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In 2015, pancreatic cancer was the 10th
 
most commonly diag

nosed cancer and the fourth leading cause of cancer death 
in the United States. The incidence of pancreatic cancer has 
been slowly rising over the past 10 years. It is estimated that 
about 53,000 new cases were diagnosed and 42,000 people 
died from pancreatic cancer in 2015 (1). The small difference 
between the incidence and death rate of pancreatic cancer 
reflect the early distant spread and inadequacy of current 
therapies. The 5-year survival rates for localized and 
advanced pancreatic cancer are 27% and less than 5%, 
respectively, lower than all other common cancers (2). The 
majority of patients are diagnosed at an advanced stage and 
are not eligible for surgical resection (2). These patients are 
often symptomatic and quickly deteriorate in the absence 
of effective therapy and many are unable to receive second 
and third line therapies for the same reason. Hence, finding 
the optimal first line regimen may be the key to improving 
outcomes. Increases in our knowledge of human and cancer 

genomics provide opportunities to understand the impact of 
genetic alterations on pancreatic cancer outcomes and develop 
predictive biomarkers for newer targeted therapies (3,4).  
Unfortunately, the amount of tissue obtained by fine 
needle aspiration of the primary pancreatic tumor is usually 
insufficient to perform adequate molecular analysis. As we 
move into the era of personalized medicine, obtaining core 
biopsy samples from metastatic sites, like liver, may help 
eliminate this problem. 

What do we know about pancreatic cancer 
genetically? 

Pancreatic cancer is a disease of significant genetic 
variability. Recent whole exome and genome sequencing 
have identified a wide range of genetic alterations including 
mutations and copy number variations that characterize 
pancreatic cancer (4,5). Some of these are recurrent and 
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significantly mutated (KRAS, TP53, CDKN2A, SMAD4, 
MLL3, TGFBR2, ARID1A, ROBO2, SF3B1, EPC1, ARID2, 
ATM). There are also reported focal amplifications in 
druggable oncogenes (ERBB2, MET, FGFR1, CDK6, 
PIK3R3 and PIK3CA), but at low individual patient 
prevalence (5). 

Unfortunately, a large amount of infrequently mutated genes 
result in significant intertumoral heterogeneity which makes 
mutation-based therapeutic development challenging (5).  
The most commonly altered gene in pancreatic cancer is 
KRAS, which is mutated in more than 90% of pancreatic 
cancers (as compared to 20–30% in other human 
malignancies) (6). It serves as an initiating step in pancreatic 
oncogenesis by activation of downstream pathways, like 
the PI3K-AKT pathway (7,8). KRAS activates MEK and 
ERK1/2, which play important roles in angiogenesis, cell 
proliferation and apoptosis. The majority of pancreatic 
tumors also have inactivation of the tumor suppressor 
genes p16, p53 and SMAD4, leading to loss of function (9).  
Inherited p16 mutations, associated with the familial 
atypical multiple mole melanoma (FAMMM) syndrome, 
have an increased risk of developing pancreatic cancer. 
p53 alterations occur in greater than 50% of pancreatic 
adenocarcinomas and disrupt regulation of cellular 
proliferation and apoptosis in response to DNA damage (9). 

Despite knowledge of these gene alterations and 
identification of involved pathways, translation into 
therapeutic decision making remains limited. 

Predictive markers for established therapies

Gemcitabine

Until a few years ago, the standard therapy for metastatic 
pancreatic cancer was single agent gemcitabine, based on 
a randomized trial that compared gemcitabine to bolus 
5-fluorouracil (5-FU) as first line therapy. The gemcitabine 
treated group had a significantly better clinical response, 
defined as improvement in pain, performance status or weight 
(24% vs. 5%). Median overall survival (OS) (5.6 vs. 4.4 months) 
was also significantly but quite modestly improved (10).

