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Introduction

Polydactyly is  the most common hereditary l imb 
malformation, and its total incidence is about 0.3–3.6‰ 
of the surviving infants (1). The disease is autosomal 
dominant and clinically manifested as extra fingers or toes. 
Polydactyly has similar phenotypes in different species 
including humans, mice, and chickens, and its clinical 
typing principles are basically the same (2,3). Polydactyly is 
more common in the thumb and little finger, and the extra 
phalangeal shape and structure can be either a small fleshy 
growth or a nearly normal developing finger with nails, 
bones, joints, tendons, and neurovascular bundles (4). The 
only current treatment for the disease is surgical removal 
of excess fingers or toes, which will not regenerate after 
surgery, and there is no other treatment (5).

The exact etiology of polydactyly is not clear at 
present, most are sporadic, on the one hand, the disease 
is related to environmental factors. For example, during 
the early 4–8 weeks of pregnancy, embryonic limb bud 

differentiation is affected by viral infection, drugs, radiation 
and other environmental factors, which may lead to finger 
differentiation disorders and limb deformity (6-10). On the 
other hand, many clinical samples have proved that some 
patients have a family disease, and the pathogenic genes 
of multi-toed babies may be inherited from their parents 
(11,12). In recent years, with the further development of 
sequencing technology, some studies have found that de novo  
mutations of important genes related to polydactyly can 
also lead to polydactyly in the next generation (13-17). 
For the former, we call for better health care and nutrition 
during pregnancy to avoid bacterial and viral infections and 
possible teratogenic factors such as radiation and drugs. 
For the latter, it is important to understand the genetic and 
molecular characteristics of polydactyly and to identify and 
confirm the genes and loci that cause the disease, which can 
provide an important reference for the subsequent genetic 
and molecular biology studies of the disease. This paper 
reviews and updates the above information.
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Clinical classification of polydactyly

Polydactyly can occur as an isolated disease (non-syndromic 
polydactyly) or as part of an abnormal syndrome (syndromic 
polydactyly). From an anatomical perspective, the two most 
common types of polydactyly are the preaxial polydactyly 
(PPD) and the postaxial polydactyly (PAP) (Figure 1). 
Of course, there are more rare types, such as mesoaxial 
or central polydactyly, mirror image polydactyly (MIP), 
palmer and dorsal polydactyly, etc. (18,19). PPD is defined 
as a supernumerary digit affecting the first digits, this type 
of polydactyly is rare, accounting for about 8% to 15% of 
polydactyly. This type is mostly found in southeast Asia, 
such as Malaysia and the Philippines, etc. PPD is further 
subdivided into four subclasses according to the location 
and morphology of redundant fingers (toes). PAP involves 
the fifth digits and is the most common type of polydactyly, 
accounting for approximately 77% to 87% of the total 
polydactyly. The incidence of this type of polydactyly varies 
along ethnic lines and is particularly common in African. 

PAP can be further classified into types A and B, according 
to the extra digit(s) being either well developed (type A, 
PAPA) or rudimentary (type B, PAPB). And PAPA can be 
divided into six genetic types (20). In this paper, according 
to the specific classification of polydactyly, we summarized 
and updated the information of disease phenotype, 
chromosome location, genetic mode and related pathogenic 
genes (Table 1).

Cellular molecular basis of limb development

Morphogenesis of fingers (toes)

Fingers (toes) is a special product of the evolution of 
tetrapods. During embryonic development, they condense 
as a single cartilage, which then divides and grows. Human 
limb buds begin to form at the fourth weekend of embryonic 
development, after which the interaction between genes 
and various signaling factors guarantees the normal shape, 
function and number of fingers (toes) (53,54). During 

