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Introduction 

Local anesthetics have a broad pharmacological roles that go 
beyond the known analgesia and antiarrhythmic (1). They are 
used in a wide range of clinical situations to prevent or reduce 
acute pain, chronic pain and cancer pain (2). A retrospective 
analysis of patients undergoing cancer surgery suggests that 
using regional anesthesia may reduce cancer recurrence 
and improve survival rate (3,4). Recently, some studies have 
demonstrated that local anesthetics inhibit proliferation, 
suppress invasion and migration, and induce apoptosis at a 

range of certain concentrations (5-7). The mechanisms are 
still unclear. It seems to be unrelated to the sodium-channel 
blockade (8-10), while in other reports local anesthetics 
work in the manner of inhibiting the activity of sodium 
channels (11,12). Previous study has suggested that local 
anesthetics could induce apoptosis in human thyroid cancer 
cells, which is associated with mitogen-activated protein 
kinase (MAPK) pathways (13). Another report has suggested 
that inhibition of MAPK pathways protects against local 
anesthetics-induced neurotoxicity (14). However, little 
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is known about local anesthetics-induced cytotoxicity in 
human non-small-cell lung cancer (NSCLC) cells. 

Methods

Cells lines and culture conditions

Human NSCLC cell lines A549 and H520 were purchased 
from the Institute of Biochemistry and Cell Biology, 
Chinese Academy of Science, China. Cells were cultured 
in a RPMI-1640 medium supplemented with 10% fetal 
bovine serum, 1% penicillin (100 U/mL) and streptomycin  
(100 μg/mL) (Gibco, NY, USA). Both cell lines were 
incubated at 37 ℃ in a humid incubator with 5% CO2. 

MTS assay

Approximately 5×103 cells/well were placed in a 96-
well plate and then treated with lidocaine or ropivacaine 
individually at concentrations ranging from 0 to 32 mM for 
24, 48, or 72 h. In each well, 100 μL MTS reagent (Promega, 
WI, USA) was added, followed by incubated in the dark at 
37 ℃ for 1.5 h. The absorbance values were measured at 
490 nm using Varioskan Flash (Thermo Fisher Scientific 
Inc., MA, USA). The median 50% effective dose (ED50) 
values were calculated using the probit method of Miller 
and Tainter.

Cell cycle assay

Cells were exposed to lidocaine or ropivacaine for 24 h at 
the concentration of 24 h ED50, then washed by phosphate-
buffered saline (PBS) and fixed with 75% ethanol overnight 
at 4 ℃. After that, cells were incubated with Rnase  
(0.1 mg/mL) for 30 min, followed by stained with 40 μg/mL  
propidium iodide (PI) for another 30 min. Analysis was 
performed using the Cell Quest software of a Becton-
Dickinson fluorescence-activated cell sorting (FACS) 
Calibur flow cytometer (Becton-Dickinson, CA, USA), the 
excitation wavelength was set at 488 nm.

Apoptosis assay

Cells were collected after treated with lidocaine or 
ropivacaine for 24 h, and a minimum of 15,000 cells were 
analyzed in each measurement. Cells were stained with 
FITC-conjugated anti-annexin V antibody and PI, then 
quantified by FACS Calibur flow cytometer with a 488 nm 

argon laser. The cells in the early state of apoptosis were 
stained with annexin V, while the late state of apoptosis was 
stained with PI.

Invasion and migration assays

The upper chamber of a 6.5 mm Transwell polycarbonate 
membrane  were coated with diluted matrigel (3.9 mg/mL, 
60–80 μL) inserting with 8 μm pores (Coster, MA, USA). 
Cells were resuspended in 300 μL serum-free RPMI-1640 
medium with no other supplements or with local anesthetic 
and were incubated for 15 min at room temperature. The 
inserts were then placed into 500 μL complete medium 
(RPMI-1640, 10% fetal bovine serum, 1% penicillin and 
streptomycin plus the same concentration of local anesthetic 
as present in the upper chamber) in a 24-well plate. After 
incubation with lidocaine or ropivacaine for 24 h, the upper 
surface cells were scraped, however, the lower side cells 
were fixed with 75% ethanol, followed by stained with 
crystal violet. The migration assay was conducted similarly, 
with no matrigel on the upper chamber. The inverted 
microscope was used to count the number of cells at three 
randomly selected visual fields with 400× magnification. 

Detection of intracellular reactive oxygen species (ROS)

The intracellular ROS level was detected using an oxidation-
sensitive fluorescent probe. The cells were plated at a 
density of 3×105 cells/well in 6-well plates and treated with 
lidocaine or ropivacaine for another 24 h. Subsequently, 
cells were centrifuged and resuspended in 500 μL  
of 2,7-dichlorofluorescein diacetate (10 μM, DCFH-DA, 
Molecular Probes, OR, USA) for ROS detection. After 
incubated at 37 ℃ for 30 min, cells from each treatment 
were analyzed by flow cytometry.

