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Introduction

In recent years, interest in blood-based “liquid biopsies” to 
diagnose, monitor, and characterize solid tumors has surged. 
With the arrival of several commercially available blood-
based assays, the use of these assays in clinical practice is 
increasingly routine. Although many of these assays are 
analytically sensitive, specific, and accurate, prospective 
evidence linking results with clinical utility remains limited. 
In the absence of this prospective evidence, the increased 
use of blood-based biopsies reflects a desire to minimize 
procedural risk to the patient, while applying therapies 
tailored to a patient’s specific tumor characteristics. 

Liquid biopsies can be used to identify a range of 
circulating tumor products, including circulating tumor 
cells (CTCs), circulating tumor DNA (ctDNA), circulating 
messenger RNA (mRNA), circulating microRNA (miRNA), 
circulating exosomes, and tumor educated platelets (TEPs). 

Of these circulating tumor products, CTC and ctDNA 
assays are orderable through commercial vendors, and 
are most broadly incorporated into clinical practice. The 
detection of circulating tumor products has been well 
described for decades (1,2), but the assays used to detect 
these products have only recently been technically validated 
for routine clinical practice. 

For patients with gastrointestinal (GI) malignancies, 
the use of blood-based biopsies to screen, diagnose, and 
genotype tumors may be particularly beneficial. First, tumor 
tissue samples—which are often limited to cytology or fine 
needle aspiration (FNA)—may be of insufficient quantity 
or tumor content. As a result, genomic profiling for clinical 
trial participation and personalized treatment strategies may 
not be possible. When tumor tissue is unavailable, clinicians 
must choose between a repeat tumor biopsy or treatment 
in the absence of genomic data. In some cases, metastatic 
tumor lesions are only available through diagnostic 
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laparoscopy or other invasive procedures. Second, blood-
based assays offer a dynamic “snapshot” of the entire 
tumor burden at a specific point in time. In addition to 
showing dominant mutations, this anatomically unbiased 
profiling often reveals clinically relevant subclones. These 
subclones may not be detected in primary tumor tissue, 
but may increase under the selective pressure of targeted 
therapy. Third, blood-based biopsies capture both inter and 
intratumoral heterogeneity. In some cases this heterogeneity 
may be substantial (3-5). Finally, given the relative ease and 
speed with which blood can be obtained, blood-based assays 
can be utilized to identify genomic changes associated with 
sensitivity and resistance to novel therapeutics. This can 
accelerate efforts to discover relevant resistance-conferring 
alterations, and may support efforts to further personalize 
treatment.

This review will  examine current l iquid biopsy 
technologies for patients with GI malignancies, and will 
assess the ability of circulating tumor products to detect 
new cancers, diagnose recurrent disease, identify genomic 
biomarkers of sensitivity and resistance, and predict 
prognosis.

Circulating tumor products: overview of current 
technologies

CTCs

CTCs originate from the primary tumor and metastatic 
sites. Most CTC assays rely on selection of tumor cells 
based on their biological (protein expression) and physical 
properties (size, density, deformability, electric charge). 
Similar to ctDNA, CTCs have been used to help determine 
tumor mutation status (6) and prognosis (7). There currently 
exists a FDA-approved CTC assay, CellSearch (Veridex, 
New Jersey, USA), for the enumeration of CTCs. Although 
commercially available, the use of CTCs in GI cancers is 
limited due to low rates of detection, and its prognostic, 
rather than predictive value (8). While CTCs can be 
detected in over 60% of patients with metastatic breast 
cancer and prostate cancer, CTCs can only be detected in 
30–40% of patients with metastatic CRC (mCRC) (8-11). 
When CTCs are detected in mCRC, they are typically at 
a lower absolute number (median 1–2 CTC/7.5 mL) than 
when they are detected in metastatic breast and prostate 
cancer (median 6–7 CTC/7.5 mL) (12-14). The reason for 
this discrepancy is multifactorial. First, CRC CTCs often 
travel in adherent clusters due to increased surface adhesion 

