
© Journal of Gastrointestinal Oncology. All rights reserved. J Gastrointest Oncol 2016;7(5):705-712jgo.amegroups.com

Introduction

Despite the implementation of extensive population-
wide screening and significant advancements in the 
understanding and treatment of colorectal cancer in recent 
decades, colorectal cancer remains the second-leading cause 
of cancer death in the United States. The American Cancer 
Society estimates that there will be 134,490 new cases of 
colorectal cancer and 49,190 deaths from colorectal cancer 
in 2016 (1). While the approach to early-stage colorectal 
cancer has been generally stable over many years, the 
management of metastatic colorectal cancer is growing 
increasingly complex and more personalized. In the last two 
decades, the FDA has approved ten new agents (irinotecan, 
oxaliplatin, capecitabine, bevacizumab, cetuximab, 
panitumumab, aflibercept, ramucirumab, regorafenib, 
TAS-102) for the treatment of metastatic colorectal 
cancer. However, despite rapidly accumulating data on the 

molecular profiles of colorectal cancer and the identification 
of dozens of potential targets for therapy which should 
eventually personalize treatment, the current treatment 
paradigm utilizes only rat sarcoma virus (RAS) mutational 
status to guide therapy (2). 

RAS/rapidly growing fibrosarcoma (RAF)

RAS and RAF are both downstream effectors of many 
receptor tyrosine kinases, including the epidermal growth 
factor receptor (EGFR), in the RAS/RAF/[mitogen activated 
protein kinase (MAPK)/ERK kinase (MEK)]/extracellular-
signal-related kinase (ERK) pathway, which ultimately 
promotes cell survival and proliferation (Figure 1). RAS 
encodes a family of membrane-bound small GTPases and 
includes Harvey-Ras (HRAS), neuroblastoma-Ras (NRAS), 
and the most well known, Kirsten-Ras (KRAS). Once 
mutated, RAS frequently becomes immune to GTPase-
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activating proteins (GAPs) and, in a constitutively active 
state, promotes tumorigenesis and proliferation via its many 
downstream effectors (3). RAS is mutated in approximately 
30% of all tumor types, including cancers of the colon, 
pancreas, lung, and more (4-6). It was first implicated in the 
development in colorectal cancer when it was described by 
Vogelstein et al. in 1988. After evaluating 92 colon cancers, 
the authors found that 47% contained a RAS mutation (7).  
Attempts to target RAS specifically by a variety of 
mechanisms have generally failed in preclinical research. 
Mutation status is currently used clinically after trials of 
EGFR inhibition have convincingly shown that benefit 
exists only for patients with wild-type RAS (8,9). 

BRAF, the most well known in the RAF family which 
also includes ARAF and CRAF, is mutated in 5–10% of 
colorectal cancers. Like RAS, it promotes tumorigenesis 
through constitutive activation of the MAP kinase pathway. 
While resistance to EGFR in BRAF-mutant colorectal 
cancer has also been demonstrated, it is currently most 
valuable as a prognostic indicator (10,11). Independent of 
response to EGFR inhibition, it has been shown that BRAF 
mutations are associated with a more aggressive phenotype 
of colorectal cancer for which the prognosis is quite dismal, 

with a median survival of just 10.4 months versus the 34.7 
months seen in metastatic colorectal cancer patients with 
wild-type BRAF (12,13). This is especially discouraging 
given that vemurafenib, a BRAF inhibitor which has shown 
such impressive results in BRAF-mutant melanoma and 
other malignancies, appears to be ineffective in colorectal 
cancer patients with the very same BRAF mutation (14-16). 

It appears that redundancy in signaling and alternative 
pathways which circumvent targeted inhibitors are to blame 
for much of the resistance encountered so far with targeting 
EGFR and mutant BRAF (17-19). In particular, multiple 
studies have shown an apparent feedback up-regulation 
and activation of EGFR in the presence of BRAF mutation 
and treatment with vemurafenib (14). Though neither 
EGFR nor BRAF inhibition is itself active in BRAF-
mutant colorectal cancer, they appear to have a synergistic 
and potent antitumor effect when used together (14).  
Another proposed mechanism for resistance to BRAF 
inhibition is the hypermethylated phenotype seen in BRAF-
mutant colorectal cancer, supported by the finding that 
inhibition of methyltransferase augmented the antitumor 
activity of vemurafenib in colon cancer (20).

Lack of success with targeted therapies in the RAS and 

Figure 1 Mitogen-activated protein kinase (MAPK) pathway and phosphoinositide 3 kinase (PI3K) pathway with downstream effectors.
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BRAF mutant population has generated a great deal of 
research into other targets and combinations of targets, 
within and outside of this intricate signaling pathway, in 
order to improve outcomes for patients with metastatic 
colorectal cancer. 