Figure 1 Cartoon diagrams of autopods showing PPD and PAP. (A) Four types of PPD; (B) two types of PAP. Yellow represents normal 
fingers (toes); red is for extra fingers (toes); the grey is for stunted fingers (toes). PPD, preaxial polydactyly; PAP, postaxial polydactyly.
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limb development, biological signals generated at specific 
locations play a crucial role in the fate of cells in later 
embryonic development, and errors in these signaling 
pathways can lead to congenital limb malformations (55). 
The appendage of vertebrates is formed by the mesoderm 
of the body wall and the outer epidermis. The bones in 
these limbs consist of three main parts: the ones near the 
side of the body wall called stylopod (e.g., humerus, femur), 
the middle part zeugopod (e.g., ulna, radius), and the most 
distant one autopod (e.g., metacarpal, digits) (56) (Figure 2A). 
Building a complete appendage requires accurate location 
information, that is, functioning in a three-dimensional 
(or four-dimensional including time) coordinated system. 
A series of proteins have been identified that play a role in 
the formation of the anterior-posterior axis (A-P axis), the 
proximal-distal axis (P-D axis) and the dorsal-ventral axis 
(D-V axis) of appendages (57) (Figure 2B).

The first sign of early appendage development is the 
proliferation of mesodermal cells along the long axis of the 
embryo, gradually forming thick clumps of cells under the 
epidermis, which are separated from the lateral lamellar 
mesoderm and ganglionic mesoderm of the appendage 
field, and then transformed into mesenchymal cells for 
migration. Thereafter, limb development begins with the 
proliferation of mesenchymal cells separated from the limb 
skeletal precursors and from the limb muscle precursors. 
These cells converge under the endodermal tissue to form 
a circular protuberant called a limb bud. Therefore, the 
signal of limb bud formation comes from the lateral plate 
mesoderm cells, which secrete the fibroblast growth factor 
10 (FGF10), and FGF10 can promote the interaction of 
limb formation between the ectoderm and mesoderm. 
Studies have shown that FGF10 is highly expressed in the 
lateral plate mesoderm where the limb is normally formed. 
When the researchers artificially transplanted cells that 
secreted FGF10 into the flanks of the chicken embryo, 
FGF10 caused an ectophobic limb to form (58,59).

The regulatory effect of the apical ectodermal ridge (AER)

In birds and mammals, the mesoderm induces the 
elongation of the ectoderm cells at the anterior and 
posterior edges of the tip of limb buds to form a thickened 
special structure called the AER (60,61). This ribbed 
structure will move with the fingerlike edges of the 
limb and will become the main signaling center of the 
developing limb. It plays the following roles: (I) to maintain 
the mesenchymal cells below it in a plastic, proliferating 



Pharmacogenomics Research and Personalized Medicine, 2020 Page 5 of 12

© Pharmacogenomics Research and Personalized Medicine. All rights reserved.   Pharmacogenomics Res Pers Med 2020 | http://dx.doi.org/10.21037/prpm-20-2

phase, enabling it to complete the growth of the P-D 
limb; (II) maintain a certain amount of performance for 
those molecules that can cause the A-P axis (i.e., thumb 
to pinky) formation; (III) and leads to protein interaction 
of the A-P axis and the D-V axis, so that each cell can get 
how to differentiate instruction. The outward growth of 
appendages involves a continuous interaction between 
AER and mesoderm (62). Once the mesoderm induces the 
formation of AER in the ectoderm above it, the interaction 
between the AER and the mesoderm is the most important 
FGFs for the outward growth of appendages, including 
FGF8, FGF4, FGF2, FGF9, and FGF17, which are all 
expressed in the AER (63-65). Among them, FGF8 is 
expressed in the AER of all cells, throughout the beginning 
and end of limb development, and is considered as a marker 
of AER. Therefore, FGF8 plays a leading role in the 
interaction between AER and mesoderm (66,67).