molecules (15). Second, the circulation anatomy may affect 
cell collection (16). Specifically, hepatic drainage of portal 
blood may act as a filter, resulting in fewer peripheral 
blood CTCs. Tumor location also plays a role. For 
example, lower rectal tumors have increased CTCs in the 
central venous blood, compared with tumors in the upper 
rectum and colon. Lastly, as CTCs undergo epithelial-
mesenchymal transition (EMT), cells lose their epithelial 
markers and become more difficult to detect. CellSearch 
relies on expression of EpCAM, a marker of epithelial  
phenotype (17). Even when the cells do express EpCAM, 
it has been shown that the specific EpCAM antibody 
used can greatly change the detection rate (18). There are 
currently efforts underway to detect CTCs lacking EpCAM 
expression (17,19-21). One example is capturing cells which 
express the tyrosine kinase receptor c-MET (21). 

ctDNA

ctDNA is comprised of fragments of cell-free, tumor-derived 
DNA from necrotic or apoptotic tumor cells (22). ctDNA 
can originate from CTCs, metastases, or the primary tumor. 
There are two challenges facing detection of ctDNA. 
First, a tumor-encoded somatic aberration (e.g., mutation, 
translocation, or methylation event) must be present in 
the tumor genome if it is ever to be detected in the blood. 
While genes like APC, TP53 and KRAS are frequently 
mutated in GI malignancies, none is mutated in 100% of 
them, and a tumor suppressor gene has several mechanisms 
by which it can be inactivated, making for an unacceptably 
large potential search space for some technologies. Second, 
while poorly understood, quantity of ctDNA is likely related 
to tumor burden in a non-linear manner, meaning ctDNA 
is present in small amounts in early stage disease, sometimes 
occupying only 0.01% of total cell free DNA (cfDNA) (23).  
For example, in patients with localized GI tumors [colorectal 
cancer (CRC), gastric or gastroesophageal (GE) cancer, 
and pancreatic cancer] ctDNA can be detected in 48–73% 
of patients (24). However, as tumor burden increases, deep 
surveillance of sufficient genomic space increases ctDNA 
detection to nearly 100% (25). For this reason—and because 
tumor genotyping is currently less likely to influence early 
stage treatment decisions—ctDNA is now most useful in 
patients with advanced metastatic disease. The standard 
DNA sequencing approaches such as Sanger sequencing or 
pyrosequencing are only able to detect ctDNA in patients 
with significant tumor burden. To improve the ability 
to detect and analyze ctDNA, a variety of technologies 
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have been developed, including digital PCR (26),  
digital NGS (27), beads, emulsion, amplification, and 
magnetics (BEAMing) (28), pyrophosphorolysis-activated 
polymerization (PAP) (29), cancer personalized profiling 
by deep sequencing (CAPPSeq) (30), and tagged-amplicon 
deep sequencing (TAm-Seq) (31).

The optimal liquid biopsy assay remains an area of active 
investigation. Nonetheless, compared with traditional 
CTC assays, detection of ctDNA is arguably more sensitive 
(32,33). For example, in a recent study of patients with 
advanced solid tumors, ctDNA was always detected when 
CTCs were present (25). On the other hand, ctDNA was 
often detected when CTCs were absent. However, it should 
be noted that this study did not utilize enrichment methods 
prior to detection of CTCs, something which is now 
standard amongst modern CTC tests.

In addition to the ongoing research regarding early 
detection of malignancy, ctDNA is also being developed 
to detect clinically actionable somatic point mutations 
or deletions (34), cancer surveillance after definitive  
surgery (24), and monitoring for the development of 
molecular resistance to targeted therapies (35).

