
28				HDAC9					TIMP3	TNFSF10
29				TXN					KRT18	MAGEA3
30				RHOC					CFLAR	DYT10
31				CSF1R					THBS1	RAF1
32				NAT2					RECK	CEACAM6
33				TFF3					NAT2	СНКА
34				TIMP1					ALPP	MMP7
35				CD86					RAF1	PSG2
36				DNASE1					MUC4	CCKBR
37				EGR1					PTGS2	SLPI
38				HSPA4					MMP7	PLA2G4A
39				IRF1					PSG2	SCT
40				NEU1					CASP9	
41				IFNB1					PIK3CA	
42				SOCS1					TNESE10	
43				CASP1					CDX2	
44				IFNA2					MAGEA3	
45				TGIE1					MLIC2	
45									MUC5AC	
40										
47									SIVIAD4	
48				SERPINA I						
49				BMP7					EBAG9	
50				CXCL12					CCKBR	
51				CYP27B1					CTNNA1	
52				NFKBIA					TNFRSF1B	
53				NR1H2					MIR214	
54				IL1RAPL2					TFF1	
55				VIP						
56				ALPPL2						
57				CD4						
58				ENO1						
59				PIGR						
60				SMAD7						
61				ALB						
62				REG3A						
63				TLR4						
64				F2R						
65				IDO1						
66				S100A8						
67				VDR						
68				PLA2G6						
69				CHUK						
70				CIITA						
71				F13A1						
72				IL15						
73				SOAT1						
74				TNFSF11						
75				ALPL						
76				NR1I2						
77				NR3C1						
78				SCT						
79				CCL5						
80				CD14						
81				ELANE						
82				FOXP3						
83				HLA-DRB1						
84				TLR2						
85				ITGAL						
86				PPARA						
87				SOCS3						
88				XBP1						
89				AOC3						
00 00				CCI 19						
00 Q1										
91 AI										
92				DLAI						

^a, HCC-CC subtypes stem-cell and classic yielded no results. HCC-CC, hepatocellular carcinoma-cholangiocarcinoma; HCC, hepatocellular carcinoma; CC, cholangiocarcinoma.

	General Infectious				Metabolic Congenital						Autoimmune Carcinogen				Vascular				
Gene function	Gene name	Cirrhosis PHTN	Hepatitis C	Hepatitis B	Cholangitis	Opisthorchiasis	Recurrent cholangitis	NAFLD	NASH Tyrosinemia	Cystic disease of liver	Biliary cyst	Choledochal cyst	Other congenital malformations of gallbladder	AIH	PBC PSC	Alcoholic fatty liver	Alcohol	Aflatoxin	PVT
Embryonic	AFP	F																	
	CEACAM3																		
	GPC3																		
Hormonal	CCKBR																		
	SCT																		
Cell Adhesion	HGF																		
	MET																		
Cytokeratin	KRT7																		
	KRT8																		
	KRT18																		
	KRT19																		
Mucin Production	MUC2																		
	MUC5AC																		
Metalloproteins	MME																		
	MMP7																		
	RECK																		
	TIMP3																		
Ras Signaling	KRAS																		
	RAF1																		
	RASSF1																		
Metabolism	ALPL																		
	ALPP																		
	ALPPL2																		
	СНКА																		
	GGT1																		
	NAT2																		
	PTGS2																		
Apoptosis	MCL1																		
	PIK3CA																		
	TERT																		

Table S3 Genes and potential biomarkers present for each risk factor for HCC-CC

HCC-CC, hepatocellular carcinoma-cholangiocarcinoma; HCC, hepatocellular carcinoma; CC, cholangiocarcinoma; ECM, extracellular membrane; ER, endoplasmic reticulum; MMP, matrix metalloproteinase; BCL-2, B-cell lymphoma 2; ATP, adenosine tri-phosphate; PHTN, portal hypertension; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; AIH, autoimmune hepatitis; PBC, primary biliary cirrhosis; PSC, primary sclerosing cholangitis; PVT, portal vein thrombosis.

Figure \$1 Gene interaction map. Pathway interaction database from the national cancer institute, demonstrating the interaction between all genes identified for biphenotypic hepatocellular carcinoma, Purple, no dominant characteristics of hepatocellular carcinoma; Blue, dominant characteristics of cholangiocarcinoma.