A nucleoside transporter protein, human equilibrative 
nucleoside transporter 1 (hENT1), promotes transport of 
gemcitabine into malignant cells and has been widely studied 
as a potential biomarker predictive of gemcitabine response 
(11-13). In RTOG 9704, an adjuvant trial that randomized 
patients after pancreatic resection to gemcitabine or 5-FU, 
high levels of hENT1 expression in resected pancreatic 

tumor samples were associated with increased overall and 
disease-free survival in patients treated with gemcitabine 
but not in those treated with 5-FU (14). A retrospective 
analysis of the ESPAC-3 trial, a randomized trial that also 
compared gemcitabine to 5-FU as adjuvant therapy for 
pancreatic cancer, further suggested a survival advantage 
for patients treated with gemcitabine whose tumors had 
high hENT1 expression (OS 26.2 months for high hENT1 
group vs. 17.1 months for low hENT1 group). These results 
were unfortunately not confirmed prospectively. The Low 
hENT1 and Adenocarcinoma of the Pancreas (LEAP) trial 
investigated hENT1 expression and outcomes in metastatic 
pancreatic cancer patients receiving either gemcitabine or a 
novel gemcitabine analog CO-101, which is not dependent 
on the nucleoside transport mechanism. hENT1 status was 
not an eligibility criteria but the cohort was divided into 
high and low hENT1 expression groups and the primary 
end point was OS in the low hENT1 tumor expression  
sub-group (CO-101 vs. gemcitabine). There was no difference 
in survival between treatments in the low hENT1 subgroup or 
overall population (HR of 0.994 and 1.072, respectively). Also, 
low versus high hENT1 expression level did not affect survival 
in patients treated with gemcitabine (15). 

Ribonucleotide reductase-1 (RRM1) is a subunit of 
ribonucleotide reductase, a key enzyme in gemcitabine 
metabolism. In pancreatic cancer, a retrospective study 
demonstrated that RRM1 expression was inversely related 
to response rate and survival in gemcitabine treated patients 
(P=0.018) (16). Unfortunately these results were not 
reproduced in a subsequent analysis (13). A meta-analysis 
of eight clinical studies, with a total of 665 pancreatic 
cancer patients treated with adjuvant gemcitabine-based 
chemotherapy (373 patients with high RRM1 expression and 
292 with low RRM1 expression), showed that high RRM1 
expression was associated with improved OS (HR =1.56, 
P<0.001). This suggested a prognostic effect of RRM-1 in 
pancreatic cancer patients but lacked the ability to evaluate its 
predictive role (since all patients received gemcitabine) (17).  
To our knowledge, no prospective studies have evaluated 
RRM1’s predictive value in pancreatic cancer to date. 
However, a prospective study in lung cancer failed to 
demonstrate the benefit of gemcitabine therapy compared 
to an alternative treatment based on RRM1 expression (18). 

Another potential predictive marker investigated for 
gemcitabine is the mRNA binding protein, Hu antigen R 
(HuR). Activated HuR, apart from regulating cancer cell 
viability genes (19), also binds and stabilizes the deoxycytidine 
kinase (dCK) mRNA transcript, which in turn activates 
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gemcitabine (20). In vitro analysis suggests that pancreatic cell 
lines overexpressing HuR are more sensitive to gemcitabine 
than control lines (20). Pancreatic adenocarcinomas with 
increased cytoplasmic HuR were found to have better 
outcome after gemcitabine therapy, in part related to 
increased dCK levels (20). In a follow-up study, HuR status 
was again found to be a positive predictive marker for survival 
in patients treated with adjuvant gemcitabine (median OS  
45 vs. 23 months in high versus low cytoplasmic HuR 
expression groups, P=0.033) and its predictive value 
was found to be independent of tumor stage (20,21). 
Unfortunately, this has not been validated prospectively.

Targeting epidermal growth factor receptor (EGFR)

The EGFR inhibitor erlotinib is the only “targeted” agent 
found to have clinical efficacy in pancreatic cancer. This 
was confirmed through a phase III study with gemcitabine 
(NCIC CTG PA.3) (22), where the gemcitabine/erlotinib 
combination produced a small but statistically significant 
benefit in survival compared to gemcitabine plus placebo  
(6.2 vs. 5.9 months). However, given the cost, modest benefit, 
and side effect profile, erlotinib is not widely used in clinical 
practice (23). Further efforts to identify a subset of patients 
who may benefit from this combination were subsequently 
undertaken. The mutational status of KRAS and EGFR gene 
copy numbers, evaluated in 117 and 107 patients enrolled 
on the NCIC CTG PA.3, were not predictive of a survival 
benefit in patients receiving the combination of gemcitabine/
erlotinib (24). Contrary to this, in the AIO-PK0104 study, a 
multicenter trial comparing gemcitabine/erlotinib followed 
by capecitabine with capecitabine/erlotinib followed by 
gemcitabine in advanced pancreatic cancer, KRAS wild-type 
status was associated with improved survival (HR =1.68, 
P=0.005) in patients treated with erlotinib (25). Another 
post hoc analysis of the AIO-PK0104 study correlated 
the biomarker data on KRAS exon 2 mutation status with 
objective response to 1st-line therapy and with OS after 
start of 2nd-line chemotherapy. KRAS codon 12 mutation 
was found in 70% of the patients, but showed no association 
with objective response (P=0.40). KRAS wild type patients 
had an improved survival (HR =1.68, P=0.005) and this 
trend was also observed during non-erlotinib containing 
2nd-line chemotherapy. The authors concluded that KRAS 
is more likely a prognostic rather than predictive biomarker 
in pancreatic cancer (26). In contrast to erlotinib, the  
anti-EGFR antibody cetuximab did not improve outcomes 
when combined with gemcitabine in a phase III randomized 