Circulating exosomes

Exosomes are extracellular vesicles—secreted by all 
cells—which contain proteins and nucleic acids. Cancer 
specific exosomes may have unique cell surface proteins 
which are distinguishable from normal exosomes (36). 
Glypican-1 (GPC1), a membrane anchored protein 
overexpressed in breast (37) and pancreatic cancer (38), 
was recently discovered to be detected exclusively in cancer  
exosomes (39). In a validation cohort of 56 patients with 
pancreatic ductal adenocarcinoma (PDA) (with patients 
from all four stages of cancer including carcinoma in situ), 
6 patients with benign pancreatic disease such as chronic 
pancreatitis, and 20 healthy patients, GPC1+ circulating 
exosomes (crExos) were 100% sensitive and specific 
for distinguishing patients with PDAC (39). Additional 
validation studies are needed for this novel approach. 

Circulating mRNA

Several circulating mRNA candidates have been studied 
for CRC screening and prognosis after surgical resection 
(40-42). Blood mRNA biomarkers such as CEA, CK20, 
CK19, human telomerase reverse transcriptase (hTERT), 
and guanylyl cyclase C (GCC) have all been examined in 

the perioperative setting (42). In most cases, persistence of 
tumor associated mRNA within 24 hours of tumor resection 
has been predictive of relapse (43). In a meta-analysis of nine 
studies with patients undergoing curative surgery for CRC, 
CTC detection based on CEA, CK19 and CK20 mRNA 
correlated with the development of hepatic metastases and 
decreased disease-free survival (44). Recently, Rodia et al. 
utilized a novel Transcriptome Mapper (TRAM) to identify 
TSPAN8, LGALS4, COL1A2, and CEACAM6 as candidate 
mRNAs for detection of CRC (40). 

However, circulating mRNA also has limitations. 
Extracellular mRNA is susceptible to degradation by RNase 
in plasma (45). Attempts to use RNase inhibitors have been 
unsuccessful at protecting mRNA from degradation (45). 
Thus, the use of mRNA in cancer screening and prognosis 
remains investigational. 

Circulating miRNA

miRNAs are small noncoding RNA molecules that regulate 
cellular processes (46). miRNAs are stable in plasma and 
serum, properties which make them an excellent candidate 
as a blood-based tumor diagnostic (47). A recent meta-
analysis of 16 studies examined the diagnostic accuracy 
of circulating miRNA in CRC. This study found that 
miRNA-21, as opposed to miRNA panels, was promising 
as a diagnostic biomarker (47). Nonetheless, there are 
several technical limitations with circulating miRNA. First, 
there is no standard approach for miRNA isolation. Studies 
report using serum, plasma, peripheral blood mononuclear 
cells, and whole blood (48). Second, it has been shown 
that hemolysis via centrifugation can impact miRNA 
levels, highlighting the need for consistent enrichment  
techniques (49). Further standardization is needed before 
miRNA is appropriate for routine clinical use.

TEPs

Platelets are involved in hemostasis and wound healing. 
While platelets are anucleate, they contain cytoplasmic pre-
mRNA which may be translated into protein in response to 
external stimuli (50). Tumor cells may influence (“educate”) 
neighboring platelets to undergo specific splicing of 
pre-mRNA, thereby altering the RNA profile of blood  
platelets (51). Using the mRNA of TEPs, Best et al. were 
able to distinguish between patients with malignancies 
versus healthy controls with 96% accuracy, and were able 
to determine the location of the primary tumor with 71% 
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accuracy (52). This technology remains investigational. 

Screening 

Current cancer screening modalities include direct 
visualization, imaging, histologic evaluation, and blood 
protein tests. While current screening methods help identify 
patients with potentially curable early stage malignancies, 
there still exists several barriers to cancer screening 
(53,54). Many tests are uncomfortable (colonoscopies, 
pap smears, mammograms), expose patients to radiation 
(CT scans, mammography), are unpleasant to accomplish 
(stool studies), and almost all require scheduling additional 
healthcare visits. Thus, the optimal cancer screening assay 
remains an area of active research.