Detection of mitochondrial membrane potential (MMP, ∆Ψm) 

MMP was determined by flow cytometry using the ∆Ψm-
dependent fluorescent dye JC-1 (Sigma, MO, USA). The 
cationic dye JC-1 was a highly specific probe for detecting 
changes in ∆Ψm to evaluate mitochondrial membrane 
integrity for which could selectively enter into mitochondria 
and undergo a reversible change in fluorescence emission 
according to the ∆Ψm. Approximately 3×105 cells/well 
were cultured in a 6-well plate. After treated with local 
anesthetic for 24 h, cells were harvested and incubated with 
JC-1 for 20 min at 37 ℃ according to the manufacturer’s 
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instructions (Sigma, MO, USA). Then the samples were 
subjected to ∆Ψm determination by flow cytometry as JC-1 
formed red fluorescence in intact mitochondria, while green 
fluorescence was formed in JC-1 monomers at low ∆Ψm.

Comet assay

Comet assay was uesd to evaluate the effect of local 
anesthetics on DNA damage of NSCLC cells. Cells were 
harvested and resuspended at a density of 1×105/mL to 
spread on microscopic slides, precoated with a thin layer 
of 0.5% melting agarose. After gelling for 15 min at 4 ℃, 
slides were incubated in lysis solution for 1.5 h. Afterward, 
each slide was placed in a tank containing balanced solution 
for another 20 min. Subsequently, each slide was subjected 
to electrophoresis at 30 V for 40 min. After immersed in 
neutralization buffer for 5 min and stained with SYBR 
Green (Invitrogen, CA, USA), the slides were observed 
with an FV-1000 laser scanning fluorescence microscope 
(Carl Zeiss, Oberkochen, Germany). The tails of the comet 
reflected the DNA damage.

Western blot assay

Equivalent amount of proteins (30 μg) were individually 
subjected to gel electrophoresis. The proteins were 

incubated with the indicated primary antibodies: Fas and 
FasL, Bax and Bcl-2, endonuclease G (Endo G), apoptosis-
inducing factor (AIF), cytochrome c, caspase and cleaved 
caspase-3, -8, -9, poly ADP-ribose polymerase (PARP) and 
cleaved PARP, cyclin D1, total extracellular signal-regulated 
protein kinases (ERKs), total c-Jun NH2-terminal kinases 
(JNKs), total p38 MAPK, p-ERKs, p-JNKs, and p-p38. 
Anti-β-actin was used as a loading control. Corresponding 
horseradish peroxidase-conjugated secondary antibodies 
were used against each primary antibody. Proteins were 
detected using the chemiluminescent detection reagents. 

Statistics analysis

Data were showed as mean ± standard deviation (SD). 
Statistical analysis of the differences between two groups 
was evaluated using the one-way analysis of variance, 
followed by Student’s t-test using the SPSS 16.0 software 
(SPSS Inc., IL, USA). Values of P<0.05 were considered 
significant differences (*P<0.05; **P<0.01; ***P<0.001).

Results 

Local anesthetics suppressed NSCLC cell viability

The cell viability assay showed that local anesthetics 
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Figure 1 Local anesthetics suppressed A549 and H520 cells proliferation in a dose- and time-dependent manner. Cells were treated with 
different concentrations of local anesthetics and then measured using MTS assay at an absorbance of 490 nm. Values were showed as mean ± 
SD for three independent experiments.
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suppressed the growth of NSCLC cells in a dose- and time-
dependent manner (Figure 1). The ED50 values of lidocaine 
and ropivacaine in A549 cells were higher than that in H520 
cells. The ED50 of lidocaine was 9.51 and 6.14 mM for 
A549 and H520 cells at 24 h, respectively. In addition, the 
ED50 of ropivacaine at 24 h was 4.06 and 2.62 mM for A549 
and H520 cells, respectively. 

Local anesthetics arrested NSCLC cell cycle at the G0/G1 
phase

As shown in Figure 2A, the percentage of cells in the G0/G1  
phase in the treated groups were significantly increased. 
The cell cycle distribution analysis indicated 91.51%±1.53% 
A549 and 87.72%±1.60% H520 for lidocaine-treated groups 
compared with 69.53%±1.62% A549 and 64.94%±1.44% 
H520 for negative control (NC) groups at the G0/G1 phase 
(***P<0.001). Simultaneously, ropivacaine-treated groups 
were 92.57%±1.57% A549 and 86.65%±1.27% H520 at the 
G0/G1 phase (***P<0.001) (Figure 2A). 

Local anesthetics induced NSCLC cells apoptosis

The total percentage of apoptosis (including early and late 
apoptosis) was significantly increased in the treated groups 
(***P<0.001) (Figure 2B).