study. EGFR expression was tested at baseline using 
immunohistochemistry on all available samples. Of the  
595 patients evaluated, 547 (92%) stained positive. Even 
in the EGFR-positive group, cetuximab did not provide a 
survival advantage (HR =0.98) (27). 

Nab-paclitaxel

Until recently, combination chemotherapy had failed to 
show a benefit over single agent gemcitabine (28-33). 
One approach to this problem is to develop more potent 
chemotherapeutic drugs by incorporating nanotechnology.

Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) 
was approved for first-line treatment of metastatic pancreatic 
cancer in combination with gemcitabine based on the results 
of the phase III MPACT study, where 861 untreated patients 
with metastatic pancreatic cancer were randomized to receive 
gemcitabine plus nab-paclitaxel or gemcitabine alone (34). 
Overall and progression free survival and tumor response 
rates were significantly improved in the gemcitabine plus 
nab-paclitaxel group compared with gemcitabine alone  
(8.5 vs. 6.7 months, P<0.001; 5.5 vs. 3.7 months, P<0.001; 
23% vs. 7%, P<0.001, respectively). Nab-paclitaxel increases 
the intra-cellular availability of paclitaxel by allowing its 
delivery in the form of nanoparticles to the tumor. For its 
uptake, specific proteins like the Secreted Protein Acidic 
and Rich in Cysteine (SPARC) are required (35). Stromal 
fibroblasts in pancreatic adenocarcinoma overexpress SPARC 
and its overexpression in the stroma was previously found 
to be a marker of poor prognosis (35). In the phase I/II 
trial of gemcitabine plus nab-paclitaxel (36), SPARC status 
was evaluated in 36 patients. A significant increase in OS 
was seen in patients in the high-SPARC expression group 
compared with patients in the low-SPARC expression group 
(17.8 vs. 8.1 months; P=0.431). In contrast, a phase II trial 
of nab-paclitaxel in the second line setting did not show 
this relationship between SPARC expression and patient 
outcomes (37). Further, an analysis of SPARC expression 
and OS in the MPACT study was recently reported. 
Stromal SPARC was evaluable in 30% of patients and its 
expression [high (n=71) vs. low (n=185)] was not associated 
with survival (HR =1.019; P=0.903). Similarly, tumor 
epithelial SPARC was low or negative in the majority of 
samples and was not associated with survival (38).

5-FU-based therapy

Several older combination regimens containing 5-FU were 
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studied in randomized trials in the 1980’s and 1990’s (39,40). 
None showed a survival benefit over single agent 5-FU. 
In contrast and guided by impressive phase II data (41), 
the phase III ACCORD 11 trial compared a combination 
of leucovorin modulated 5-FU, irinotecan, and oxaliplatin 
(FOLFIRINOX) with gemcitabine (42) and demonstrated 
an objective response rate of 31.6% vs. 9.4% (P<0.001), 
median PFS 6.4 vs. 3.3 months (P<0.001) and median OS 
11.1 vs. 6.8 months (P<0.001) favoring the FOLFIRINOX 
arm. Given the excessive toxicity of this regimen and 
lingering questions about whether all three agents are 
required in all patients, there is interest in exploring the 
role of biomarkers like thymidylate synthase [(TS), for 
5-FU], excision repair cross-complementation group 1 
(ERCC1) (for oxaliplatin) and topoisomerase 1 (TOPO1) 
(for irinotecan) in this setting. 