Beyond RAS and RAF

MAPK

With direct inhibition of mutated RAS proving to be 
challenging, much attention has been directed at the direct 
downstream effectors. The MAPK/ERK kinase (MEK1/2) 
is tyrosine (Y-) and S/T-dual specificity protein kinases. 
They are rarely mutated but are constitutively active 
secondary to frequently mutated upstream activators.

There has been one FDA approved MEK inhibitor, 
trametinib, for unresectable BRAF mutant melanoma (21). 
MEK inhibition in combination with docetaxel has been 
studied in non-small cell lung cancer in another phase II 
trial which did show promising efficacy (22). Trametinib also 
has demonstrated activity in in KRAS-mutant melanoma, 
pancreatic, and non-small cell lung cancer patients in a phase 
I trial (23). Unfortunately this trial included 28 patients with 
colorectal cancer, none of whom had any objective response 
to MEK inhibitor monotherapy (23).

The concept of synthetic lethality, or two gene mutations 
leading to cell death when a mutation in one is viable, has 
driven a large amount of research with MEK inhibitors in 
combination regimens. Several preclinical trials, mostly 
in RAS-mutant cancers of many types, have screened 
thousands of genes and gene products for a therapy to pair 
with MEK inhibition and overcome resistance to it.

Using short hairpin RNA (shRNA) screening, Barbie 
et al. identified a synthetically lethal partner of mutated 
KRAS. TANK-binding kinase 1 (TBK1) is a tyrosine kinase 
downstream of RAS/RAL and regulates cell growth in 
KRAS-mutant cells via chemokine (C-C motif) 5 (CCL5) 
and interleukin-6 (24). An inhibitor of TBK1, momelotinib, 
is active in KRAS-mutant lung cancers when combined with 
MEK inhibition and the combination is currently in early 
clinical trials (NCT02258607). 

Corcoran et al. also employed this strategy when they 
developed a pooled shRNA-drug screen to evaluate 1,200 
genes that, when targeted, acted with the MEK inhibitor 
selumetinib to inhibit growth in KRAS-mutant cancers. 
B-cell lymphoma extra large (BCL-XL), a gene in the anti-
apoptotic Bcl-2 homology (BH3) family, emerged as a 

prime target and studies using BCL-XL inhibitor ABT-263 
in combination with MEK inhibition led to marked tumor 
regression in KRAS-mutant patient-derived xenografts and 
lung cancer mouse models (25).

Specifically studying KRAS-driven colorectal cancer, 
Spreafico et al. similarly evaluated the Wnt pathway as 
it was identified in synthetic lethality screens as possible 
mediator of MEK inhibitor resistance. Using shRNA 
to knock down parts of the Wnt signaling pathway, in 
combination with selumetinib, synergistic anti-tumor effects 
were observed, including tumor regression seen in patient-
derived xenografts (26). 

In a study evaluating resistance to vemurafenib in BRAF-
mutant colorectal cancer, Corcoran et al. found that after 
an initial decrease in phosphorylated ERK (p-ERK) with 
vemurafenib, levels began to normalize again over 24 hours, 
suggesting reactivation of the MAP kinase pathway as a 
mechanism for vemurafenib resistance (27). Consistent 
with this finding, MEK inhibition has found impressive 
success in BRAF-mutant melanoma in combination with 
vemurafenib (28). In a recently reported trial in BRAF-
mutant colorectal cancer, combination therapy with BRAF-
inhibitor dabrafenib and trametinib did demonstrate 
decreased p-ERK levels and improve survival, though 
only modestly when compared to the results seen in  
melanoma (29). 

Unfortunately responses to combination therapy with 
MEK and either EGFR or BRAF blockade have been 
susceptible to acquired resistance. A recent study used whole-
exome sequencing before and after treatment with such 
combinations, and it appears that this acquired resistance 
is related to genetic alterations in the MAP kinase pathway 
including mutation of RAS and amplification of RAS and 
RAF (30). None of these resistance mechanisms were able 
to overcome treatment with ERK inhibition, which is 
prompting further investigation of ERK inhibitors for use 
in combination regimens (30). Recently the results of the 
first-in-class phase I study of the novel oral ERK 1/2 kinase 
inhibitor BVD-523 (ulixertinib) in patients with advance 
solid tumors has been reported. This study, in which 5 of 16 
patients evaluated by PET had a metabolic response and 7 of 
26 total patients had stable disease for at least 3 months, will 
lead to further investigation in clinical trials (31).