Local anesthetics inhibited invasion and migration of 
NSCLC cells

The invasion capability of local anesthetics-treated groups 
decreased in comparison with NC groups, as the number of 
cells invading through the membrane matrix was obviously 
decreased (***P<0.001) (Figure 3). Similar to invasion, 
the migration was also drastically suppressed in local 
anesthetics-treated groups than in NC groups (***P<0.001) 
(Figure 3).

Local anesthetics induced mitochondrion and DNA damage

The level  of  ROS increased and ∆Ψm decreased 
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Figure 2 Cells were treated with local anesthetics for 24 h at the concentrations of ED50 and then harvested to determine cycle/apoptosis 
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Figure 3 After local anesthetics treated for 24 h at the concentrations of ED50, the number of cells was counted at 3 randomly selected 
visual fields by an inverted microscope at 400× magnification. (A) Local anesthetics inhibited migration and invasion of A549 cells; (B) local 
anesthetics inhibited migration and invasion of H520 cells (***P<0.001).
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(***P<0.001) (Figure 4). In addition, local anesthetics 
caused oligo nucleosomal DNA fragmentation in NSCLC 
cells (Figure 5). 

Altered expression of related proteins

Western blot assay showed that the expression level of 
cyclin D1 decreased in local anesthetics-treated groups in 
comparison with NC groups, which was inconsistent with 
the result of G0/G1 phase arrest (Figure 6A). In addition, 
the expression level of the intrinsic mitochondrial pathway 
proteins Bax, Bcl-2, cleaved caspase-9, cytochrome c, AIF 
and Endo G changed accordingly (Figure 6B,C). Caspase-3 
and PARP, the common proteins of two apoptotic 
pathways, were cleaved after local anesthetics treatment. 
Furthermore, the expression levels of the extrinsic death 
receptor pathway proteins Fas and its receptor FasL, 
cleaved caspase-8 were upregulated (Figures 6C). Moreover, 
local anesthetics did not alter the expression of p38 
MAPK and its phosphorylation (Figure 6D). Unlike p38 
MAPK, lidocaine and ropivacaine had no obvious effect 
on total ERK1/2 and JNK levels; however, the increased 
phosphorylation of ERK1/2 and JNK were observed 
(Figure 6D). In total, lidocaine and ropivacaine triggered 
apoptosis in human NSCLC cells via apoptotic pathways 
and MAPK pathways (Figure 7).

Discussion

As the leading cause of cancer-related mortality globally, 
the annual burden of lung cancer is larger than that of any 
other cancers, for which more than 85% of those cases 
are currently classified as NSCLC (15-17). Despite recent 
advances in diagnosis and treatment, the predicted 5-year 
survival rate is only 15.9% which has only marginally 
improved during the past decades (18). Thus, the underlying 
molecular mechanisms and new therapeutic strategies are 
urgently required in lung cancer.

Retrospective studies of patients undergoing cancer 
surgeries suggest that using regional anesthesia reduces 
the risk of tumor metastasis and recurrence, but the 
mechanism remains unclear (19-21). The benefits may be 
due to the attenuation of immunosuppression by regional 
anesthesia (12,22). Some in vitro animal data demonstrate 
that opioids promote tumor growth and metastasis, 
largely by inducing mitogenesis and angiogenesis (23,24). 
Regional anesthesia, in part, reduces the use of opioids, and 
thus may reduce tumor recurrence and improve survival. 
However, Doornebal et al. study shows that morphine does 
not facilitate breast cancer progression (25). Thus, further 
studies need to be conducted for the specific mechanisms of 
opioids on cancer. Apart from the preservation of immune 
system and the reduction in opioids requirement, systemic 
administration of local anesthetics during surgery plays a 
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Figure 4 Cells were treated with local anesthetics for 24 h at the concentrations of ED50. (A) Local anesthetics increased ROS production in 
A549 and H520 cells; (B) local anesthetics downregulated ∆Ψm in both A549 and H520 cells (***P<0.001).
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Figure 7 Amide-linked local anesthetics induce apoptosis through apoptotic pathways (the extrinsic death receptor pathway and the intrinsic 
mitochondrial pathway) and MAPK pathways in human non-small-cell lung cancer cells.
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role of anti-hyperalgesic and anti-inflammatory (26,27). One 
paramount benefit of local anesthetics is that they may induce 
apoptosis in tumor cells but not in normal tissues (23). 