Two new non-invasive techniques were recently approved 
for CRC screening. In 2014, the FDA approved fecal 
DNA testing with Cologuard (Exact Sciences Corporation, 
Madison, WI, USA). In 2016, the FDA approved Epi 
proColon (Epigenomics, Berlin, Germany), a blood-based test 
that detects methylated Septin9 (SEPT9) DNA to identify 
CRC in patients who choose not to undergo colonoscopy and 
stool-based fecal immunochemical tests (55). Other assays 
to detect early stage GI malignancies are currently under 
development.

Already, liquid biopsies have been utilized to detect 
clinically silent malignancies. In a study of 125,426 women 
undergoing non-invasive prenatal testing (NIPT) for fetal 
aneuploidy via verifi Prenatal Test (Illumina, San Diego, 
California, USA), 3,757 women tested positive for one or 
more aneuploidies involving chromosome 13, 18, 21, X, 
or Y. Of these women, 39 had multiple aneuploidies, and 
seven (18%) were diagnosed with an occult malignancy 
(56,57). Three other women with single aneuploidy were 
also diagnosed with malignancies. In three of the ten 
cases, the discordant NIPT test prompted the evaluation 
for malignancy. One limitation of this approach to cancer 
screening is that it requires a comparison between two 
different types of tissue—in this case mother and fetus. 
One approach to overcome this barrier is the use of a 
“nucleosome footprint”—ctDNA nucleosome spacing is 
unique with respect to the nuclear architecture and gene 
expression and thus may inform the cell type (58).

Another method to overcome the use of a comparator is 
digital karyotyping (DK). Abnormal chromosomal content 
in the form of losses and gains of entire chromosomes, 
modification of chromosome arms, amplifications and 
deletions, and chromosomal rearrangements can all be 

analyzed via next generation sequencing (NGS) (59). Using 
the DK approach and NGS data from 81 cancer patients 
and 10,000 simulated controls, Leary et al. hypothesized 
that they could reach a sensitivity of >90% and 99% 
specificity with detection of breast cancer and CRC when 
ctDNA concentrations reached more than 0.75%. While 
this test may be sensitive and specific, the required ctDNA 
concentration is still greater than 0.10%—the sensitivity 
needed to detect tumors based on BEAMing assays in early 
stage CRC (23,24). Another challenge will be the detection 
of false positives, due to constitutional germline or mosaic 
structural alterations, which can occur in 1.9% of patients 
older than 75 (60). Given the current challenges identifying 
ctDNA in patients with low tumor burden (23,25), 
colonoscopy should remain the standard of care for CRC 
screening.

Surveillance for recurrent disease

ctDNA may be effective for detecting tumor recurrence. In 
breast cancer, for example, ctDNA has been shown to be 
reliable in detecting tumor progression or metastatic disease, 
often with clinical lead time of up to almost 1 year (61). 
Similar studies have found that liquid biopsies can also 
be used for surveillance of GI malignancies (62,63). In 
addition to detection of recurrent disease, the presence of 
circulating tumor products may eventually guide adjuvant 
chemotherapy decisions. 

CRC

In patients with CRC, the BEAMing and patient specific 
somatic structural variants (SSVs) techniques have been 
investigated as tools to identify cancer recurrence (23,62). 
In both methods, ctDNA was found to be more reliable and 
sensitive at detecting tumor recurrence than CEA. Diehl 
et al. measured ctDNA in patients after both complete and 
incomplete resections. Those patients with undetectable 
ctDNA had 100% recurrence free survival (RFS) at 2 years, 
compared to less than 15% RFS for patients with detectable 
ctDNA (23). Frattini et al. reported similar findings in 
a cohort of 70 CRC patients who underwent surgery 
and then had plasma DNA and CEA levels followed for  
16 months (64). Prior to surgery, circulating plasma 
DNA was elevated in all patients, whereas only 30% of 
patients had an elevated CEA. At follow up, plasma DNA 
levels increased in all patients who ultimately developed 
metastases or loco-regional relapse—however, CEA levels 
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did not increase in all patients with recurrent disease, 
demonstrating the increased sensitivity of plasma DNA over 
CEA. 