Phosphoinositide 3 kinase (PI3K)/protein kinase B (AKT)/
PTEN

In parallel to the RAF-MEK-ERK pathway downstream 
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of RAS is another survival-promoting pathway, PI3K-
AKT-mechanistic target of rapamycin (mTOR), which has 
been implicated as a culprit in resistance to vemurafenib 
and offers an attractive therapeutic target. RAS activates 
PI3K, which then mediates the activity of Akt, leading 
to inhibition of apoptosis. Another part of this pathway 
is PTEN, which acts to inhibit Akt’s promotion of cell 
survival (Figure 1). Activation of PI3K/Akt secondary 
to loss-of-function PTEN mutation is known to be 
tumorigenic though has not shown any clinical predictive 
or prognostic utility as of yet (20,32,33). PI3K mutations, 
while not yet routinely targeted, are well known for 
conferring a survival benefit with aspirin therapy in 
colorectal cancer as inhibition of cyclooxygenase-2 
attenuates PI3K activity (34). 

In multiple trials evaluating direct PI3K inhibition in a 
variety of human cancer cell lines, RAS wild-type appears 
to be necessary for anti-tumor effect (35,36). It appears 
that the resistance to PIK3 inhibition in the setting of 
mutant RAS is related, again, to its ability to up-regulate 
alternative signaling pathways (35,37). This theory has been 
tested and confirmed in multiple preclinical trials in which 
combination therapy with PI3K and MEK inhibition had 
potent anti-tumor effects in murine lung and pancreatic 
models (38,39). A preclinical study using human lung 
and colon cancer cell lines demonstrated activity with 
dual inhibition of Akt/mTOR and MEK, and a recently 
reported phase I trial in advanced solid tumors including 
KRAS-mutant colorectal cancer suggested activity with a 
combination of MEK inhibitor pimasertib and dual PI3K/
mTOR inhibitor SAR245409 (37,40). 

Similar combination strategies have also shown promise 
in the BRAF-mutant colorectal cancer population. Yang et al.  
confirmed that increased PI3K activity is seen in BRAF-
mutant CRC and seemed to be a driver for resistance to 
vemurafenib (32). Mao et al. studied PIK3 activation in 
both BRAF-mutant colorectal and melanoma and found 
that the PIK3 pathway was relatively more active in CRC, 
likely related to hypermethylation of PTEN promoter 
regions leading to PTEN downregulation (20). This 
increased activity from mutations in PIK3 or PTEN loss-
of-function or down-regulation was associated resistance to 
vemurafenib. In both trials, inhibition of PI3K/AKT with 
either an AKT or PI3K inhibitor in addition to vemurafenib 
led to synergistic anti-tumor effects in BRAF-mutant 
CRC cell lines (20,32). Mao et al. also found increased 
anti-tumor activity with a methyltransferase inhibitor in 
addition to vemurafenib, strengthening the argument 

for hypermethylation and resultant PTEN activity loss 
conferring vemurafenib resistance (20).

HER2

HER2 is a member of the EGFR family of receptors that 
acts as an important driver of cancer and is a target of 
various therapeutics. This transmembrane tyrosine kinase 
receptor has no known natural ligand but instead functions 
through dimerization with other members of the HER, or 
EGFR, family to activate multiple cell survival pathways 
(41-44). Her2 structurally differs from other EGFR family 
members in that it has a fixed conformation that exposes the 
dimerization loop domain in an activated position allowing 
for regular heterodimerization (45).

Through amplification, not receptor mutation, HER2 
is partially responsible for the progression from normal 
epithelia into invasive cancer in both breast and gastric 
cancer, and under exploration in additional tumor types 
such as urothelial cancers. Thus, this receptor is a target 
of many small molecule inhibitors both approved and in 
development. Approximately one third of breast tumors 
overexpress HER2 and when treated with the monoclonal 
antibody, trastuzumab, patients have an improved overall 
survival compared to standard therapy (46,47). The agent 
was approved in 1998 and is used in both the adjuvant and 
metastatic setting. It is also approved for the treatment of 
advanced HER2 overexpressing gastric cancer based on 
an overall survival benefit when given in combination with 
chemotherapy (48). Lapatanib is a small molecule inhibitor 
of the HER2 receptor and EGFR, which improved survival 
when used in combination with chemotherapy for the 
treatment of metastatic HER2 overexpressing breast cancer 
and in combination with trastuzumab (49-51).