TS is a critical enzyme in the synthesis of dTMP, the 
cellular target for 5-FU, making it a potential predictive 
biomarker for response (43). A significant association has 
been reported between low TS expression and longer disease 
free survival (median DFS 15.9 vs. 7 months; P=0.03) in 
patients receiving 5-FU based adjuvant therapy for pancreatic 
cancer (44). In another study, a marked trend to a longer 
survival was seen pancreatic cancer patients with low-TS-
expressing tumors compared with the high-TS expressing 
tumors when treated with adjuvant 5-FU based therapy (45). 
Two other studies found no association between survival and 
TS expression levels in the neoadjuvant and palliative settings 
(46,47). The marker has not been prospectively studied in 
pancreatic cancer to our knowledge.

Irinotecan is an inhibitor of TOPO1, a nuclear protein 
that can relax supercoiled double-stranded DNA during 
mitosis. TOPO1 is expressed in 64% of metastatic 
pancreatic adenocarcinomas. In colorectal cancer, TOPO1 
immunohistochemistry identified subpopulations that 
did or did not benefit from irinotecan, and possibly 
also from oxaliplatin (48), and a prospective trial is 
currently underway analyzing this biomarker in the same 
disease site (NCT00975897). There is limited data on 
its predictive value in pancreatic cancer. ERCC1 is an 
excision nuclease within the nucleotide excision repair 
pathway. ERCC1 nuclear protein expression, evaluated by 
immunohistochemistry, is a promising predictive marker of 
platinum-based chemotherapy as shown in non-small cell 
lung cancer, gastric cancer and colorectal cancer among 
others (49-51). Kamikozuru et al. reported a relationship 
between ERCC1 codon 118 polymorphism and survival 
in pancreatic cancer patients treated with a platinum 

compound (52). Clinical trial designs where baseline tumor 
expression of markers such as ERCC1, TOPO1 among 
others, will be used to guide choice of initial treatment 
compared to standard therapy are being developed/
underway in advanced pancreatic cancer (53). Unfortunately 
a similar prospective, randomized phase II study in colon 
cancer (MAVERICC) comparing mFOLFOX or FOLFIRI 
with bevacizumab failed to establish the predictive value of 
intratumoral ERCC1 for oxaliplatin based therapy (54). 

Nano-liposomal irinotecan

Another example of modification in chemotherapeutic 
drugs using nano-technology is irinotecan encapsulated into 
liposomal-based nanoparticles, or MM-398 (also known as 
nal-IRI, OnivydeTM). This modification alters the delivery 
of irinotecan and prolongs the time the drug remains in 
circulation, potentially increasing its efficacy without increasing 
toxicity. In the phase III NAPOLI-1 study, comparing MM-398,  
infusional 5-FU and leucovorin, or a combination of 
both in the second line setting after progression on 
gemcitabine based therapy, OS was significantly improved 
with the combination compared to 5-FU alone (6.1 vs.  
4.2 months; HR =0.67; P=0.012). MM-398 alone did not 
improve outcome compared to 5-FU (55). Ferumoxytol is 
an iron-oxide superparamagnetic nanoparticle that has been 
used off-label for its MRI contrast properties. It is taken 
up by tumor associated macrophages in a pattern similar to  
MM-398 in preclinical models. If tumor deposition of MM-398  
and formation of its active metabolite, SN-38, in tumor 
cells and associated macrophages correlates with response, 
ferumoxytol levels in tumor lesions (evaluated using 
functional MRIs) may serve as a potential biomarker for 
MM-398 deposition and response in solid tumors (56,57). 
In an early phase study comparing ferumoxytol uptake and 
response to MM-398 in advanced solid tumors, lesions 
that shrank after MM-398 showed higher early levels of 
ferumoxytol compared to the study median in metastatic 
breast cancer patients (57). Further study of MM-398 in 
pancreatic cancer will evaluate this potential biomarker.

Investigational targets and biomarkers 

PEGPH20

Pancreatic cancer is associated with a dense tumor stroma 
which may promote tumor growth and limit chemotherapy 
perfusion. A major component of the stroma which is 
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present in high levels is hyaluronic acid (HA), which leads 
to elevated interstitial fluid pressures and also regulates cell 
adhesion, migration, and proliferation by interacting with 
specific cell surface receptors (58). In preclinical models of 
pancreatic cancer, administration of hyaluronidase depletes 
HA and improves response rates when administered 
with gemcitabine (59). PEGylated recombinant human 
hyaluronidase, PEGPH20, depletes HA in tumors and is 
being investigated in patients with pancreatic cancer in 
combination with chemotherapy. In a recently reported 
randomized phase II study of nab-paclitaxel + gemcitabine 
with or without PEGPH20 in treatment naïve metastatic 
pancreatic cancer patients, progression free survival favored 
the combination in tumors with high HA levels (median 
PFS was 9.2 and 4.8 months, for high and low HA levels 
respectively, P=0.03) (60). A follow-up phase 3 study in the 
high HA population is ongoing (NCT02715804).