In patients with stage II CRC, ctDNA is being evaluated 
in the post-operative setting to detect disease recurrence. 
Preliminary data on 190 patients demonstrate cancer 
recurrence in 5 of 6 patients with detectable ctDNA and 5 
of 72 patients with undetectable ctDNA (63). Patients with 
detectable ctDNA had a shorter recurrence-free survival 
(median 234 days vs. undefined, HR 23.09, P<0.0001). For 
patients with stage II colon cancer—where overall prognosis 
is good and the benefit of adjuvant chemotherapy is limited, 
ctDNA might eventually be used to identify patients 
with the greatest risk of recurrence, and guide adjuvant 
chemotherapy decision-making (65-67). 

Gastric cancer

ctDNA is also being studied as a tool to monitor disease 
recurrence following gastrectomy. Hamakawa et al. 
collected gastric cancer tissue and blood from 42 patients 
undergoing gastrectomy (68). Ten patients had a detectable 
P53 mutation. Of those 10 patients, pre-operative cfDNA 
was available in 6 cases and ctDNA was measurable in 
only 3 cases. ctDNA correlated with disease progression 
in all three patients, whereas cfDNA did not. To enhance 
the feasibility of this approach, future efforts will need to 
include a larger panel of detectable oncogenes.

Pancreatic cancer

Only a minority of patients with pancreatic cancer are 
candidates for surgical resection. Even when patients 
undergo resect ion,  recurrence  ra tes  range  f rom  
70–90% (69). Current post-operative surveillance for 
pancreatic cancer includes CA19-9 and imaging, both 
of which lack sensitivity and specificity. Thus, the use of 
circulating tumor products may be helpful in this setting. A 
study showed that 14 of 46 patients who had undetectable 
ctDNA following resection had a longer time to disease 
recurrence (median time 545 vs. 471 days), but this 
difference was not statistically significant (HR =0.58; 
P=0.3) (70). Similar findings were reported by Sausen  
et al.—patients with detectable ctDNA after surgical 
resection were more likely to relapse compared with those 
with undetectable ctDNA (71). Additional larger studies 
are needed to validate the use of ctDNA as a biomarker for 
recurrence in resected pancreatic cancer. 

Predictive biomarkers—molecular profiling of 
blood to identify markers of sensitivity and 
resistance

Precision medicine is based on the notion that molecular 
profiles (tumor, stroma, immune) can be used to personalize 
cancer therapy (72). Until recently, most precision medicine 
clinical trials utilized tissue biopsies—either from primary 
tumors or at progression—to identify potential predictors 
of sensitivity and resistance (73-75). While these precision 
medicine initiatives represent advancements in the 
treatment of cancer, the technical and operational challenges 
of relying exclusively on tumor tissue are increasingly 
recognized. For example, the International Working Group 
on Multidisciplinary Lung Adenocarcinoma Classification 
estimated that only 57% of such biopsies had sufficient 
tissue for genomic analysis after initial pathology diagnosis 
and staining (76). Since 2009, the NCCN has recommended 
that all patients with mCRC be tested for KRAS mutations 
upon diagnosis (65). Yet, in 2010, only 23% of patients with 
mCRC received guideline based genomic analysis (77,78). 
While many factors contribute to lack of testing (77),  
the use of liquid biopsies may ease the practical burden 
of genomic testing, and facilitate the use of predictive 
biomarkers in clinical practice.

