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The development of tyrosine kinase inhibitors gefitinib and 
erlotinib for anti-epidermal growth factor receptor (EGFR) 
therapy is one of milestones in the history for treatment 
of lung cancer, a disease that annually causes more than 
158,000 deaths in the United States, 610,000 deaths in 
China, and 1.6 million deaths worldwide (1,2). Activating 
mutations in the tyrosine kinase domain of the EGFR gene 
are known to be an oncogenic driver in lung tumorigenesis. 
It is now clear that non-small cell lung cancer (NSCLC) 
with EGFR activating mutations represent a distinct 
biological subtype that is highly sensitive to the treatment 
with EGFR inhibitors. In fact, the finding that EGFR-
mutant lung cancer cells are highly susceptible to the EGFR 
inhibitors gefitinib (3) and erlotinib (4) has made these two 
agents the first choice for therapy in patients whose tumors 
harbor EGFR mutations. Both gefitinib and erlotinib have 
been reported to significantly improve disease control, 
objective response rate (ORR), progression-free survival 
(PFS), and quality of life in patients with EGFR-mutant 
lung cancer, when compared with conventional chemotherapy 
(5,6). Approximately 10−17% of lung adenocarcinomas 
patients in the United States and Europe (7,8) and about 
30−65% of lung cancer patients in Asia have EGFR 
activating mutations (9,10). Deletions in exon 19 and the 
point mutation L858R in exon 21 are the most common 
EGFR activating mutations, accounting for about 85% 
of the EGFR mutations detected in lung cancers (10,11). 
In the absence of EGFR mutation or gene amplification, 
there is no significant difference in the responses to 
the treatment with EGFR inhibitors and conventional 
chemotherapies (12). Thus, EGFR gene mutation test 

is mandatory for using EGFR antagonists as the first-
line treatment for advanced NSCLC (13). Consequently, 
genetic profiling of surgical and biopsy samples is routinely 
performed clinically for lung cancer patients to provide 
guidance for selection of treatment regimens. A number 
of DNA sequencing and polymerase chain reaction (PCR) 
based methods are used clinically to detect EGFR gene 
mutations in tumor specimens. However, the presence of 
intratumoral heterogeneity in most cancer patients (14) has 
imposed a challenge in using the information obtained from 
analysis of single tiny biopsy samples in clinical practice. 
Moreover, multiple and serial biopsies are often impractical 
clinically because of the potential complications of the 
procedures, including tumor seeding or spreading following 
percutaneous needle biopsy (15,16).

In a recent article of Journal of Clinical Oncology, Oxnard 
reported results from a retrospective analysis on treatment 
outcomes with osimertinib (AZD9291) in advanced 
NSCLC patients based on genotype analysis of patients’ 
plasma and tumor specimens (17). Osimertinib is one 
of third generation EGFR antagonists that specifically 
inhibit cancers containing T790M mutations in the 
EGFR gene (18), which is resistant to the first generation 
EGFR antagonists’ gefitinib and erlotinib. A number of 
mechanisms of acquired resistance to gefitinib and erlotinib 
have been reported, nevertheless, the most common cause 
of the acquired resistance observed clinically is acquisition 
of the EGFR T790M mutation, which is found in 
approximately 50% of patients (19). Clinical study revealed 
that treatment with osimertinib resulted in an ORR of 61% 
in patients with confirmed EGFR T790M mutation. In 
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contrast, the patients without EGFR T790M mutation had 
the response rate of 21% (20). Tumor biopsy was performed 
to determine the presence EGFR T790M mutation in 
patients with disease progression after the treatment with 
erlotinib or gefitinib. This promising result has led to the 
US Food and Drug Administration (FDA)’s approval of 
using osimertinib for the treatment of advanced NSCLC 
with EGFR T790M mutation. The FDA also approved a 
companion diagnostic test, the cobas EGFR mutation Test 
v2 which includes T790 mutation analysis in the EGFR 
gene. Nevertheless, obtaining biopsy specimen for the test 
is a challenge in clinical practices because of possible risks of 
biopsy procedure. Thus, results from Oxnard’s group may 
change clinical practice in mutation analysis for precision 
therapy against lung cancers. 