The regulatory effect of the zone of polarizing activity (ZPA)

The second important signal center in limb development 
is ZPA in the mesenchymal cells at the back of the limb 
bud. The signal factor SHH generated by ZPA is the basis 
for the formation of the A-P axis. Artificial transplantation 
of posterior limb bud cells to anterior edge cells can cause 
the production of extra limbs, and it was found that ZPA 
was produced in this process (68). ZPA cells produce 
SHH, which is thought to be a signaling molecule that 

originates from ZPA and regulates all of its function. The 
resulting replicative limb, or polydactyly, is caused by an 
early activation of abnormal SHH signals, which can be 
influenced by the external environment or caused by the 
body’s own signal disorders (69).

The regulatory effect of the non-ridge ectoderm

The formation of the limb D-V axis depends on the 
ectoderm without AER (70). The D-V axis is associated 
with cell specialization from both the mesoderm and 
ectoderm, and its differentiation may be induced by the 
specific paracrine factor (Wnt7a) in the ectoderm of 
the dorsal limb bud (71). This region has a special gene 
expression characteristic. The dorsal mesoderm induced 
both rFng and Wnt7a expression in dorsal limb buds, while 
the abdominal mesoderm induced Engrailed-1 (En-1)  
expression in the limb buds. The mutual inhibition between 
En-1 expressing cells and rFng expressing cells will 
determine the central margin of the apical ectodermal crest. 
En-1 and Wnt7a inhibited each other, so the abdominal 
area of limb bud was located (71,72).

The three signal centers in l imb formation are 
interdependent and this interaction is necessary for 
the normal development of the limb. The specific 
manifestations are as follows: (I) the polarizing active 
region (Sonic hedgehog) was established by AER (FGF8) 
and dHAND; (II) FGFs generation is induced by Sonic 

Figure 2 Cellular molecular basis of limb development. (A) The bone composition of these appendages; (B) three axis of limb development; 
(C) three signal centers and their interactions during limb development.
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hedgehog (in the polarizing active region) (in the AER) 
by SHH inducing Gremlin, which inhibits FGFs BMP 
inhibition; (III) maintain the expression of Sonic hedgehog 
by Wnt7a (in the ventral ectoderm); (IV) Sonic hedgehog 
blocks the division of Gli3 into the form of repressor, and 
maintains the concentration gradient between Gli3 activator 
and Gli3 repressor (73,74) (Figure 2C).

Key signaling pathways and related genes

So far, some progress has been made in the study of 
genetic regulation of Polydactyly, and some genes related 
to Polydactyly have been located, which are mainly 
concentrated on chromosome 2 and 7 of human. In addition, 
polydactyly-related genes were also found in 13q21–q32 and 
19p13–p13.2 regions of human chromosome. At present, 
the genes related to limb development have been known to 
be SHH, LMBR1/2, the Hox family, The Gli family, PTCH1, 
SMO, EN-2, BMP, etc. The genes and signaling pathways 
that affect polydactyly are basically the same among different 
species (75).

SHH-Gli3 pathway

SHH is an important secretory factor in limb development 
and has been located in the 7q36 region of human 
chromosome. SHH can cause limb abnormalities in 
vertebrates including mice, chickens and humans. Normally, 
SHH is only expressed in the back of limb buds of mice, and 
the loss of function of SHH leads to severe limb fracture, 
while the abnormal expression of SHH in the forelimb will 
lead to finger (toe) duplication. The factors controlling 
SHH expression in limb buds can be divided into positive 
and negative regulators (68). Studies have shown that at 
least 216 mutations in the SHH gene can lead to abnormal 
limb development, with polydactyly occurring more 
frequently (30). Hand2, Tbx3, Pbx1, Pbx2, Hox10, Hox11, 
Hox12 and Hox13 may activate SHH expression in the 
posterior limb bud, and loss-of-function mutants of those 
genes can cause reduced or absent SHH expression in this 
region (20). Among these regulators of SHH, ZRS has been 
reported to be associated with many types of Polydactyly. 
ZRS is located in the 5th intron of LMBR1, close to 1 MB 
from SHH, and is highly conserved in excess of 800 bp. It 
is necessary to control the expression of SHH in limb buds, 
but not in other parts of the developing embryo (27,68,76). 
Mutations in the ZRS lead to the heterotopic expression of 
the SHH, which has been reported to cause PPD in many 

species, including mice, dogs, cats, chickens, and humans 
(77-82).