CRC

One application of ctDNA in CRC is to identify predictive 
biomarkers of primary treatment resistance. Both KRAS 
and NRAS (RAS) mutations are well established biomarkers 
that predict resistance to anti-epidermal growth factor 
receptor (anti-EGFR) monoclonal antibody therapy (either 
cetuximab or panitumumab) (79-81). Current NCCN 
practice guidelines recommend expanded RAS tissue testing 
in all patients with mCRC (65). Bettegowda et al. evaluated 
KRAS mutation status in the plasma and tumors of  
206 patients with mCRC (25). Of the 206 patients, ctDNA 
correctly identified 127 of the 128 patients with KRAS wild-
type tumors and 69 of 79 patients with KRAS mutations, 
yielding a sensitivity of 87% and specificity of 99%. Theirry 
et al. tested 106 patient plasma samples and companion 
tumor samples for seven KRAS point mutations and yielded 
98% specificity and 92% sensitivity with a concordance 
value of 96% (82). It is unlikely that liquid biopsies will 
soon supplant standard of care tissue testing for RAS and 
BRAF mutations. However, in cases where tissue is not 
safely accessible or is not available, blood-based genotyping 
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may provide a surrogate for tissue.
A second application of ctDNA in CRC is to interrogate 

the genomics of acquired treatment resistance. Anti-EGFR 
therapies improve survival in patients with RAS WT mCRC 
(83-87), but nearly all patients develop resistance. Blood 
based assays—in particular ctDNA—could help identify 
acquired mutations that confer treatment resistance. 
Already, ctDNA has identified KRAS and NRAS mutations 
as the dominant drivers of acquired resistance to anti-
EGFR therapies (88). These mutations may initially exist as 
rare subclones within a metastatic lesion, but increase under 
selective pressure (35). Diaz et al. examined the blood of  
24 patients with KRAS WT tumors who received anti-
EGFR therapy (35). Of the 24 patients, 9 patients were 
found to develop KRAS mutations in codons 12 and  
13 during the course of therapy. The detection of KRAS 
mutations in blood preceded radiographic evidence of 
progression in 3 of 9 cases, with an average lead-time of 
21 weeks. Additionally, Morelli et al. examined 62 patients 
who developed resistance to EGFR therapy. Of these  
62 patients, 27 patients developed acquired KRAS 
mutations. In this same study, EGFR-ectodomain (ECD) 
mutations were detected in five patients treated with 
cetuximab but none of those treated with panitumumab (88). 
Since some EGFR ECD mutations do not confer cross-
resistance to panitumumab, they are potentially targetable 
with panitumumab or other novel therapeutics (89-91).

Recently, ctDNA profiling has been utilized to identify 
other rare or overlapping genomic alterations associated 
with EGFR resistance. Bettegowda et al. performed ctDNA 
profiling on 24 patients who initially responded to EGFR 
therapy. The panel included not only KRAS codons 12 
and 13, but also NRAS, BRAF, EGFR, and PIK3CA (25). 
Of these 24 cases, they discovered at least one mitogen-
activated protein kinase pathway gene mutation in  
23 patients (96%). The average number of mutations per 
each patient was 2.9 (range, 0–12). In total, they observed 
70 somatic mutations, which had not been detected in the 
tumor or plasma prior to EGFR blockade. 

The combination of ctDNA and tissue-based NGS 
may provide further insights into mechanisms of EGFR 
resistance. Siravegna et al. evaluated matched tissue 
and blood samples from 100 patients with KRAS WT  
mCRC (92). Ten out of 100 patients received an EGFR 
antibody but did not have clinical benefit. Of these 
ten patients, ctDNA revealed NRAS mutations in two 
patients, which had not been tested prior to treatment. 
In the remaining eight patients, NGS revealed ERBB2 

amplification in four patients, an alteration associated 
with primary EGFR resistance (93). Another patient had a 
somatic variant of the MAP2K1 gene encoding the MEK 
protein, a rare mutation present in 1.5% of CRC tumors, 
and not yet associated with EGFR resistance. 

CTCs have also been utilized to identify actionable 
targets in patients with CRC. Heitzer et al. isolated 
CTCs from patients with mCRC and compared 68 CRC-
associated genes between primary tumors, metastases, and 
the corresponding CTCs (94). They found many mutations 
exclusively within the CTCs but not initially identified in 
the original tumor tissue. 