Her2 amplification has been described in metastatic 
colorectal cancer, though the prevalence of 5% is 
significantly less than the described rates in breast and 
gastric cancer (52). Her2 amplification in colorectal cancer 
has been shown to associate with resistance to anti-EGFR 
monoclonal antibodies, and preclinical studies suggested 
that Her2 amplification may predict response to combined 
therapy with trastuzumab and lapatinib (53,54). A small 
phase II study (HERACLES) of trastuzumab and lapatinib 
in HER2 amplified in patients with refractory metastatic 
colorectal cancer met its primary endpoint with an overall 
response rate of 33.3% and several patients showing 
prolonged stable disease (55). Studies are currently being 
developed to test this target further in colon cancer.
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Immunotherapy

The idea of harnessing the immune system to overcome 
RAS-mutant cancers is an old one but has been slow to 
develop. Decades ago researchers were able prepare vaccines 
against oncogenic RAS proteins capable of inducing a T-cell 
response in mice and human pancreatic cancer patients, 
though unfortunately this did not lead to a tumor response 
(56-58). This approach has also been tested in the adjuvant 
setting in resected pancreatic and colorectal cancers and has 
been well-tolerated with improved 10-year survival in one 
small study of just pancreatic cancer (59,60).

Much of the focus recently on immunotherapy has 
been on checkpoint inhibitors. There has been particular 
interest in targeting programmed death 1 (PD-1) and its 
ligand (PD-L1) which, when activated, serve to modulate 
the activity of T-cells and, as a result, decrease the immune 
response to a tumor. As with BRAF inhibition, melanoma 
has served as a model malignancy for this type of targeting, 
showing impressive tumor responses and now widespread of 
the use of PD-1 and PD-L1 agents (61,62).

In a familiar narrative, colorectal cancer treatment has 
unfortunately not yet showed the same promise in this 
strategy. In a phase 1 trial of PD-L1 inhibitor MDX-1106 in 
patients with multiple cancer types, only 1 of 33 patients with 
colorectal cancer exhibited a response, though this patient 
achieved a complete response durable to 21 months (63).

It was hypothesized that this single patient’s response was 
because of their mismatch-repair deficiency, something that 
is seen in approximately 5% patients with advanced colorectal 
cancer (39,64). Hereditary or acquired errors in mismatch 
repair are associated with microsatellite instability, yielding a 
phenotype of colorectal cancer that has a favorable prognosis 
in early-stage disease but does not confer an advantage in 
advanced disease (65,66). MSI-H cancers have orders of 
magnitude more somatic mutations and as a result should 
have more immunogenic potential for the patient’s immune 
system to recognize and attack (2,67,68).

Le et al. tested this hypothesis recently by treating 41 
metastatic carcinoma patients, including colorectal cancer 
patients with and without deficient mismatch repair, as well 
as non-colorectal cancer patients with deficient mismatch 
repair, with PD-1 inhibitor pembrolizumab. The data 
demonstrated virtually no response to therapy in the cohort 
of patients with normal mismatch repair and significantly 
improved overall and progression-free survival, as well as 
increased tumor regression by RECIST and serum tumor 
markers, in the mismatch repair deficient cohorts (69). 

These data present a possible new treatment option in the 
near future for the MSI-H subset of metastatic colorectal 
cancer patients. 

Conclusions

With the publication of the comprehensive metabolic 
characterization of  human colon cancer in 2012, 
understanding of the molecular pathogenesis of colorectal 
cancer grew immensely (2). So, too, did the list of potential 
therapeutic targets. Despite this wealth of potential targets, 
routine molecular profiling currently includes just a few 
mutations, with only mutant RAS guiding therapy decisions. 

RAS and RAF are centrally located in a complex network 
of signaling pathways from which many potential targets 
originate. Immediately downstream lies the remainder 
of the MAP kinase pathway, which has been the subject 
of many targeting studies. MEK inhibitors are already 
approved for use in other cancers and have shown some 
promising results when used in combination with other 
targeted therapies such as EGFR or BRAF inhibitors for 
colorectal cancer. Eventual acquired resistance to these has 
been an issue but may be overcome with ERK inhibition. 

Similarly, the PI3K/AKT pathway has been implicated in 
resistance to certain targeted therapies in colorectal cancer. 
It appears that targeting this pathway in combination with 
BRAF or MEK inhibition in BRAF-mutant CRC is worthy 
of further investigation. 

With EGFR inhibitors already in use for patients lacking 
mutations in RAS or BRAF, other receptor tyrosine kinases 
have been evaluated as potential targets, such as HER2. 
Though clinical data in colorectal cancer has been limited, 
research is ongoing in identifying patients who may benefit 
from inhibition of this receptor. 

In addition to the aforementioned targets, countless 
more exist as others continue to emerge. Next-generation 
sequencing has led to the identification of more rare 
mutations in colorectal cancer, such as NTRK, ALK, and 
ROS1 (70,71). While these mutations are found in only 
1–2% of the colorectal cancer population, they will certainly 
be the subject of future targeted trials. 

In the era of personalized, genome-driven cancer 
therapy, the current treatment of metastatic colorectal 
cancer remains relatively simple and empiric. Fortunately 
as the molecular understanding of tumorigenesis and 
therapy resistance has grown, the field of colorectal cancer 
treatment stands on the brink of significant advances in the 
near future. 
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