Using BEAMing digital PCR analysis, Oxnard et al. 
found that the sensitivity of plasma genotyping for 
detection T790M was 70% (17), comparable that reported 
previously (21). T790M mutation was detected in 18 of 58 
(31%) patients with T790M negative tumor. Analysis on 
clinical outcomes revealed that ORR and median PFS were 
similar in patients with T790M-positive plasma (ORR, 63%; 
PFS, 9.7 months) or T790M-positive tumor (ORR, 62%; 
PFS, 9.7 months). For the patients with T790M-negative 
plasma, ORR was 46% and median PFS 8.2 months.  
Among the pat ients  whose plasma genotyping is 
T790M-negative, favorable outcomes (ORR, 69%; PFS, 
16.5 months) were observed when tumor genotyping was 
positive for T790M, whereas poor outcomes (ORR, 25%; 
PFS, 2.8 months) were observed when tumor genotyping 
was negative for T790M. Nevertheless, patients with 
T790M-positive plasma also responded to the osimertinib 
treatment differently based on their tumor genotyping 
results. The ORR and median PFS were higher in those 
with T790M-positive tumors (ORR, 64%; PFS, 9.3 months) 
than in those with T790M-negative tumors (ORR, 28%; 
PFS, 4.2 months). Those result suggested that plasma 
and tumor genotyping can have complementary roles for 
T790M mutation test. For approximately 50% NSCLC 
patients with acquired resistance to the first generation 
EGFR antagonists, biopsy may be avoided if their plasma 
genotyping is positive for T790M mutation. However, 
patients with T790M-negative plasma results may still need 
a tumor biopsy to determine T790M mutations, which may 
increase their test cost. 

Accumulating evidences have demonstrated that tumor-
specific alterations (mutations, translocations, aberrant 
methylations, and copy-number alterations) can be detected 

in the plasma cell-free DNA (cfDNA) of cancer patients 
using digital polymerase chain reaction (dPCR) and next-
generation sequencing (NGS) (22). Because blood flows 
through both primary and metastatic tumors, the genomic 
profile of cfDNA is expected to constitute a representative 
readout of collective genomic alterations in all tumors in a 
patient, including primary and metastatic tumor nodules, 
thereby circumventing potential problems encountered by 
conventional biopsy owing to spatial heterogeneity that 
has been observed in a variety of cancers. For the 18 cases 
(30%) with T790M genotyping positive in plasma but 
negative in tumor reported in the study, the presence of 
T790M mutation in plasma cfDNA was confirmed in 14 
cases (78%) by using an alternative assay, suggesting that 
the discordance might arise from spatial heterogeneity. 
However, this group of patients had lower ORR than the 
patients who were T790M positive in both plasma and tumor 
genotyping. The authors hypothesized that the patients 
with T790M positive plasma but negative tumor may 
have T790M positive cancer cells being present as minor 
clones. Because the half-life of circulating cfDNA is short 
(~16 minutes) (23), analysis of longitudinal samples can be 
used to monitor treatment response, disease recurrence, and 
emergence of treatment-resistant mutations, such reduction 
of T790M mutant cfDNA in plasma or emergence of 
osimertinib resistant C797S mutation, as reported by 
Oxnard’s group recently (24). Unfortunately, dynamic 
changes of T790M mutation in plasma or emergence of 
C797S mutation were not included this retrospective study, 
therefore, the conclusion is not available for the putative 
spatial heterogeneity in this group of patients. 

Like other laboratory tests used in clinics, plasma 
genotyping for precision medicine may have its limitations. 
Currently, mutational analyses of cfDNA are performed 
using ddPCR or NGS with small panels of cancer-related 
genes. One of major challenges in using cfDNA for detecting 
tumor-specific mutations is that only very limited amount of 
cfDNA can be isolated from plasma, which is not adequate 
for ddPCR assays on multiple hot spots of cancer mutations, 
or for genomic profiling of larger panels of cancer-related 
genes. Improvement in technologies and standardization of 
procedures for sample acquisition, processing and analyses 
will be needed for realization of the potential applications 
of plasma genotyping in era of precision therapy for cancer. 
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