Pancreatic and biliary cancers

For patients with pancreatic and biliary cancers, the use of 
tumor tissue to identify markers of sensitivity and resistance 
has proven challenging. First, these malignancies are often 
diagnosed by cytology or FNA, leaving limited tissue for 
molecular studies (95). Second, even when tissue is available, 
tumor cellularity is often less than 30%, making genomic 
analyses difficult (96). As a result of these challenges, 
genotype-directed clinical trials that rely on tissue testing 
have failed to demonstrate clinical benefit (97). 

For patients with pancreatic cancer, ctDNA may offer 
advantages for genomic profiling. Over 75% of patients 
with metastatic PDA have detectable ctDNA (25). Zill 
et al. studied the sensitivity and specificity of ctDNA by 
analyzing ctDNA and primary tumor tissue of 26 patients 
with PDAs. They found that ctDNA had 92% sensitivity 
and 100% specificity in detecting genetic mutations when 
tumor tissue was used as the gold standard (98). Seven of 
nine patients (78%) in this study had clinically actionable 
mutations discovered in ctDNA but not in tumor tissue. 
One patient had an activating EGFR mutation discovered 
in blood, which was not seen in tumor until repeat biopsy 
7 months later. That patient was treated with capecitabine 
and erlotinib with an exceptional response. Another patient 
found to have a FGFR2 mutation was enrolled in a FGFR 
inhibitor clinical trial. This is in stark contrast to the recent 
IMPaCT trial, which relied upon tumor tissue profiling, 
and enrolled no patients in genotype directed therapies (97).  
Future applications for ctDNA in pancreatic cancer may 
include identification of BRCA pathway mutations (99) 
and other potentially actionable genomic markers of DNA 
mismatch repair deficiency (100).

In addition to ctDNA, investigators have also used 
exosomal DNA (exoDNA) to assess the genomic profiles of 
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pancreatic cancer (36). One advantage of exoDNA is that it 
is shielded from degradation in circulation (101). In a small 
proof-of-concept study, San Lucas et al. used whole exome 
sequencing to analyze three patients with pancreaticobiliary 
cancer and were able to find actionable mutations, 
including ERBB2 and NOTCH1 (102). In one of the three 
patients, the patient’s pleural fluid was used for analysis. 
His pleural effusion had fewer than 1% malignant cells 
on cytospin and a NGS assay was unable to detect tumor 
DNA. Nonetheless, there were numerous tumor-derived 
exosomes present for analysis, demonstrating the utility of 
this approach. 

Gastric cancer

Up to one sixth of patients with gastric cancer have HER2 
overexpression or amplification (103). Detection of HER2 
gene amplification in ctDNA can be serially monitored in 
patients undergoing treatment (104). In addition to ctDNA, 
CTCs have also been utilized to predict tumor progression 
in patients treated with palliative chemotherapy (105).

Prognostic biomarkers

Cancer prognosis has traditionally relied on pathologic stage 
at the time of diagnosis. Because the presence or absence of 
circulating tumor products correlates with absolute tumor 
burden, it may represent another independent prognostic 
metric. CTCs and ctDNA have been found to correlate with 
survival in many GI cancers, including colon, pancreatic, and 
gastric cancer. A recent systematic review of 39 studies and 
4,052 patients found that detection of ctDNA is associated 
with significantly worse overall survival (106).

CRC

In patients with mCRC, there is an inverse relationship 
between level of cfDNA and survival. In a study by Spindler 
et al., patients with cfDNA below the median had an overall 
survival of 12.2 months, versus only 4.5 months in patients 
with levels above the median (107). In addition to total 
levels of cfDNA, they were able to correlate plasma mutant 
KRAS (mutKRAS) levels with prognosis. Patients with high 
plasma mutKRAS levels had a 0% rate of disease control 
(stable disease or response), compared with 42% in patients 
with low plasma mutKRAS levels (108).