Gli3 is another crucial gene in this pathway. It is a 
member of the Gli family of zinc finger transcription 
factors, located on the human chromosome 7p13, and is a 
gene encoding zinc finger proteins (83). Gli3 transcription 
factor plays an important role in the regulation of SHH 
gene expression, and its mutation affects its normal 
expression, resulting in anteroposterior polydactyly, 
anteroposterior polydactyly and minor facial deformities. 
Gli3 exists in two different forms (Gli3R and Gli3A), and 
the proportion of Gli3R/Gli3A is directly involved in the 
development of digits (84). According to reports, 225 genes 
have been identified in the Gli3 gene that can cause limb 
abnormalities, many of which can lead to polydactyly (30).

LMBRl and LMBR2 are the key genes leading to abnormal 
limb development in mammals, including human (85).  
LMBRl encodes a transmembrane receptor that is an 
important regulator of SHH upstream. The intron 5 (ZRS) 
of this gene contains cis-acting element of SHH, so its 
expression changes can lead to PPD (86). Multiple studies 
have shown that mutations in ZRS in humans and mice lead 
to different types of preaxial polydactyl phenotypes, such 
as ZRS 404 G>A, ZRS 404 G>T, ZRS 404 G>C, ZRS 417 
A>G and ZRS 619 C>T (23,87-90).

PTCH1 and SMO are also important intermediate genes 
in this pathway. After SHH-PTCH interaction, due to the 
loss inhibition of PTCH to SMO, SMO activates Gli3R 
into the activated Gli3A form. SMO, on the other hand, 
activates SHH signals in the presence of SHH. In the 
absence of SHH, PTCH receptor inhibits SMO function 
and thus has inhibitory function (91,92). Therefore, we 
believe that PTCH1, SMO and SHH have regulatory 
roles in both pairs, maintaining a dynamic balance between 
them to ensure normal limb development. Finally, SHH 
expression of the regulatory factors Twist1, Hand2, and 
Etv also maintains a precise balance during embryonic 
development, forming an AP pattern in the limb. Twist1 can 
form homodimers/heterodimers with Hand2, which can be 
antagonized by overexpressing Etv (69). Additionally, Gli3 
protein directly inhibits the transcription of Hand2 (93).

The dynamic balance between Gli3R/Gli3A, Twist1-
Hand2-Etv and SHH-PTCH-SMO is an important 
cornerstone to maintain the stability of the SHH-Gli3 
pathway. Once this balance is broken, the pathway will 
show abnormal signals, which will eventually lead to 
abnormal limb development and malformation during 
embryonic development. And these three kinds of balance 
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also have mutual influence among themselves, so they 
further constitute a fine regulation network (Figure 3A). 
For example, mice with one or two Gli3 alleles destroyed 
in SHH-deficient embryos can gradually restore distal limb 
development and finger formation. This suggests that SHH 
neutralizes Gli3-mediated inhibition of key regulatory 
genes, cell survival, and distal progression of limb bud 
development (94).

Hox gene family

Transcription factors encoded by the Hox gene play a key 
role in establishing the normal structure of the human 
body (95). During embryonic development, the genes from 
each Hox cluster are activated in sequence in time and 
space according to the relative order on the chromosomes, 
leading to the differential expression of Hox genes along 
the main axis of the body, thus establishing morphological 
diversity (Figure 3B). The limb bone pattern requires the 
activity of the Hox gene, mainly from the HoxA and HoxD 
clusters (96-98). During limb development, Hox gene 
expression is divided into two stages. In the early limb buds, 
they were expressed in nested patterns along the A-P axis, 
and the expression of late activated genes was limited to 
the posterior buds. With the development of the limb, Hox 
expression entered the second stage, and HoxA/D gene from 