Janus kinase (JAK) 1/2

The JAK activated signal transducer and activator of 
transcription (STAT) pathway is responsible for cellular 
growth, survival and differentiation (61) and it plays a 
major role in many conditions such as inflammatory 
diseases and cancer. Multiple studies have demonstrated a 
negative prognostic value for elevated markers of systemic 
inflammation in patients with pancreatic cancer (62,63). 
CRP and hypoalbuminemia are markers of inflammation and 
incorporated into the modified Glasgow prognostic score (64).  
In preclinical pancreatic cancer models, the JAK/STAT and 
related inflammatory pathways were found to drive cancer 
progression. Ruxolitinib is a JAK 1/2 inhibitor which has 
been evaluated in refractory pancreatic cancer with or 
without capecitabine in a randomized phase II study (65).  
In a pre-specified subgroup of patients with systemic 
inflammation as measured by elevated serum C-reactive 
protein (CRP >13 mg/L), survival significantly favored the 
ruxolitinib arm (3 and 6 months survivals of 48% and 42% 
vs. 29% and 11%, respectively). These encouraging results 
led to the phase III JANUS 1 and JANUS 2 studies with a 
similar study design but restricted to patients with elevated 
CRP (NCT02117479). Unfortunately, both studies were 
closed after a planned interim analysis demonstrated no 
added benefit of ruxolitinib to capecitabine (66).

Several other agents are in phase 3 evaluation, building 
upon promising phase 1/2 data. Human Mucin-1 (MUC-1)  
is a protein biomarker secreted by over 85% of pancreatic 
adenocarcinomas and absent in normal pancreas (67). 

We found that patients with metastatic pancreatic cancer 
and MUC-1 expressing circulating tumor cells (CTCs) 
demonstrated a trend toward inferior survival (68). 
Clivatuzumab tetraxetan (PAM4) is a monoclonal antibody 
that specifically targets pancreatic mucins like MUC-1  
and with [90]Y {[90]Y-labeled hPAM4} and low-dose 
gemcitabine had shown promise in early phase studies in 
pancreatic cancer. A phase I study of single dose [90]Y-labeled 
hPAM4 demonstrated its safety and also potential efficacy 
with 3 out of 21 patients achieving partial response (69). A 
second phase I study of repeated cycles of the same drug in 
combination with low dose gemcitabine demonstrated an 
encouraging response rate of 16% and a disease control rate 
of 42%, translating into a median survival of 7.7 months 
(including 11.8 months for those who received repeated 
cycles) (70). Guided by these results, a phase 3 study in the 
third line setting of low-dose gemcitabine with [90]Y-hPAM4 
or placebo with a 2:1 randomization was undertaken 
(NCT01956812). The study was recently terminated after an 
interim analysis for futility (71).

Candidate biomarkers and molecular targets

KRAS and associated targets

Mutations in the KRAS gene are seen in over 90% of 
pancreatic cancers, making oncogenic KRAS an important 
therapeutic target in this disease. However, the unique 
conformation of KRAS, its position in the cell membrane, 
and its extremely high affinity for GTP make it a challenge 
to inhibit in clinical practice (72,73). Many proteins 
including KRAS require posttranslational farnesylation 
to reach their membrane positions and function properly 
in cell signaling (74). Selective inhibitors of farnesyl 
transferases (e.g., tipifarnib) have been used to manipulate 
KRAS processing successfully in preclinical setting. Phase 
I studies of farnesyl transferase inhibitors as a single agent 
and in combination with other chemotherapeutic agents 
were promising (75-77). Unfortunately, a phase III study 
comparing gemcitabine with or without tipifarnib showed 
no added benefit for the combination (78). Salirasib is a 
novel agent that inhibits RAS-dependent cell growth by 
dislodging all RAS isoforms from the plasma membrane 
with activity demonstrated in pancreatic cell lines and 
xenograft models (79). A phase I study combining 
Salirasib with gemcitabine in advanced pancreatic cancer 
demonstrated a median OS of 6.2 months and a 1 year 
survival of 37%. The authors also noted biomarker 
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modulation with decreased level of RAS and KRAS protein 
in tumor samples, as early as day 9 of cycle 1 (80).