In addition to cfDNA and ctDNA, CTCs have also been 
found to be prognostic in patients with CRC. In a study 

using CellSearch to detect CTCs, 430 patients with mCRC 
were split into favorable and unfavorable groups based on the 
number of CTCs—those patients with more than 3 CTCs 
per 7.5 mL of blood were classified as unfavorable (109). 
Those patients with a low CTC count had nearly twice as 
long progression free survival and overall survival compared 
to those with a high CTC count. CTC count was prognostic 
in all subgroups analyzed, including age, ECOG status, liver 
involvement, receipt of first line chemotherapy, and receipt 
of various chemotherapy regimens. As technology emerges to 
detect CTCs in a greater percentage of patients, the utility of 
CTCs in clinical practice may increase.

 

Pancreatic cancer

The detection of CTCs has been found to be prognostic 
in pancreatic cancer. In a randomized controlled trial in 
patients with locally advanced pancreatic cancer, CTC 
detection with CellSearch was associated with inferior 
survival (110). These results have been replicated by several 
other studies, and a meta analysis of nine independent 
cohort studies concluded that detection of CTCs is 
associated with worse progression free survival and overall 
survival (111).

In addition to CTCs, ctDNA may also predict prognosis 
in patients with pancreatic cancer (71,112,113). In a pilot 
study of 45 patients with exocrine pancreatic cancer, 
patients with KRAS mutated ctDNA had significantly 
decreased 60 day overall survival compared with those with 
KRAS WT ctDNA (60 vs. 772 days) (114). In this same 
study, the detection of CTCs also strongly correlated with 
survival—however, one major difference was that CTCs 
were only detectable in patients with metastatic disease, 
whereas KRAS mutated ctDNA was detected in patients 
with both resectable and locally advanced disease. The lack 
of detection of CTCs in early stage disease may be due 
to the detection technique as well as tumor physiology. 
A mouse model by Rhim et al. found that only 27% of 
circulating epithelial cells express EpCAM (115). The use 
of CTCs and ctDNA to predict prognosis in patients with 
pancreatic cancer remains investigational.

Gastric cancer

A recent meta-analysis of 26 studies involving 1,950 patients 
examined the prognostic significance of CTCs in gastric 
cancer (116). Zhang et al. found that CTCs are associated 
with worse RFS and overall survival. The authors found 
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that the time at which CTCs were collected was an 
important factor in predicting overall survival. CTCs 
collected prior to chemotherapy or surgery were predictive 
of metastases. CTCs collected immediately after surgery 
did not impart such prognostic information, as there is a 
transient increase in CTC detection after surgery, which has 
been demonstrated both in human and mouse models (117). 
CTCs collected in the surveillance period after surgery 
may be useful in indicating tumor recurrence. Thus, when 
using CTCs as a prognostic biomarker, it is important to 
specify when CTCs are collected, as blood collected prior 
to surgery and chemotherapy is likely more meaningful 
for overall survival, but CTCs collected after surgery are 
important for monitoring tumor recurrence. 

Conclusions

Liquid biopsies have received widespread attention because 
of the implications for personalized medicine. From 
cancer screening and surveillance to molecular analysis of 
metastatic lesions, a liquid biopsy may obviate the need 
for invasive biopsies and help guide therapeutic decision 
making. Numerous studies have shown that circulating 
tumor products can predict prognosis and recurrence risk 
after surgery. However, there are still barriers that must 
be overcome before liquid biopsy technology replaces the 
current tissue-based gold standard. First, the most sensitive 
and specific methodology of detecting circulating tumor 
products remains an area of active investigation. Second, 
there is a paucity of prospective studies linking results from 
liquid biopsy assays to clinical benefit. Finally, while liquid 
biopsies may give us the ability to detect mutations, we still 
lack effective drugs for many genomic alterations. Despite 
these limitations, liquid biopsy technologies represent a 
promising step forward in the detection and monitoring of 
GI cancers. 
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