The effects of lidocaine and ropivacaine on NSCLC cells 
in vitro were examined in the present study, as they are the 
two most commonly used amide-linked local anesthetics 
in China. Our study demonstrated that lidocaine and 
ropivacaine inhibited cell growth and arrested cell cycle at 
G0/G1 phase. Once the cells from the G1 phase moved 
into the S phase, they could no longer rely on external 
stimuli, and complete the cell division automatically (28). In 
all known cell cycle proteins, cyclin D1 was the most critical 
checkpoint protein in regulating G1 phase to S phase (28). 
Our study demonstrated that the expression of cyclin D1 
was downregulated which could prevent cells move from G1 
to S phase thus inhibiting cell growth. The overexpression 
of cyclin D1 was associated with poor prognosis, and could 
significantly reduce postoperative long-term survival rate (28). 
Thus, downregulation the expression and function of cyclin 
D1 have become one of the important hot areas targeting 
the drug antitumor research. 

Additionally, invasion and migration were suppressed 
by lidocaine and ropivacaine treatment at a certain range 
of concentrations which meant the reduction of tumor 
malignancy.

Furthermore, lidocaine and ropivacaine treatment 
induced apoptosis. Apoptotic pathways include two major 
signaling routes: the extrinsic death receptor pathway and 
the intrinsic mitochondrial pathway (29,30). Apoptosis was 
mainly controlled by caspases, a family of intracellular cysteine 
proteases, which were grouped into initiators (caspase-2, -8, -9,  
and -10) and effectors (caspase-3, -6, and -7) (31,32).

Caspases could activate through being cleaved. Firstly, 
lidocaine and ropivacaine could activate the extrinsic death 
receptor pathway. Protein ligand Fas bound to its receptors 
FasL activating the initiator caspase-8 (31). Moreover, Bcl-2 
family participated in the apoptotic process, functioning as 
promoters (Bax) or inhibitors (Bcl-2). Activated Bax could 
form an oligomeric pore, resulting in the permeabilization 
of the mitochondrial outer membrane along with a 
concomitant decrease in the Bcl-2 level (30,33). An 
increase of Bax/Bcl-2 ratio could contribute to increased 
sensitivity of cells to apoptosis. A decrease in ∆Ψm was an 
early event indicating apoptosis, simultaneously with the 
increase of Bax/Bcl-2 ratio (30). Lidocaine and ropivacaine 
downregulated ∆Ψm resulting in mitochondrial dysfunction. 
The dysfunction of mitochondrion released apoptogenic 
proteins cytochrome c from mitochondria to the cytosol, 

resulting in the activation of downstream caspases which 
was ultimately required to induce apoptosis. Endo G 
and AIF were also released from mitochondria, and then 
translocated to the nuclei to induce apoptosis via caspase-
independent mitochondrial apoptotic pathway. All in all, 
these results suggested that local anesthetics could activate 
the mitochondrial apoptotic pathway (34). 

Cleaved caspase-3, the active form of caspase-3, was the 
capital cleavage enzyme in apoptosis (13). Apoptosis was 
characterized by the nuclear DNA degradation in response to 
a variety of apoptotic stimuli (35,36). PARP could be cleaved 
by caspase-3 and -7 during apoptosis which was involved in 
DNA damage and repair. This cleavage inactivated PARP 
contributed to cells’ apoptosis (8). Increased PARP cleavage 
was observed in NSCLC cells after treated with lidocaine 
or ropivacaine. 

In addition to the two classical apoptotic pathways, ROS 
production was upregulated, which was an explicit indicator 
of apoptosis (34). The increased ROS production was a clear 
indication of apoptosis via activating endoplasmic reticulum 
(ER) stress pathway, which included MAPK pathways (34). 
The members of MAPK family, including ERKs, JNKs, 
and p38 MAPK, were activated by phosphorylation on 
threonine and tyrosine residues by upstream dual-specificity 
kinases (37). The results showed the phosphorylation of 
ERK1/2 and JNK increased, suggesting that ERK1/2, 
JNK, and p38 MAPK may have different effects on local 
anesthetics induced NSCLC cells apoptosis.

In summary, local anesthetics affect the outcomes 
of NSCLC in a variety of aspects, including arrest 
cell cycle, induce apoptosis, and inhibit invasion and 
migration. In addition, local anesthestics may attenuate 
the neuroendocrine response due to surgery, thus improve 
the preservation of immunocompetence. Furthermore, 
local anesthetics may make tumor cells more sensitive to 
the effects of chemotherapy. Taking into account that local 
anesthetics used for postoperative pain relief specially via 
intrapleural analgesia after minimally invasive thoracoscopic 
surgery (38,39), our study indicate the additional benefits 
of local anesthetics in lung cancer surgery which may have 
substantial clinical implications. 

Conclusions

Our study indicates that amide-linked lidocaine and 
ropivacaine trigger apoptosis in human NSCLC cells via 
apoptotic pathways and MAPK pathways. The results reveal 
the beneficial actions of amide-linked local anesthetics 
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and call for further studies to their use during lung cancer 
surgery.
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