the heterozygote group was differentially expressed along 
the P-D axis, and gradually transferred from the proximal 
to the distal (99). The function loss experiment proved that 
the differential expression of HoxA/D gene on the P-D axis 
was the reason for the segment-pattern formation of the 
three limbs. For example, the combined loss of function of 
Hoxa11 and Hoxd11 seriously impaired the development 
of zeugopod, while the inactivation of Hoxa13 and Hoxd13 
resulted in complete finger loss (100,101). Hoxa11 and 
Hoxa13 expression domains are mutually exclusive. The 
absence of Hoxa11 distally is due to the presence of a 
transcriptional enhancer within Hoxa11 intron, which upon 
Hox13-dependent activation, drives antisense transcription 
that prevents Hoxa11 expression in the presumptive digit-
forming region. the evolution of Hoxa11 regulation leading 
to Hoxa11 repression in the Hoxa13 domain must have 
been implemented prior the emergence of pentadactyly 
species and has possibly contributed to the transition from 
polydactyly in stem group tetrapods to pentadactyly in 
extant tetrapods (102-104) (Figure 3C). For a long time, 
most researchers believed that the remodeling of distal 
limbs, from fingerlike limbs to multi-fingered limbs and 
finally to five-fingered limbs, may depend on the change of 
Hox regulation during the evolutionary process, while HoxA 
and HoxD clusters occurred independently.

Abnormal expression of Hox gene family can lead to 

Figure 3 Key signaling pathways and related genes. (A) The specific regulation mechanism of SHH-Gli3 signaling pathway; (B) the 
hypothesis that Hox gene specializes in specific parts of a limb; (C) the correlation between Hoxa11 and Hox13 in the regulating digits.
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polydactyly, and dysregulation of SHH signal can also 
lead to limb development disorders. So, is this mechanism 
related to each other? Research shows that ectopic SHH 
expression was systematically associated with the PPD in 
limbs overexpressing 5'HoxA/D genes, consistent with the 
function of 5'HoxA/D genes in controlling SHH expression 
(105-107). Further, there is evidence that the distally 
expressed Hox proteins directly interact with Gli3. The 
study found that the Hoxd12 protein can bind to Gli3, 
transforming Gli3R into Gli3A. Therefore, once Hoxd12 
is overexpressed, the whole SHH-Gli3 signaling pathway 
will be out of whack, resulting in Polydactyly. The same 
experimental results were also presented in Hoxd11 and 
Hoxd13, it was proposed that the ratio between Gli3 and 
distal Hox family puts on the digit-forming capacity of the 
distal limb and digit number (108). Sheth et al. combined 
genetics, quantitative analysis and computer modeling, 
suggest that the equilibrium resulting from the cross-
regulation between SHH-Gli3 and distal Hox genes have 
led to the stabilization of the pentadactyl state (109).

Challenges and perspective

In recent years, with the rapid development of genetics, 
molecular biology and embryology, we have a more 
detailed understanding of the types, phenotypes and 
genetic patterns of polydactyly. However, the emergence 
and innovation of technologies such as RNA sequencing, 
systems bioinformatics, WGS/WES and CRISPR Cas9 can 
more accurately help us to study the relationship between 
phenotypes and genotypes. In the foreseeable future, 
these technologies will provide us with rapid, effective 
and economical genetic screening, which will help to fully 
understand the pathogenesis of polydactyly and provide 
effective intervention against the molecular targets that 
cause it.

According to the current research, the genes and 
signaling pathways that cause polydactyly are not single or 
completely independent, and they often interact with each 
other or even have a regulatory effect. This suggests that 
we should systematically consider the relationship between 
genes, pathways and disease in our research. In addition, 
we also found that the introduction of Turing machine into 
the research thought opened a new world for the original 
understanding of the mechanism of Hox gene family 
regulating polydactyly (110,111). This also suggests that we 
should try to conduct interdisciplinary thinking, hypothesis 
and even experimental design in future research, instead of 

being trapped in the old research methods and stereotypes.
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