The MEK/MAPK and PI3K/AKT/mTOR pathways are 
the principal downstream pathways of KRAS. Efforts to target 
the KRAS pathway by focusing on these downstream effectors 
of KRAS activation are being undertaken (81), although 
results have been discouraging thus far. A randomized, 
double-blind trial of gemcitabine with or without trametinib 
(MEK inhibitor) did not show any improvement in overall or 
progression free survival for the combination in the first line 
setting of metastatic pancreatic cancer (82). Similar results 
were seen with another MEK inhibitor, pimasertib, when given 
in combination with gemcitabine (83). 

Unfortunately, the inhibition of MEK leads to enhanced 
signaling through EGFR with hyperactivation of the PI3K-
AKT pathway, supporting the strategy of multiple pathway 
inhibition. Selumetinib, a mitogen-activated protein kinase 
inhibitor, demonstrated similar efficacy as capecitabine in a 
phase II study (84), and was further tested in combination 
with erlotinib in the second line setting (85). There were 
no responders but median OS was about 7.5 months 
with 51% disease control rate. In contrast, a combination 
of selumetinib and MK-2206 (AKT inhibitor) did not 
improve OS in patients progressing after gemcitabine-
based chemotherapy when compared to mFOLFOX in 
a randomized phase II study (86). Also, mTOR inhibitors 
(block the PI3K-AKT pathway downstream), have failed 
to show activity in previously treated metastatic pancreatic 
cancer (87,88). Interestingly, Peutz-Jeghers syndrome 
patients harbor an alternation in the STK11 tumor 
suppressor gene that encodes an mTOR1 inhibitor and may 
be exceptionally susceptible to these drugs, as shown by 
a case report of response to everolimus in a patient with 
pancreatic cancer related to this syndrome (89).

Novel strategies to inhibit KRAS  are also being 
developed. RNA interference involves post-transcriptional 
inhibition of a gene by a double-stranded RNA homologous 
to the target gene. This is accomplished by generation of 
small interfering RNA (siRNA). Targeting mutant KRAS 
using specific siRNA was effective in KRAS oncogene 
silencing and tumor growth inhibition in pancreatic 
tumor xenografts (90). A biodegradable polymeric matrix 
encompassing siRNA such as anti-KRASG12D siRNA (known 
as Local Drug Eluter; siG12D LODER) is designed to 
provide slow and stable local drug release within a tumor 
over a period of a few months. This method of drug 
delivery can suppress KRAS expression, in vitro and in vivo, 
resulting in anti-tumor activity and improved survival in 

mouse models (91).

Other possible pathways

Inhibition of the hedgehog pathway decreases the growth 
of various types of tumors, including pancreatic cancer 
(92,93). Also, cancer-associated stromal fibroblasts 
overexpress the hedgehog receptor smoothened (SMO), 
leading to inappropriate activation and deregulation of 
the sonic hedgehog pathway (94). In preclinical study, the 
SMO receptor inhibitor saridegib with gemcitabine in 
gemcitabine-resistant mice resulted in increased tumor 
vasculature and extended survival (95). However, a phase 
IB/II study in pancreatic cancer comparing gemcitabine 
with or without the hedgehog inhibitor vismodegib did 
not show any benefit for the combination (96). HER2 
overexpression, by immunohistochemistry, is infrequently 
reported in pancreatic cancer, but clinical trials of HER2 
inhibitors in patients with HER2-overexpresing tumors have 
reported disappointing results (97). 

Conclusions 

We have made significant progress in the treatment of 
advanced pancreatic cancer, with survival approaching 1 year.  
However, there is a clear unmet need to improve outcomes 
for this deadly disease. A better understanding of pancreatic 
cancer genomics has provided new opportunities to 
personalize therapy and identify novel targets and drugs. 
Instead of targeting a specific gene or pathway, therapies 
with a multi-faceted approach targeting the primary tumor, 
microenvironment, stroma and host factors (immune 
response) at the same time are the likely next steps to 
yield benefit. In this manner, we can improve clinical 
response and outcomes with a multi-pronged approach 
and ultimately realize the dream of personalized therapy 
in sporadic or non-homologous recombination deficient 
pancreatic cancer.
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